Research article Special Issues

Service scheduling optimization for multiple tower cranes considering the interval time of the cross-tasks


  • Received: 02 November 2022 Revised: 18 December 2022 Accepted: 28 December 2022 Published: 18 January 2023
  • The key issues that have always affected the production yield of the construction industry are delays and cost overruns, especially when dealing with large-scale projects and super-high buildings in which multiple tower cranes with overlapping areas are often deployed because of urgent due date and limited space. The service scheduling of tower cranes, which act as the crucial site equipment for lifting and transporting materials, is one of the main problems not only related to the construction progress and project cost but also affecting equipment health, and it may bring security risks. The current work presents a multi-objective optimization model for a multiple tower cranes service scheduling problem (MCSSP) with overlapping areas while achieving maximum interval time of cross-tasks and minimum makespan. For the solving procedure, NSGA-Ⅱ is employed with double-layer chromosome coding and simultaneous coevolutionary strategy design, which can obtain a satisfactory solution through effectively allocating tasks within overlapping areas to each crane and then prioritizing all the assigned tasks. The makespan was minimized, and stable operation of tower cranes without collision was achieved by maximizing the cross-tasks interval time. A case study of the megaproject Daxing International Airport in China has been conducted to evaluate the proposed model and algorithm. The computational results illustrated the Pareto front and its non-dominant relationship. The Pareto optimal solution outperforms the results of the single objective classical genetic algorithm in terms of overall performance of makespan and interval time of cross-tasks. It also can be seen that significant improvement in the time interval of cross-tasks can be achieved at the cost of a tiny increase in makespan, which means effective avoidance of the tower cranes entering the overlapping area at the same time. This can help eliminate collision, interference and frequent start-up and braking of tower cranes, leading to safe, stable and efficient operation on the construction site.

    Citation: Jing Yin, Jiahao Li, Yifan Fang, Ahui Yang. Service scheduling optimization for multiple tower cranes considering the interval time of the cross-tasks[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5993-6015. doi: 10.3934/mbe.2023259

    Related Papers:

  • The key issues that have always affected the production yield of the construction industry are delays and cost overruns, especially when dealing with large-scale projects and super-high buildings in which multiple tower cranes with overlapping areas are often deployed because of urgent due date and limited space. The service scheduling of tower cranes, which act as the crucial site equipment for lifting and transporting materials, is one of the main problems not only related to the construction progress and project cost but also affecting equipment health, and it may bring security risks. The current work presents a multi-objective optimization model for a multiple tower cranes service scheduling problem (MCSSP) with overlapping areas while achieving maximum interval time of cross-tasks and minimum makespan. For the solving procedure, NSGA-Ⅱ is employed with double-layer chromosome coding and simultaneous coevolutionary strategy design, which can obtain a satisfactory solution through effectively allocating tasks within overlapping areas to each crane and then prioritizing all the assigned tasks. The makespan was minimized, and stable operation of tower cranes without collision was achieved by maximizing the cross-tasks interval time. A case study of the megaproject Daxing International Airport in China has been conducted to evaluate the proposed model and algorithm. The computational results illustrated the Pareto front and its non-dominant relationship. The Pareto optimal solution outperforms the results of the single objective classical genetic algorithm in terms of overall performance of makespan and interval time of cross-tasks. It also can be seen that significant improvement in the time interval of cross-tasks can be achieved at the cost of a tiny increase in makespan, which means effective avoidance of the tower cranes entering the overlapping area at the same time. This can help eliminate collision, interference and frequent start-up and braking of tower cranes, leading to safe, stable and efficient operation on the construction site.



    加载中


    [1] B. Flyvbjerg, Over budget, over time, over and over again: managing major projects, in The Oxford Handbook of Project Management, Oxford: Oxford University Press, Britain, (2011), 321–344. https://doi.org/10.1093/oxfordhb/9780199563142.003.0014
    [2] A. Tork, A Real-time Crane Service Scheduling Decision Support System (css-dss) For Construction Tower Cranes, Electronic Theses and Dissertations, University of Central Florida, 2013. http://stars.library.ucf.edu/etd/2799
    [3] M. Hussein, T. Zayed, Crane operations and planning in modular integrated construction: Mixed review of literature, Autom. Constr., 122 (2021), 103466. https://doi.org/10.1016/j.autcon.2020.103466 doi: 10.1016/j.autcon.2020.103466
    [4] Y. Zhao, C. F. Cao, Z. S. Liu, A framework for prefabricated component hoisting management systems based on digital twin technology, Buildings, 12 (2022), 167–174. https://doi.org/10.3390/buildings12030276 doi: 10.3390/buildings12030276
    [5] A. Khalili, D. K. Chua, Integrated prefabrication configuration and component grouping for resource optimization of precast production, J. Constr. Eng. Manage., 140 (2014), 4013052. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000798 doi: 10.1061/(ASCE)CO.1943-7862.0000798
    [6] S. C. Kang, E. Miranda, Planning and visualization for automated robotic crane erection processes in construction, Autom. Constr., 15 (2006), 398–414. https://doi.org/10.1016/j.autcon.2005.06.008 doi: 10.1016/j.autcon.2005.06.008
    [7] A. Shapira, M. Goldenberg, AHP-based equipment selection model for construction projects, J. Constr. Eng. Manage., 131 (2005), 1263–1273. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:12(1263) doi: 10.1061/(ASCE)0733-9364(2005)131:12(1263)
    [8] A. Shapira, M. Goldenberg, "Soft" considerations in equipment selection for building construction projects, J. Constr. Eng. Manage., 133 (2007), 749–760. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:10(749) doi: 10.1061/(ASCE)0733-9364(2007)133:10(749)
    [9] C. M. Tam, T. K. Tong, GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction, Constr. Manage. Econ., 21 (2003), 257–266. https://doi.org/10.1080/0144619032000049665 doi: 10.1080/0144619032000049665
    [10] P. Zhang, F. C. Harris, P. O. Olomolaiye, G. D. Holt, Location optimization for a group of tower cranes, J. Constr. Eng. Manage., 125 (1999), 115–122. https://doi.org/10.1061/(ASCE)0733-9364(1999)125:2(115) doi: 10.1061/(ASCE)0733-9364(1999)125:2(115)
    [11] K. Alkriz, J. C. Mangin, A new model for optimizing the location of cranes and construction facilities using genetic algorithms, in Proceedings 21st Annual ARCOM Conference, UK, (2005), 981–991.
    [12] D. Briskorn, M. Dienstknecht, Mixed-integer programming models for tower crane selection and positioning with respect to mutual interference, Eur. J. Oper. Res., 273 (2018), 160–174. https://doi.org/10.1016/j.ejor.2018.07.033 doi: 10.1016/j.ejor.2018.07.033
    [13] A. Younes, M. Marzouk, Tower cranes layout planning using agent-based simulation considering activity conflicts, Autom. Constr., 93 (2018), 348–360. https://doi.org/10.1016/j.autcon.2018.05.030 doi: 10.1016/j.autcon.2018.05.030
    [14] C. Huang, C. K. Wong, C. M. Tam, Optimization of tower crane and material supply locations in a high-rise building site by mixed-integer linear programming, Autom. Constr., 20 (2011), 571–580. https://doi.org/10.1016/j.autcon.2010.11.023 doi: 10.1016/j.autcon.2010.11.023
    [15] Y. S. Ji, F. Leite, Automated tower crane planning: leveraging 4-dimensional BIM and rule-based checking, Autom. Constr., 93 (2018), 78–90. https://doi.org/10.1016/j.autcon.2018.05.003 doi: 10.1016/j.autcon.2018.05.003
    [16] Z. Q. Zhang, W. Pan, Multi-criteria decision analysis for tower crane layout planning in high-rise modular integrated construction, Autom. Constr., 127 (2021). https://doi.org/10.1016/j.autcon.2021.103709 doi: 10.1016/j.autcon.2021.103709
    [17] Y. Fang, B. Ma, P. Wang, X. Zhang, A motion planning-based adaptive control method for an underactuated crane system, Control Syst. Technol. IEEE Trans., 20 (2012), 241–248. https://doi.org/10.1109/TCST.2011.2107910 doi: 10.1109/TCST.2011.2107910
    [18] J. J. Cruz, F. Leonardi, Minimum-time anti-swing motion planning of cranes using linear programming, Opt. Control Appl. Methods, 34 (2013), 191–201. https://doi.org/10.1002/oca.2016 doi: 10.1002/oca.2016
    [19] M. Al-Hussein, N. M. Athar, H. Yu, H. Kim, Integrating 3D visualization and simulation for tower crane operations on construction sites, Autom. Constr., 15 (2006), 554–562. https://doi.org/10.1016/j.autcon.2005.07.007 doi: 10.1016/j.autcon.2005.07.007
    [20] T. Cheng, J. Teizer, Modeling tower crane operator visibility to minimize the risk of limited situational awareness, J. Comput. Civ. Eng., 28 (2014), 4014004. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000282 doi: 10.1061/(ASCE)CP.1943-5487.0000282
    [21] S. C. Kang, E. Miranda, Computational methods for coordinating multiple construction cranes, J. Comput. Civ. Eng., 22 (2008), 252–263. https://doi.org/10.1061/(ASCE)0887-3801(2008)22:4(252) doi: 10.1061/(ASCE)0887-3801(2008)22:4(252)
    [22] A. Zavichi, K. Madani, P. Xanthopoulos, A. A. Oloufa, Enhanced crane operations in construction using service request optimization, Autom. Constr., 47 (2014), 69–77. https://doi.org/10.1016/j.autcon.2014.07.011 doi: 10.1016/j.autcon.2014.07.011
    [23] A. Zavichi, A. H. Behzadan, A real time decision support system for enhanced crane operations in construction and manufacturing, in 2011 ASCE International Workshop on Computing in Civil Engineering Miami, Florida, (2011), 586–593. https://doi.org/10.1061/41182(416)72
    [24] B. Nils, B. Dirk, M. Frank, A generalized classification scheme for crane scheduling with interference, Eur. J. Oper. Res., 258 (2017), 343–357. https://doi.org/10.1016/j.ejor.2016.08.041 doi: 10.1016/j.ejor.2016.08.041
    [25] C. Huang, C. K. Wong, Optimization of crane setup location and servicing schedule for urgent material requests with non-homogeneous and non-fixed material supply, Autom. Constr., 89 (2018), 183–198. https://doi.org/10.1016/j.autcon.2018.01.015 doi: 10.1016/j.autcon.2018.01.015
    [26] K. Seungho, K. Sangyong, L. Dongoun, Sequential dependency structure matrix based framework for leveling of a tower crane lifting plan, Can. J. Civ. Eng., 45 (2018), 516–525. https://doi.org/10.1139/cjce-2017-0177 doi: 10.1139/cjce-2017-0177
    [27] Y. Ahmed, M. Mohamed, Tower cranes layout planning using agent-based simulation considering activity conflicts, Autom. Constr., 93 (2018), 348–360. https://doi.org/10.1016/j.autcon.2018.05.030 doi: 10.1016/j.autcon.2018.05.030
    [28] A. H. Malak, Z. Emile, Crane overlap and operational flexibility: balancing utilization, duration, and safety, Constr. Innovation, 18 (2018), 43–63. https://doi.org/10.1108/CI-11-2016-0062 doi: 10.1108/CI-11-2016-0062
    [29] H. Tarhini, B. Maddah, F. Hamzeh, The traveling salesman puts-on a hard hat -tower crane scheduling in construction projects, Eur. J. Oper. Res., 292 (2020), 327–338. https://doi.org/10.1016/j.ejor.2020.10.029 doi: 10.1016/j.ejor.2020.10.029
    [30] C. Huang, W. J. Li, W. S. Lu, F. Xue, M. Liu, Z. S. Liu, Optimization of multiple-crane service schedules in overlapping areas through consideration of transportation efficiency and operational safety, Autom. Constr., 127 (2021). https://doi.org/10.1016/j.autcon.2021.103716 doi: 10.1016/j.autcon.2021.103716
    [31] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi objective genetic algorithm NSGA-Ⅱ, IEEE Trans. Evol. Comput., 6 (2002), 182–197. https://doi.org/10.1109/4235.996017 doi: 10.1109/4235.996017
    [32] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part Ⅰ: solving problems with box constraints, IEEE Trans. Evol. Comput., 18 (2014), 577–601. https://doi.org/10.1109/TEVC.2013.2281535 doi: 10.1109/TEVC.2013.2281535
    [33] H. Zhang, J. Li, M. N. Hong, Y. Man, Z. He, Cost optimal production-scheduling model based on VNS-NSGA-Ⅱ hybrid algorithm—study on tissue paper mill, Processes, 10 (2022), 2072–2072. https://doi.org/10.3390/PR10102072 doi: 10.3390/PR10102072
    [34] W. K. Fang, Z. L. Guan, P. Y. Su, D. Luo, L. S. Ding, L. Yue, Multi-objective material logistics planning with discrete split deliveries using a hybrid NSGA-Ⅱ Algorithm, Mathematics, 10 (2022), 2871–2871. https://doi.org/10.3390/math10162871 doi: 10.3390/math10162871
    [35] X. K. Li, F. H. Yan, J. Ma, Z. Z. Chen, X. Y. Wen, Y. Cao, RBF and NSGA-Ⅱ based EDM process parameters optimization with multiple constraints, Math. Biosci. Eng., 16 (2019), 5788–5803. https://doi.org/10.3934/mbe.2019289. doi: 10.3934/mbe.2019289
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1883) PDF downloads(104) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog