Research article

Asymmetrical resource competition in aquatic producers: Constant cell quota versus variable cell quota

  • Academic editor: Yang Kuang
  • Received: 29 September 2022 Revised: 02 December 2022 Accepted: 04 December 2022 Published: 14 December 2022
  • In a shallow aquatic environment, a mathematical model with variable cell quota is proposed to characterize asymmetric resource competition for light and nutrients among aquatic producers. We investigate the dynamics of asymmetric competition models with constant and variable cell quotas and obtain the basic ecological reproductive indexes for aquatic producer invasions. The similarities and differences between the two types of cell quotas for dynamical properties and influences on asymmetric resource competition are explored through theoretical and numerical analysis. These results contribute to further revealing the role of constant and variable cell quotas in aquatic ecosystems.

    Citation: Yawen Yan, Hongyue Wang, Xiaoyuan Chang, Jimin Zhang. Asymmetrical resource competition in aquatic producers: Constant cell quota versus variable cell quota[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3983-4005. doi: 10.3934/mbe.2023186

    Related Papers:

  • In a shallow aquatic environment, a mathematical model with variable cell quota is proposed to characterize asymmetric resource competition for light and nutrients among aquatic producers. We investigate the dynamics of asymmetric competition models with constant and variable cell quotas and obtain the basic ecological reproductive indexes for aquatic producer invasions. The similarities and differences between the two types of cell quotas for dynamical properties and influences on asymmetric resource competition are explored through theoretical and numerical analysis. These results contribute to further revealing the role of constant and variable cell quotas in aquatic ecosystems.



    加载中


    [1] J. H. Lawton, M. P. Hassell, Asymmetrical competition in insects, Nature, 289 (1981), 793–795. https://doi.org/10.1038/289793a0 doi: 10.1038/289793a0
    [2] J. Weiner, Asymmetric competition in plant populations, Trends Ecol. Evol., 5 (1990), 360–364. https://doi.org/10.1016/0169-5347(90)90095-u doi: 10.1016/0169-5347(90)90095-u
    [3] M. Chen, M. Fan, R. Liu, X. Wang, X. Yuan, H. Zhu, The dynamics of temperature and light on the growth of phytoplankton, J. Theoret. Biol., 385 (2015), 8–19. https://doi.org/10.1016/j.jtbi.2015.07.039 doi: 10.1016/j.jtbi.2015.07.039
    [4] K. W. Crane, J. P. Grover, Coexistence of mixotrophs, autotrophs, and heterotrophs in planktonic microbial communities, J. Theoret. Biol., 262 (2010), 517–527. https://doi.org/10.1016/j.jtbi.2009.10.027 doi: 10.1016/j.jtbi.2009.10.027
    [5] J. Huisman, F. J. Weissing, Competition for nutrients and light in a mixed water column: a theoretical analysis, Am. Nat., 146 (1995), 536–564. https://doi.org/10.1086/285814 doi: 10.1086/285814
    [6] I. Loladze, Y. Kuang, J. J. Elser, Stoichiometry in producer-grazer systems: linking energy flow with element cycling, Bull. Math. Biol., 62 (2000), 1137–1162. https://doi.org/10.1006/bulm.2000.0201 doi: 10.1006/bulm.2000.0201
    [7] J. M. Zhang, J. D. Kong, J. P. Shi, H. Wang, Phytoplankton competition for nutrients and light in a stratified lake: A mathematical model connecting epilimnion and hypolimnion, J. Nonlinear Sci., 31 (2021), 35. https://doi.org/10.1007/s00332-021-09693-6 doi: 10.1007/s00332-021-09693-6
    [8] J. Huisman, F. J. Weissing, Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model, Ecology, 75 (1994), 507–520. https://doi.org/10.2307/1939554 doi: 10.2307/1939554
    [9] D. Pang, H. Nie, J. H. Wu, Single phytoplankton species growth with light and crowding effect in a water column, Discrete Contin. Dyn. Syst., 39 (2019), 41–74. https://doi.org/10.3934/dcds.2019003 doi: 10.3934/dcds.2019003
    [10] R. Peng, X. Q. Zhao, A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species, J. Math. Biol., 72 (2016), 755–791. https://doi.org/10.1007/s00285-015-0904-1 doi: 10.1007/s00285-015-0904-1
    [11] S. B. Hsu, Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942–2974. https://doi.org/10.1137/100782358 doi: 10.1137/100782358
    [12] C. A. Klausmeier, E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46 (2001), 1998–2007. https://doi.org/10.4319/lo.2001.46.8.1998 doi: 10.4319/lo.2001.46.8.1998
    [13] A. B. Ryabov, L. Rudolf, B. Blasius, Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer, J. Theor. Biol., 263 (2010), 120–133. https://doi.org/10.1016/j.jtbi.2009.10.034 doi: 10.1016/j.jtbi.2009.10.034
    [14] J. M. Zhang, J. P. Shi, X. Y. Chang, A mathematical model of algae growth in a pelagic-benthic coupled shallow aquatic ecosystem, J. Math. Biol., 76 (2018), 1159–1193. https://doi.org/10.1007/s00285-017-1168-8 doi: 10.1007/s00285-017-1168-8
    [15] C. G. Jäger, S. Diehl, Resource competition across habitat boundaries: asymmetric interactions between benthic and pelagic producers, Ecol. Monogr., 84 (2014), 287–302. https://doi.org/10.1890/13-0613.1 doi: 10.1890/13-0613.1
    [16] R. W. Sterner, J. J. Elser, Ecological stoichiometry: Ecological stoichiometry: The biology of elements from molecules to the biosphere, Princeton University Press, Princeton, NJ, 2002. https: //doi.org/10.1515/9781400885695
    [17] X. Li, H. Wang, Y. Kuang, Global analysis of a stoichiometric producer-grazer model with holling type functional responses, J. Math. Biol., 63 (2011), 901–932. https://doi.org/10.1007/s00285-010-0392-2 doi: 10.1007/s00285-010-0392-2
    [18] L. Asik, A. Peace, Dynamics of a producer-grazer model incorporating the effects of phosphorus loading on grazers growth, Bull. Math. Biol., 81 (2019), 1352–1368. https://doi.org/10.1007/s11538-018-00567-9 doi: 10.1007/s11538-018-00567-9
    [19] I. Loladze, Y. Kuang, J. J. Elser, W. F. Fagan, Competition and stoichiometry: Coexistence of two predators on one prey, Theo. Popu. Biol., 65 (2004), 1–15. https://doi.org/10.1016/s0040-5809(03)00105-9 doi: 10.1016/s0040-5809(03)00105-9
    [20] A. Peace, Effects of light, nutrients, and food chain length on trophic efficienciesin simple stoichiometric aquatic food chain models, Ecol. Model., 312 (2015), 125–135. https://doi.org/10.1016/j.ecolmodel.2015.05.019 doi: 10.1016/j.ecolmodel.2015.05.019
    [21] M. Chen, M. Fan, Y. Kuang, Global dynamics in a stoichiometric food chain model with two limiting nutrients, Math. Biosci., 289 (2017), 9–19. https://doi.org/10.1016/j.mbs.2017.04.004 doi: 10.1016/j.mbs.2017.04.004
    [22] J. D. Kong, P. Salceanu, H. Wang, A stoichiometric organic matter decomposition model in a chemostat culture, J. Math. Biol., 76 (2018), 609–644. https://doi.org/10.1007/s00285-017-1152-3 doi: 10.1007/s00285-017-1152-3
    [23] H. Wang, H. L. Smith, Y. Kuang, J. J. Elser, Dynamics of stoichiometric bacteria-algae interactions in the epilimnion, SIAM J. Appl. Math., 68 (2007), 503–522. https://doi.org/10.1137/060665919 doi: 10.1137/060665919
    [24] Y. Yan, J. Zhang, H. Wang, Dynamics of stoichiometric autotroph-mixotroph-bacteria interactions in the epilimnion, Bull. Math. Biol., 84 (2022), 5. https://doi.org/10.1007/s11538-021-00962-9 doi: 10.1007/s11538-021-00962-9
    [25] H. Wang, P. V. Garcia, S. Ahmed, C. M. Heggerud, Mathematical comparison and empirical review of the monod and droop forms for resource-based population dynamics, Ecol. Model., 466 (2022), 109887. https://doi.org/10.1016/j.ecolmodel.2022.109887 doi: 10.1016/j.ecolmodel.2022.109887
    [26] K. Mischaikow, H. Smith, H. R. Thieme, Asymptotically autonomous semiflows: chain recurrence and lyapunov functions, Trans. Am. Math. Soc., 347 (1995), 1669–1685. https://doi.org/10.1090/s0002-9947-1995-1290727-7 doi: 10.1090/s0002-9947-1995-1290727-7
    [27] M. G. Crandall, P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321–340. https://doi.org/10.1201/9781420035506.ch2 doi: 10.1201/9781420035506.ch2
    [28] J. Shi, X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differ. Equations, 246 (2009), 2788–2812. https://doi.org/10.1016/j.jde.2008.09.009 doi: 10.1016/j.jde.2008.09.009
    [29] D. Lv, M. Fan, Y. Kang, K. Blanco, Modeling refuge effect of submerged macrophytes in lake system, Bull. Math. Biol., 78 (2016), 662–694. https://doi.org/10.1007/s11538-016-0154-4 doi: 10.1007/s11538-016-0154-4
    [30] C. Shan, Q. Huang, Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, J. Math. Biol., 78 (2019), 739–766. https://doi.org/10.1007/s00285-018-1290-2 doi: 10.1007/s00285-018-1290-2
    [31] Y. Zhang, J. Huang, Q. Huang, The impact of toxins on competition dynamics of three species in a polluted aquatic environment, Discrete Contin. Dyn. B, 26 (2021), 3043–3068. https://doi.org/10.3934/dcdsb.2020219 doi: 10.3934/dcdsb.2020219
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1427) PDF downloads(68) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog