Research article Special Issues

Practical discontinuous tracking control for a permanent magnet synchronous motor


  • Received: 12 October 2022 Revised: 28 November 2022 Accepted: 02 December 2022 Published: 12 December 2022
  • In this paper, the practical discontinuous control algorithm is used in the tracking controller design for a permanent magnet synchronous motor (PMSM). Although the theory of discontinuous control has been studied intensely, it is seldom applied to the actual systems, which encourages us to spread the discontinuous control algorithm to motor control. Due to the constraints of physical conditions, the input of the system is limited. Hence, we design the practical discontinuous control algorithm for PMSM with input saturation. To achieve the tracking control of PMSM, we define the error variables of the tracking control, and the sliding mode control method is introduced to complete the design of the discontinuous controller. Based on the Lyapunov stability theory, the error variables are guaranteed to converge to zero asymptotically, and the tracking control of the system is realized. Finally, the validity of the proposed control method is verified by a simulation example and the experimental platform.

    Citation: Bin Liu, Dengxiu Yu, Xing Zeng, Dianbiao Dong, Xinyi He, Xiaodi Li. Practical discontinuous tracking control for a permanent magnet synchronous motor[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3793-3810. doi: 10.3934/mbe.2023178

    Related Papers:

  • In this paper, the practical discontinuous control algorithm is used in the tracking controller design for a permanent magnet synchronous motor (PMSM). Although the theory of discontinuous control has been studied intensely, it is seldom applied to the actual systems, which encourages us to spread the discontinuous control algorithm to motor control. Due to the constraints of physical conditions, the input of the system is limited. Hence, we design the practical discontinuous control algorithm for PMSM with input saturation. To achieve the tracking control of PMSM, we define the error variables of the tracking control, and the sliding mode control method is introduced to complete the design of the discontinuous controller. Based on the Lyapunov stability theory, the error variables are guaranteed to converge to zero asymptotically, and the tracking control of the system is realized. Finally, the validity of the proposed control method is verified by a simulation example and the experimental platform.



    加载中


    [1] D. Yu, J. Long, C. L. P. Chen, Z. Wang, Adaptive swarm control within saturated input based on nonlinear coupling degree, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 4900–4911. https://doi.org/10.1109/TSMC.2021.3102587 doi: 10.1109/TSMC.2021.3102587
    [2] H. Xu, D. Yu, S. Sui, Y. P. Zhao, C. L. P. Chen, Z. Wang, Nonsingular practical fixed-time adaptive output feedback control of mimo nonlinear systems, IEEE Trans. Neural Networks Learn. Syst., (2022), 1–13. https://doi.org/10.1109/TNNLS.2021.3139230 doi: 10.1109/TNNLS.2021.3139230
    [3] T. Li, X. Sun, G. Lei, Z. Yang, Y. Guo, J. Zhu, Finite-control-set model predictive control of permanent magnet synchronous motor drive systems–an overview, IEEE-CAA J. Autom. Sin., 9 (2022), 2087–2105. https://doi.org/10.1109/JAS.2022.105851 doi: 10.1109/JAS.2022.105851
    [4] T. Zwerger, P. Mercorelli, Using a bivariate polynomial in an ekf for state and inductance estimations in the presence of saturation effects to adaptively control a pmsm, IEEE Access, 10 (2022), 111545–111553. https://doi.org/10.1109/ACCESS.2022.3215511 doi: 10.1109/ACCESS.2022.3215511
    [5] Z. Li, T. Li, G. Feng, R. Zhao, Q. Shan, Neural network-based adaptive control for pure-feedback stochastic nonlinear systems with time-varying delays and dead-zone input, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2020), 5317–5329. https://doi.org/10.1109/TSMC.2018.2872421 doi: 10.1109/TSMC.2018.2872421
    [6] Y. X. Li, G. H. Yang, Observer-based fuzzy adaptive event-triggered control codesign for a class of uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 26 (2018), 1589–1599. https://doi.org/10.1109/TFUZZ.2017.2735944 doi: 10.1109/TFUZZ.2017.2735944
    [7] X. Sun, T. Li, Z. Zhu, G. Lei, Y. Guo, J. Zhu, Speed sensorless model predictive current control based on finite position set for pmshm drives, IEEE Trans. Transp. Electrif., 7 (2021), 2743–2752. https://doi.org/10.1109/TTE.2021.3081436 doi: 10.1109/TTE.2021.3081436
    [8] T. Zwerger, P. Mercorelli, Combining a pi controller with an adaptive feedforward control in pmsm, in 2020 21th International Carpathian Control Conference (ICCC), (2020), 1–5. https://doi.org/10.1109/ICCC49264.2020.9257288
    [9] Y. Li, Y. Liu, S. Tong, Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 3131–3145. https://doi.org/10.1109/TNNLS.2021.3051030 doi: 10.1109/TNNLS.2021.3051030
    [10] X. Xie, T. Wei, X. Li, Hybrid event-triggered approach for quasi-consensus of uncertain multi-agent systems with impulsive protocols, IEEE Trans. Circuits Syst. I-Regul. Pap., 69 (2022), 872–883. https://doi.org/10.1109/TCSI.2021.3119065 doi: 10.1109/TCSI.2021.3119065
    [11] J. Wei, S. Zhang, A. Adaldo, J. Thunberg, X. Hu, K. H. Johansson, Finite-time attitude synchronization with distributed discontinuous protocols, IEEE Trans. Autom. Control, 63 (2018), 3608–3615. https://doi.org/10.1109/TAC.2018.2797179 doi: 10.1109/TAC.2018.2797179
    [12] Z. Li, L. Chen, Z. Liu, Periodic solution of a chemostat model with variable yield and impulsive state feedback control, Appl. Math. Model., 36 (2012), 1255–1266. https://doi.org/10.1016/j.apm.2011.07.069 doi: 10.1016/j.apm.2011.07.069
    [13] W. Zhu, D. Wang, L. Liu, G. Feng, Event-based impulsive control of continuous-time dynamic systems and its application to synchronization of memristive neural networks, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 3599–3609. https://doi.org/10.1109/TNNLS.2017.2731865 doi: 10.1109/TNNLS.2017.2731865
    [14] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [15] X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
    [16] X. Tan, J. Cao, Intermittent control with double event-driven for leader-following synchronization in complex networks, Appl. Math. Model., 64 (2018), 372–385. https://doi.org/10.1016/j.apm.2018.07.040 doi: 10.1016/j.apm.2018.07.040
    [17] Z. Wang, C. Mu, S. Hu, C. Chu, X. Li, Modelling the dynamics of regret minimization in large agent populations: a master equation approach, in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22), 23 (2022), 534–540. https://doi.org/10.24963/ijcai.2022/76
    [18] Y. Yang, Y. He, Non-fragile observer-based robust control for uncertain systems via aperiodically intermittent control, Inf. Sci., 573 (2021), 239–261. https://doi.org/10.1016/j.ins.2021.05.046 doi: 10.1016/j.ins.2021.05.046
    [19] S. Chen, G. Song, B. C. Zheng, T. Li, Finite-time synchronization of coupled reaction–diffusion neural systems via intermittent control, Automatica, 109 (2019), 108564. https://doi.org/10.1016/j.automatica.2019.108564 doi: 10.1016/j.automatica.2019.108564
    [20] Y. Wu, H. Li, W. Li, Intermittent control strategy for synchronization analysis of time-varying complex dynamical networks, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2021), 3251–3262. https://doi.org/10.1109/TSMC.2019.2920451 doi: 10.1109/TSMC.2019.2920451
    [21] B. Wang, W. Chen, B. Zhang, Semi-global robust tracking consensus for multi-agent uncertain systems with input saturation via metamorphic low-gain feedback, Automatica, 103 (2019), 363–373. https://doi.org/10.1016/j.automatica.2019.02.002 doi: 10.1016/j.automatica.2019.02.002
    [22] V. T. Do, S. G. Lee, Neural integral backstepping hierarchical sliding mode control for a ridable ballbot under uncertainties and input saturation, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2021), 7214–7227. https://doi.org/10.1109/TSMC.2020.2967433 doi: 10.1109/TSMC.2020.2967433
    [23] X. Yang, B. Zhou, F. Mazenc, J. Lam, Global stabilization of discrete-time linear systems subject to input saturation and time delay, IEEE Trans. Autom. Control, 66 (2021), 1345–1352. https://doi.org/10.1109/TAC.2020.2989791 doi: 10.1109/TAC.2020.2989791
    [24] Y. Su, Q. Wang, C. Sun, Self-triggered consensus control for linear multi-agent systems with input saturation, IEEE-CAA J. Autom. Sin., 7 (2020), 150–157. https://doi.org/10.1109/JAS.2019.1911837 doi: 10.1109/JAS.2019.1911837
    [25] C. Behn, K. Siedler, Adaptive pid-tracking control of muscle-like actuated compliant robotic systems with input constraints, Appl. Math. Model., 67 (2019), 9–21. https://doi.org/10.1016/j.apm.2018.10.012 doi: 10.1016/j.apm.2018.10.012
    [26] Q. Zhu, Y. Liu, G. Wen, Adaptive neural network control for time-varying state constrained nonlinear stochastic systems with input saturation, Inf. Sci., 527 (2020), 191–209. https://doi.org/10.1016/j.ins.2020.03.055 doi: 10.1016/j.ins.2020.03.055
    [27] Y. Wu, X. J. Xie, Adaptive fuzzy control for high-order nonlinear time-delay systems with full-state constraints and input saturation, IEEE Trans. Fuzzy Syst., 28 (2020), 1652–1663. https://doi.org/10.1109/TFUZZ.2019.2920808 doi: 10.1109/TFUZZ.2019.2920808
    [28] D. Yu, J. Long, C. L. P. Chen, Z. Wang, Bionic tracking-containment control based on smooth transition in communication, Inf. Sci., 587 (2022), 393–407. https://doi.org/10.1016/j.ins.2021.12.060 doi: 10.1016/j.ins.2021.12.060
    [29] H. Xu, D. Yu, S. Sui, C. L. P. Chen, An event-triggered predefined time decentralized output feedback fuzzy adaptive control method for interconnected systems, IEEE Trans. Fuzzy Syst., (2022), 1–14. https://doi.org/10.1109/TFUZZ.2022.3184834 doi: 10.1109/TFUZZ.2022.3184834
    [30] T. Zwerger, P. Mercorelli, Combining smc and mtpa using an ekf to estimate parameters and states of an interior pmsm, in 2019 20th International Carpathian Control Conference (ICCC), (2019), 1–6. https://doi.org/10.1109/CarpathianCC.2019.8766063
    [31] D. Yu, C. L. P. Chen, H. Xu, Fuzzy swarm control based on sliding-mode strategy with self-organized omnidirectional mobile robots system, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 2262–2274. https://doi.org/10.1109/TSMC.2020.3048733 doi: 10.1109/TSMC.2020.3048733
    [32] D. Shang, X. Li, M. Yin, F. Li, Dynamic modeling and fuzzy compensation sliding mode control for flexible manipulator servo system, Appl. Math. Model., 107 (2022), 530–556. https://doi.org/10.1016/j.apm.2022.02.035 doi: 10.1016/j.apm.2022.02.035
    [33] N. Zhang, W. Qi, G. Pang, J. Cheng, K. Shi, Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks, Appl. Math. Comput., 427 (2022), 127153. https://doi.org/10.1016/j.amc.2022.127153 doi: 10.1016/j.amc.2022.127153
    [34] W. H. Chen, X. Deng, W. X. Zheng, Sliding-mode control for linear uncertain systems with impulse effects via switching gains, IEEE Trans. Autom. Control, 67 (2022), 2044–2051. https://doi.org/10.1109/TAC.2021.3073099 doi: 10.1109/TAC.2021.3073099
    [35] L. Y. Hao, J. H. Park, D. Ye, Integral sliding mode fault-tolerant control for uncertain linear systems over networks with signals quantization, IEEE Trans. Neural Networks Learn. Syst., 28 (2017), 2088–2100. https://doi.org/10.1109/TNNLS.2016.2574905 doi: 10.1109/TNNLS.2016.2574905
    [36] A. Vahidi-Moghaddam, A. Rajaei, M. Ayati, Disturbance-observer-based fuzzy terminal sliding mode control for mimo uncertain nonlinear systems, Appl. Math. Model., 70 (2019), 109–127. https://doi.org/10.1016/j.apm.2019.01.010 doi: 10.1016/j.apm.2019.01.010
    [37] H. Xu, S. Li, D. Yu, C. Chen, T. Li., Adaptive swarm control for high-order self-organized system with unknown heterogeneous nonlinear dynamics and unmeasured states, Neurocomputing, 440 (2021), 24–35. https://doi.org/10.1016/j.neucom.2021.01.069 doi: 10.1016/j.neucom.2021.01.069
    [38] B. Jiang, H. R. Karimi, Y. Kao, C. Gao, Takagi–sugeno model based event-triggered fuzzy sliding-mode control of networked control systems with semi-markovian switchings, IEEE Trans. Fuzzy Syst., 28 (2020), 673–683. https://doi.org/10.1109/TFUZZ.2019.2914005 doi: 10.1109/TFUZZ.2019.2914005
    [39] G. Wang, J. Kuang, N. Zhao, G. Zhang, D. Xu, Rotor position estimation of pmsm in low-speed region and standstill using zero-voltage vector injection, IEEE Trans. Power Electron., 33 (2018), 7948–7958. https://doi.org/10.1109/TPEL.2017.2767294 doi: 10.1109/TPEL.2017.2767294
    [40] A. Kolli, O. Béthoux, A. D. Bernardinis, E. Labouré, G. Coquery, Space-vector pwm control synthesis for an h-bridge drive in electric vehicles, IEEE Trans. Veh. Technol., 62 (2013), 2441–2452. https://doi.org/10.1109/TVT.2013.2246202 doi: 10.1109/TVT.2013.2246202
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1515) PDF downloads(85) Cited by(2)

Article outline

Figures and Tables

Figures(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog