Survey Special Issues

Sliding-mode variable structure control for complex automatic systems: a survey


  • Received: 05 November 2021 Revised: 04 January 2022 Accepted: 05 January 2022 Published: 10 January 2022
  • Automatic systems (ASs) can automatically control the work of controlled objects without unattended participation. They have been extensively used in industry, agriculture, automobiles, robots and other fields in recent years. However, the performance of the controller cannot meet the work requirements under complex environmental conditions. Therefore, improving the control performance is one of the difficult problems that automated systems should solve. Sliding-mode variable structure control has the advantages of fast response, insensitivity to uncertainty and interference and easy implementation; thus, it has been extensively used in the field of complex control systems. This article analyses and explains the research status of motors, microgrids, switched systems, aviation guidance, robots, mechanical systems, automobiles and unmanned aerial vehicles (UAVs) and prospects for the application of sliding-mode variable structure control in complex ASs.

    Citation: Chengxuan Wang, Jiawei Tang, Baoping Jiang, Zhengtian Wu. Sliding-mode variable structure control for complex automatic systems: a survey[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2616-2640. doi: 10.3934/mbe.2022120

    Related Papers:

  • Automatic systems (ASs) can automatically control the work of controlled objects without unattended participation. They have been extensively used in industry, agriculture, automobiles, robots and other fields in recent years. However, the performance of the controller cannot meet the work requirements under complex environmental conditions. Therefore, improving the control performance is one of the difficult problems that automated systems should solve. Sliding-mode variable structure control has the advantages of fast response, insensitivity to uncertainty and interference and easy implementation; thus, it has been extensively used in the field of complex control systems. This article analyses and explains the research status of motors, microgrids, switched systems, aviation guidance, robots, mechanical systems, automobiles and unmanned aerial vehicles (UAVs) and prospects for the application of sliding-mode variable structure control in complex ASs.



    加载中


    [1] T. L. Chen, Y. C. Wu, An optimal variable structure control with integral compensation for electrohydraulic position servo control systems, IEEE Trans. Ind. Electron., 39 (1992), 460–463. https://doi.org/10.1109/41.161478 doi: 10.1109/41.161478
    [2] Y. S. Lu, J. S. Chen, Design of a global sliding-mode controller for a motor drive with bounded control, Int. J. Control, 62 (1995), 1001–1019. https://doi.org/10.1080/00207179508921579 doi: 10.1080/00207179508921579
    [3] S. Prakash, S. Mishra, Fast terminal sliding mode control for improved transient state power sharing between parallel VSCs in an autonomous microgrid under different loading conditions, IET Renewable Power Gener., 14 (2020), 1063–1073. https://doi.org/10.1049/iet–rpg.2019.0621 doi: 10.1049/iet–rpg.2019.0621
    [4] H. Zhang, N. Xu, G. Zong, A. F. Alkhateeb, Adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with actuator faults, Int. J. Syst. Sci., (2021), 1–16. https://doi.org/10.1080/00207721.2020.1831645 doi: 10.1080/00207721.2020.1831645
    [5] S. D. Brierley, R. Longchamp, Application of sliding-mode control to air-air interception problem, IEEE Trans. Aerosp. Electron. Syst., 26 (1990), 306–325. https://doi.org/10.1109/7.53460 doi: 10.1109/7.53460
    [6] K. Rsetam, Z. Cao, Z. Man, Design of robust terminal sliding mode control for underactuated flexible joint robot, IEEE Trans. Syst., Man, Cybern.: Syst., 2021. https://doi.org/10.1109/TSMC.2021.3096835 doi: 10.1109/TSMC.2021.3096835
    [7] J. Song, Y. Ishida, A robust sliding mode control for pneumatic servo systems, Int. J. Eng. Sci., 35 (1997), 711–723. https://doi.org/10.1016/S0020–7225(96)00124–3 doi: 10.1016/S0020–7225(96)00124–3
    [8] Z. Sun, J. Zheng, H. Wang, Z. Man, Adaptive fast non-singular terminal sliding mode control for a vehicle steer-by-wire system, IET Control Theory Appl., 11 (2017), 1245–1254. https://doi.org/10.1049/iet–cta.2016.0205 doi: 10.1049/iet–cta.2016.0205
    [9] Z. Sun, J. Zou, D. He, Z. Man, J. Zheng, Collision-avoidance steering control for autonomous vehicles using neural network-based adaptive integral terminal sliding mode, J. Intell. Fuzzy Syst. Prepr., (2020), 1–14. https://doi.org/10.3233/JIFS–200625 doi: 10.3233/JIFS–200625
    [10] S. Lian, W. Meng, Z. Lin, K. Shao, J. Zheng, H. Li, et al., Adaptive attitude control of a quadrotor using fast non-singular terminal sliding mode, IEEE Trans. Ind. Electron., 2021. https://doi.org/10.1109/tie.2021.3057015 doi: 10.1109/tie.2021.3057015
    [11] K. Shao, J. Zheng, H. Wang, F. Xu, X. Wang, B. Liang, Recursive sliding mode control with adaptive disturbance observer for a linear motor positioner, Mech. Syst. Signal Process., 146 (2021), 107014. https://doi.org/10.1016/j.ymssp.2020.107014 doi: 10.1016/j.ymssp.2020.107014
    [12] K. Shao, J. Zheng, K. Huang, H. Wang, Z. Man, M. Fu, Finite-time control of a linear motor positioner using adaptive recursive terminal sliding mode, IEEE Trans. Ind. Electron., 67 (2019), 6659–6668. https://doi.org/10.1109/TIE.2019.2937062 doi: 10.1109/TIE.2019.2937062
    [13] G. Shan, L. You, X. Huifeng, Y. Shuyue, Dynamic sliding mode controller with variable structure for fast satellite attitude maneuver, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/5539717 doi: 10.1155/2021/5539717
    [14] Z. Sun, H. Xie, J. Zheng, Z. Man, D. He, Path-following control of Mecanum-wheels omnidirectional mobile robots using nonsingular terminal sliding mode, Mech. Syst. Signal Process., 147 (2021), 107128. https://doi.org/10.1016/j.ymssp.2020.107128 doi: 10.1016/j.ymssp.2020.107128
    [15] O. Briones, R. Alarcón, A. J. Rojas, D. Sbarbaro, Tuning generalized predictive pi controllers for process control applications, ISA Trans., 119 (2022), 184–195. https://doi.org/10.1016/j.isatra.2021.02.040 doi: 10.1016/j.isatra.2021.02.040
    [16] S. X. Ding, L. Li, Control performance monitoring and degradation recovery in automatic control systems: A review, some new results, and future perspectives, Control Eng. Pract., 111 (2021), 104790. https://doi.org/10.1016/j.conengprac.2021.104790 doi: 10.1016/j.conengprac.2021.104790
    [17] J. Nowaková, M. Pokorný, Intelligent controller design by the artificial intelligence methods, Sensors, 20 (2020), 4454. https://doi.org/10.3390/s20164454 doi: 10.3390/s20164454
    [18] C. Cömert, C. Kasnakoğlu, Comparing and developing PID and sliding mode controllers for quadrotor, Int. J. Mech. Eng. Rob. Res., 6 (2017), 194–199. https://doi.org/10.18178/ijmerr.6.3.194–199 doi: 10.18178/ijmerr.6.3.194–199
    [19] B. Zapata, J. Heredia, J. Proaño, Design and evaluation of the PID, SMC and MPC controllers by state estimation by kalman filter in the TRMS system, International Conference on Innovation and Research. Springer. Cham, (2020), 531–544. https://doi.org/10.1007/978–3–030–60467–7_43
    [20] Y. Zheng, H. A. Abdel, K. A. Loparo, Non‐linear adaptive sliding mode observer-controller scheme for induction motors, Int. J. Adapt. Control Signal Process., 14 (2000), 245–273. https://doi.org/10.1002/(sici)1099–1115(200003/05)14:2/3<245::aid–acs578>3.0.co;2–b doi: 10.1002/(sici)1099–1115(200003/05)14:2/3<245::aid–acs578>3.0.co;2–b
    [21] A. Wang, S. Wei, Sliding mode control for permanent magnet synchronous motor drive based on an improved exponential reaching law, IEEE access, 7 (2019), 146866–146875. https://doi.org/10.1109/ACCESS.2019.2946349 doi: 10.1109/ACCESS.2019.2946349
    [22] M. V. Paula, T. A. D. S. Barros, A sliding mode DITC cruise control for SRM with steepest descent minimum torque ripple point tracking, IEEE Trans. Ind. Electron., 2021. https://doi.org/10.1109/TIE.2021.3050349 doi: 10.1109/TIE.2021.3050349
    [23] S. Abrazeh, A. Parvaresh, S. R. Mohseni, Nonsingular terminal sliding mode control with ultra-local model and single input interval type-2 fuzzy logic control for pitch control of wind turbines, IEEE/CAA J. Autom. Sinica, 8 (2021), 690–700. https://doi.org/10.1109/jas.2021.1003889 doi: 10.1109/jas.2021.1003889
    [24] X. H. Chang, G. H. Yang, Nonfragile H filter design for t–s fuzzy systems in standard form, IEEE Trans. Ind. Electron., 61 (2013), 3448–3458. https://doi.org/10.1109/tie.2013.2278955 doi: 10.1109/tie.2013.2278955
    [25] X. H. Chang, Y. M. Wang, Peak-to-peak filtering for networked nonlinear DC motor systems with quantization, IEEE Trans. Ind. Inf., 14 (2018), 5378–5388. https://doi.org/10.1109/tii.2018.2805707 doi: 10.1109/tii.2018.2805707
    [26] G. G. Parma, B. R. Menezes, A. P. Braga, M. A. Costa, Sliding mode neural network control of an induction motor drive, Int. J. Adapt. Control Signal Process., 17 (2003), 501–508. https://doi.org/10.1002/acs.758 doi: 10.1002/acs.758
    [27] S. M. Kim, W. Y. Han, S. J. Kim, Design of a new adaptive sliding mode observer for sensorless induction motor drive, Electric Power Syst. Res., 70 (2004), 16–22. https://doi.org/10.1016/j.epsr.2003.11.007 doi: 10.1016/j.epsr.2003.11.007
    [28] C. Lascu, A. Argeseanu, F. Blaabjerg, Supertwisting sliding-mode direct torque and flux control of induction machine drives, IEEE Trans. Power Electron., 35 (2019), 5057–5065. https://doi.org/10.1109/tpel.2019.2944124 doi: 10.1109/tpel.2019.2944124
    [29] M. Morawiec, A. Lewicki, Application of sliding switching functions in backstepping based speed observer of induction machine, IEEE Trans. Ind. Electron., 67 (2019), 5843–5853. https://doi.org/10.1109/tie.2019.2914645 doi: 10.1109/tie.2019.2914645
    [30] H. Wang, X. Chen, X. Zhao, H. Dan, M. Su, Y. Sun, et al., A cascade PI-SMC method for matrix converter-fed BDFIM drives, IEEE Trans. Transp. Electrif., 2021. https://doi.org/10.1109/tte.2021.3061742 doi: 10.1109/tte.2021.3061742
    [31] Q. Tang, D. Chen, X. He, Integration of improved flux linkage observer and i-f starting method for wide-speed-range sensorless SPMSM drives, IEEE Trans. Power Electron., 35 (2019), 8374–8383. https://doi.org/10.1109/tpel.2019.2963208 doi: 10.1109/tpel.2019.2963208
    [32] A. Apte, V. A. Joshi, H. Mehta, R. Walambe, Disturbance-observer-based sensorless control of PMSM using integral state feedback controller, IEEE Trans. Power Electron., 35 (2019), 6082–6090. https://doi.org/10.1109/tpel.2019.2949921 doi: 10.1109/tpel.2019.2949921
    [33] C. Lascu, A. Argeseanu, F. Blaabjerg, Supertwisting sliding-mode direct torque and flux control of induction machine drives, IEEE Trans. Power Electron., 35 (2019), 5057–5065. https://doi.org/10.1109/tpel.2019.2944124 doi: 10.1109/tpel.2019.2944124
    [34] C. Gong, Y. Hu, J. Gao, Y. Wang, L. Yan, An improved delay-suppressed sliding-mode observer for sensorless vector-controlled PMSM, IEEE Trans. Ind. Electron., 67 (2019), 5913–5923. https://doi.org/10.1109/tie.2019.2952824 doi: 10.1109/tie.2019.2952824
    [35] V. Repecho, J. Waqar, D. Biel, A. Doriacerezo, Zero speed sensorless scheme for PMSM under decoupled sliding mode control, IEEE Trans. Ind. Electron., 2021. https://doi.org/10.1109/tie.2021.3062260 doi: 10.1109/tie.2021.3062260
    [36] F. Mehmood, B. Khan, S. M. Ali, M.B. Qureshi, C. Diver, R. Nawaz, Multi-renewable energy agent based control for economic dispatch and frequency regulation of autonomous renewable grid, IEEE Access, 8 (2020), 89534–89545. https://doi.org/10.1109/access.2020.2992347 doi: 10.1109/access.2020.2992347
    [37] E. Ranjbar, M. Yaghubi, A. S. Abolfazl, Robust adaptive sliding mode control of a MEMS tunable capacitor based on dead-zone method, Autom.: časopis za autom. Mjerenje. Elektron. računarstvo i komun., 61 (2020), 587–601. https://doi.org/10.1080/00051144.2020.1806011 doi: 10.1080/00051144.2020.1806011
    [38] B. Ning, Q. L. Han, L. Ding, Distributed secondary control of AC microgrids with external disturbances and directed communication topologies: a full-order sliding-mode approach, IEEE/CAA J. Autom. Sinica, 8 (2020), 554–564. https://doi.org/10.1109/jas.2020.1003315 doi: 10.1109/jas.2020.1003315
    [39] L. Wu, W. X. Zheng, H. Gao, Dissipativity-based sliding mode control of switched stochastic systems, IEEE Trans. Autom. Control, 58 (2012), 785–791. https://doi.org/10.1109/tac.2012.2211456 doi: 10.1109/tac.2012.2211456
    [40] O. Ameur, P. Massioni, G. Scorletti, X. Brun, M. Smaoui, Lyapunov stability analysis of switching controllers in presence of sliding modes and parametric uncertainties with application to pneumatic systems, IEEE Trans. Control Syst. Technol., 24 (2016), 1953–1964. https://doi.org/10.1109/tcst.2016.2529964 doi: 10.1109/tcst.2016.2529964
    [41] X. Su, X. Liu, P. Shi, R. Yang, Sliding mode control of discrete-time switched systems with repeated scalar nonlinearities, IEEE Trans. Autom. Control, 62 (2016), 4604–4610. https://doi.org/10.1109/tac.2016.2626398 doi: 10.1109/tac.2016.2626398
    [42] M. Kchaou, S. Alahmadi, Robust control for nonlinear uncertain switched descriptor systems with time delay and nonlinear input: a sliding mode approach, Complexity, 2017 (2017). https://doi.org/10.1155/2017/1027909 doi: 10.1155/2017/1027909
    [43] Z. Lin, T. Zhang, Q. Xie, Q. Wei, Intelligent electro-pneumatic position tracking system using improved mode-switching sliding control with fuzzy nonlinear gain, IEEE Access, 6 (2018), 34462–34476. https://doi.org/10.1109/access.2018.2847637 doi: 10.1109/access.2018.2847637
    [44] H. Ce, W. Hongbin, C. Xiaoyan, Z. Zhen, G. Shungang, H. Zhongquan, Finite-time switched second-order sliding-mode control of nonholonomic wheeled mobile robot systems, Complexity, 2018 (2018). https://doi.org/10.1155/2018/1430989 doi: 10.1155/2018/1430989
    [45] W. Qi, G. Zong, H. R. Karimi, Sliding mode control for nonlinear stochastic semi-Markov switching systems with application to SRMM, IEEE Trans. Ind. Electron., 67 (2019), 3955–3966. https://doi.org/10.1109/tie.2019.2920619 doi: 10.1109/tie.2019.2920619
    [46] B. Jiang, H. R. Karimi, Y. Kao, C. Gao, Takagi-Sugeno model based event-triggered fuzzy sliding-mode control of networked control systems with semi-Markovian switchings, IEEE Trans. Fuzzy Syst., 28 (2019), 673–683. https://doi.org/10.1109/tfuzz.2019.2914005 doi: 10.1109/tfuzz.2019.2914005
    [47] M. Li, Y. Chen, Robust adaptive sliding mode control for switched networked control systems with disturbance and faults, IEEE Trans. Ind. Inf., 15 (2018), 193–204. https://doi.org/10.1109/tii.2018.2808921 doi: 10.1109/tii.2018.2808921
    [48] Y. Han, Y. Kao, J. H. Park, Robust nonfragile observer‐based control of switched discrete singular systems with time‐varying delays: a sliding mode control design, Int. J. Robust Nonlinear Control, 29 (2019), 1462–1483. https://doi.org/10.1002/rnc.4443 doi: 10.1002/rnc.4443
    [49] W. Qi, G. Zong, H. R. Karimi, Finite-ime observer-based sliding mode control for quantized semi-Markov switching systems with application, IEEE Trans. Ind. Inf., 16 (2019), 1259–1271. https://doi.org/10.1109/tii.2019.2946291 doi: 10.1109/tii.2019.2946291
    [50] J. Lian, C. Li, Event-triggered sliding mode control of uncertain switched systems via hybrid quantized feedback, IEEE Trans. Autom. Control, 66 (2020), 2809–2816. https://doi.org/10.1109/tac.2020.3009199 doi: 10.1109/tac.2020.3009199
    [51] Z. Wu, B. Li, C. Gao, B. Jiang, Observer-based H control design for singular switching semi-Markovian jump systems with random sensor delays, ISA Trans., 2019. https://doi.org/10.1016/j.isatra.2019.09.002 doi: 10.1016/j.isatra.2019.09.002
    [52] D. Zhou, C. Mu, W. Xu, Adaptive sliding-mode guidance of a homing missile, J. Guid., Control, Dyn., 22 (1999), 589–594. https://doi.org/10.2514/2.4421 doi: 10.2514/2.4421
    [53] F. K. Yeh, H. H. Chien, L. C. Fu, Design of optimal midcourse guidance sliding-mode control for missiles with TVC, IEEE Trans. Aerosp. Electron. Syst., 39 (2003), 824–837. https://doi.org/10.1109/taes.2003.1238739 doi: 10.1109/taes.2003.1238739
    [54] J. M. Yang, J. H. Kim, Sliding mode motion control of nonholonomic mobile robots, IEEE Control Syst. Mag., 19 (1999), 15–23. https://doi.org/10.1109/37.753931 doi: 10.1109/37.753931
    [55] Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica, 38 (2002), 2159–2167. https://doi.org/10.1016/s0005–1098(02)00147–4 doi: 10.1016/s0005–1098(02)00147–4
    [56] P. Zhang, Z. Wu, H. Dong, M. Tian, J. Yu, Reaction-wheel-based roll stabilization for a robotic fish using neural network sliding mode control, IEEE/ASME Trans. Mechatron., 25 (2020), 1904–1911. https://doi.org/10.1109/tmech.2020.2992038 doi: 10.1109/tmech.2020.2992038
    [57] L. Jiang, S. Wang, Y. Xie, J. Meng, S. Zheng, X. Zhang, et al., Anti-disturbance direct yaw moment control of a four-wheeled autonomous mobile robot, IEEE Access, 8 (2020), 174654–174666. https://doi.org/10.1109/access.2020.3025575 doi: 10.1109/access.2020.3025575
    [58] H. Duan, Y. Sun, Y. Shi, Bionic visual control for probe-and-drogue autonomous aerial refueling, IEEE Trans. Aerosp. Electron. Syst., 57 (2020), 848–865. https://doi.org/10.1109/taes.2020.3034026 doi: 10.1109/taes.2020.3034026
    [59] X. Zhang, H. Ma, M. Luo, X. Liu, Adaptive sliding mode control with information concentration estimator for a robot arm, Int. J. Syst. Sci., 51 (2020), 217–228. https://doi.org/10.1080/00207721.2019.1691752 doi: 10.1080/00207721.2019.1691752
    [60] H. Yildiz, N. K. Can, O. C. Ozguney, N. Yagiz, Sliding mode control of a line following robot, J. Braz. Soc. Mech. Sci. Eng., 42 (2020), 1–13. https://doi.org/10.1007/s40430–020–02645–3 doi: 10.1007/s40430–020–02645–3
    [61] J. Baek, M. Jin, S. Han, A new adaptive sliding-mode control scheme for application to robot manipulators, IEEE Trans. Ind. Electron., 63 (2016), 3628–3637. https://doi.org/10.1109/tie.2016.2522386 doi: 10.1109/tie.2016.2522386
    [62] Z. Dachang, D. Baolin, Z. Puchen, W. Wu, Adaptive backstepping sliding mode control of trajectory tracking for robotic manipulators, Complexity, 2020 (2020). https://doi.org/10.1155/2020/3156787 doi: 10.1155/2020/3156787
    [63] Z. Wu, H. R. Karimi, C. Dang, An approximation algorithm for graph partitioning via deterministic annealing neural network, Neural Networks, 117 (2019), 191–200. https://doi.org/10.1016/j.neunet.2019.05.010 doi: 10.1016/j.neunet.2019.05.010
    [64] Z. Wu, H. R. Karimi, C. Dang, A deterministic annealing neural network algorithm for the minimum concave cost transportation problem, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 4354–4366. https://doi.org/10.1109/tnnls.2019.2955137 doi: 10.1109/tnnls.2019.2955137
    [65] Y. Su, C. Zheng, A new nonsingular integral terminal sliding mode control for robot manipulators, Int. J. Syst. Sci., 51 (2020), 1418–1428. https://doi.org/10.1080/00207721.2020.1764658 doi: 10.1080/00207721.2020.1764658
    [66] S. Phukan, C. Mahanta, A position synchronization controller for co-ordinated links (COOL) dual robot arm based on integral sliding mode: Design and experimental validation, Int. J. Autom. Comput., 18 (2021), 110–123. https://doi.org/10.1007/s11633–020–1242–3 doi: 10.1007/s11633–020–1242–3
    [67] V. C. Nguyen, A. T. Vo, H. J. Kang, A finite-time fault-tolerant control using non-singular fast terminal sliding mode control and third-order sliding mode observer for robotic manipulators, IEEE Access, 9 (2021), 31225–31235. https://doi.org/10.1109/access.2021.3059897 doi: 10.1109/access.2021.3059897
    [68] G. Bartolini, A. Ferrara, E. Usai, Chattering avoidance by second-order sliding mode control, IEEE Trans. Autom. Control, 43 (1998), 241–246. https://doi.org/10.1109/9.661074 doi: 10.1109/9.661074
    [69] G. Bartolini, A. Ferrara, E. Usai, V. I. Utkin, On multi-input chattering-free second-order sliding mode control, IEEE Trans. Autom. Control, 45 (2000), 1711–1717. https://doi.org/10.1109/9.880629 doi: 10.1109/9.880629
    [70] G. Bartolini, E. Punta, Chattering elimination with second-order sliding modes robust to coulomb friction, J. Dyn. Sys. Meas. Control, 122 (2000), 679–686. https://doi.org/10.1115/1.1316797 doi: 10.1115/1.1316797
    [71] G. Bartolini, A. Pisano, E. Punta, E. Usai, A survey of applications of second-order sliding mode control to mechanical systems, Int. J. Control, 76 (2003), 875–892. https://doi.org/10.1080/0020717031000099010 doi: 10.1080/0020717031000099010
    [72] V. Parra‐Vega, G. Hirzinger, Chattering‐free sliding mode control for a class of nonlinear mechanical systems, Int. J. Robust Nonlinear Control: IFAC‐Affiliated J., 11 (2001), 1161–1178. https://doi.org/10.1002/rnc.598 doi: 10.1002/rnc.598
    [73] J. X. Xu, T. H. Lee, Y. J. Pan, On the sliding mode control for DC servo mechanisms in the presence of unmodeled dynamics, Mechatronics, 13 (2003), 755–770. https://doi.org/10.1016/s0957–4158(02)00062–4 doi: 10.1016/s0957–4158(02)00062–4
    [74] H. Zhang, X. Liu, J. Wang, H. R. Karimi, Robust H sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system, Int. J. Adv. Manuf. Technol., 73 (2014), 1095–1104. https://doi.org/10.1007/s00170–014–5910–8 doi: 10.1007/s00170–014–5910–8
    [75] Y. Kao, J. Xie, L. Zhang, H. R. Karimi, A sliding mode approach to robust stabilisation of Markovian jump linear time-delay systems with generally incomplete transition rates, Nonlinear Anal.: Hybrid Syst., 17 (2015), 70–80. https://doi.org/10.1016/j.nahs.2015.03.001 doi: 10.1016/j.nahs.2015.03.001
    [76] Y. Huang, Z. Zheng, L. Sun, M. Zhu, Saturated adaptive sliding mode control for autonomous vessel landing of a quadrotor, IET Control Theory Appl., 12 (2018), 1830–1842. https://doi.org/10.1049/iet–cta.2017.0998 doi: 10.1049/iet–cta.2017.0998
    [77] Z. Wu, B. Jiang, Y. Kao, Finite-time H filtering for Itô stochastic Markovian jump systems with distributed time-varying delays based on optimisation algorithm, IET Control Theory Appl., 13 (2019), 702–710. https://doi.org/10.1049/iet–cta.2018.6119 doi: 10.1049/iet–cta.2018.6119
    [78] W. A. Apaza-Perez, J. A. Moreno, L. Fridman, Global sliding mode observers for some uncertain mechanical systems, IEEE Trans. Autom. Control, 65 (2019), 1348–1355. https://doi.org/10.1109/tac.2019.2931462 doi: 10.1109/tac.2019.2931462
    [79] T. Jiang, T. Song, D. Lin, Integral sliding mode based control for quadrotors with disturbances: Simulations and experiments, Int. J. Control. Autom. Syst., 17 (2019), 1987–1998. https://doi.org/10.1007/s12555–018–0500–4 doi: 10.1007/s12555–018–0500–4
    [80] Z. Wu, L. Yang, B. Jiang, Y. Kao, Finite-time H control of stochastic singular systems with partly known transition rates via an optimization algorithm, Int. J. Control. Autom. Syst., 17 (2019), 1462–1472. https://doi.org/10.1007/s12555–018–0691–8 doi: 10.1007/s12555–018–0691–8
    [81] M. C. Pai, Adaptive observer‐based global sliding mode control for uncertain discrete‐time nonlinear systems with time‐delays and input nonlinearity, Asian J. Control, 21 (2019), 2290–2300. https://doi.org/10.1002/asjc.1828 doi: 10.1002/asjc.1828
    [82] J. Cao, Y. Sun, G. Zhang, W. Jiao, X. Wang, Z. Liu, Target tracking control of underactuated autonomous underwater vehicle based on adaptive nonsingular terminal sliding mode control, Int. J. Adv. Rob. Syst., 17 (2020), 1729881420919941. https://doi.org/10.1177/1729881420919941 doi: 10.1177/1729881420919941
    [83] Z. Wu, B. Jiang, M. Xie, J. Xie, C. Gao, Event-triggered observer-based H sliding mode control of nonlinear systems, ISA Trans., 2020. https://doi.org/10.1016/j.isatra.2020.10.015 doi: 10.1016/j.isatra.2020.10.015
    [84] R. Kumari, K. K. Prabhakaran, K. Desingu, T. R. Chelliah, S. A. Sarma, Improved hydroturbine control and future prospects of variable speed hydropower plant, IEEE Trans. Ind. Appl., 57 (2020), 941–952. https://doi.org/10.1109/tia.2020.3028798 doi: 10.1109/tia.2020.3028798
    [85] Z. Cao, Y. Niu, H. R. Karimi, Dynamic output feedback sliding mode control for Markovian jump systems under stochastic communication protocol and its application, Int. J. Rob. Nonlinear Control, 30 (2020), 7307–7325. https://doi.org/10.1002/rnc.5172 doi: 10.1002/rnc.5172
    [86] H. Zhang, W. Liu, Z. Chen, N. Jiao, An overall system delay compensation method for IPMSM sensorless drives in rail transit applications, IEEE Trans. Power Electron., 36 (2020), 1316–1329. https://doi.org/10.1109/TPEL.2020.3015742 doi: 10.1109/TPEL.2020.3015742
    [87] J. Song, L. Y. Huang, H. R. Karimi, Y. Niu, J. Zhou, ADP-based security decentralized sliding mode control for partially unknown large-scale systems under injection attacks, IEEE Trans. Circuits Syst. Ⅰ: Regular Pap., 67 (2020), 5290–5301. https://doi.org/10.1109/tcsi.2020.3014253 doi: 10.1109/tcsi.2020.3014253
    [88] M. T. Vu, H. N. N. Le Thanh, T. T. Huynh, Q. Thang, T. Duc, Q. D. Hoang, et al., Station-keeping control of a hovering over-actuated autonomous underwater vehicle under ocean current effects and model uncertainties in horizontal plane, IEEE Access, 9 (2021), 6855–6867. https://doi.org/10.1109/access.2020.3048706 doi: 10.1109/access.2020.3048706
    [89] X. Meng, Z. Wu, C. Gao, B. Jiang, H. R. Karimi, Finite-time projective synchronization control of variable-order fractional chaotic systems via sliding mode approach, IEEE Trans. Circuits Syst. Ⅱ: Express Briefs, 2021. https://doi.org/10.1109/tcsii.2021.3055753 doi: 10.1109/tcsii.2021.3055753
    [90] S. N. Ali, M. J. Hossain, D. Wang, K. Lu, P. O. Rasmussen, V. Sharma, et al., Robust sensorless control against thermally degraded speed performance in an im drive based electric vehicle, IEEE Trans. Energy Convers., 35 (2020), 896–907. https://doi.org/10.1109/tec.2020.2968547 doi: 10.1109/tec.2020.2968547
    [91] B. C. Chen, Y. Y. Wu, Y. L. Wu, C. C. Lin, Adaptive power split control for a hybrid electric scooter, IEEE Trans. Veh. Technol., 60 (2011), 1430–1437. https://doi.org/10.1109/tvt.2011.2132155 doi: 10.1109/tvt.2011.2132155
    [92] Z. Cao, Y. Niu, H. R. Karimi, Sliding mode control of automotive electronic valve system under weighted try-once-discard protocol, Inf. Sci., 515 (2020), 324–340. https://doi.org/10.1016/j.ins.2019.12.032 doi: 10.1016/j.ins.2019.12.032
    [93] Y. Li, C. Tang, S. Peeta, Y. Wang, Integral-sliding-mode braking control for a connected vehicle platoon: Theory and application, IEEE Trans. Ind. Electron., 66 (2018), 4618–4628. https://doi.org/10.1109/tie.2018.2864708 doi: 10.1109/tie.2018.2864708
    [94] A. Ferrara, G. P. Incremona, Sliding modes control in vehicle longitudinal dynamics control, in Advances in Variable Structure Systems and Sliding Mode Control-Theory and Applications, Springer, Cham, (2018), 357–383. https://doi.org/10.1007/978–3–319–62896–7_15
    [95] D. Savitski, V. Ivanov, K. Augsburg, T. Emmei, H. Fuse, H. Fujimoto, et al., Wheel slip control for the electric vehicle with in-wheel motors: Variable structure and sliding mode methods, IEEE Trans. Ind. Electron., 67 (2019), 8535–8544. https://doi.org/10.1109/tie.2019.2942537 doi: 10.1109/tie.2019.2942537
    [96] J. C. Wang, R. He, Y. B. Kim, Optimal anti-lock braking control with nonlinear variable voltage charging scheme for an electric vehicle, IEEE Trans. Veh. Technol., 69 (2020), 7211–7222. https://doi.org/10.1109/tvt.2020.2992756 doi: 10.1109/tvt.2020.2992756
    [97] L. He, W. Ye, Z. He, K. Song, Q. Shi, A combining sliding mode control approach for electric motor anti-lock braking system of battery electric vehicle, Control Eng. Pract., 102 (2020), 104520. https://doi.org/10.1016/j.conengprac.2020.104520 doi: 10.1016/j.conengprac.2020.104520
    [98] D. Yu, W. Wang, H. Zhang, D. Xu, Research on anti-lock braking control strategy of distributed-driven electric vehicle, IEEE Access, 8 (2020), 162467–162478. https://doi.org/10.1109/access.2020.3021193 doi: 10.1109/access.2020.3021193
    [99] C. Hu, R. Wang, F. Yan, Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles, IEEE Trans. Transp. Electrif., 2 (2016), 221–230. https://doi.org/10.1109/tte.2016.2537046 doi: 10.1109/tte.2016.2537046
    [100] H. Wang, Z. Li, X. Jin, Y. Huang, H. Kong, M. Yu, et al., Adaptive integral terminal sliding mode control for automobile electronic throttle via an uncertainty observer and experimental validation, IEEE Trans. Veh. Technol., 67 (2018), 8129–8143. https://doi.org/10.1109/tvt.2018.2850923 doi: 10.1109/tvt.2018.2850923
    [101] Z. Liang, J. Zhao, B. Liu, Y. Wang, Z. Ding, Velocity-based path following control for autonomous vehicles to avoid exceeding road friction limits using sliding mode method, IEEE Trans. Intell. Transp. Syst., 2020. https://doi.org/10.1109/tits.2020.3030087 doi: 10.1109/tits.2020.3030087
    [102] W. Han, L. Xiong, Z. Yu, Interconnected pressure estimation and double closed-loop cascade control for an integrated electrohydraulic brake system, IEEE/ASME Trans. Mechatron., 25 (2020), 2460–2471. https://doi.org/10.1109/tmech.2020.2978534 doi: 10.1109/tmech.2020.2978534
    [103] C. Hu, Z. Wang, Y. Qin, Y. Huang, J. Wang, R. Wang, Lane keeping control of autonomous vehicles with prescribed performance considering the rollover prevention and input saturation, IEEE Trans. Intell. Transp. Syst., 21 (2019), 3091–3103. https://doi.org/10.1109/tits.2019.2924937 doi: 10.1109/tits.2019.2924937
    [104] L. Jiang, J. Yang, Path tracking of automatic parking system based on sliding mode control, Trans. Chin. Soc. Agric. Mach., 50 (2019), 356–364.
    [105] C. Mellucci, P. P. Menon, C. Edwards, P. G. Challenor, Environmental feature exploration with a single autonomous vehicle, IEEE Trans. Control Syst. Technol., 28 (2019), 1349–1362. https://doi.org/10.1109/tcst.2019.2908141 doi: 10.1109/tcst.2019.2908141
    [106] S. Milani, H. Khayyam, H. Marzbani, W. Melek, N. L. Azad, R. N. Jazar, Smart autodriver algorithm for real-time autonomous vehicle trajectory control, IEEE Trans. Intell. Transp. Syst., 2020. https://doi.org/10.1109/tits.2020.3030236 doi: 10.1109/tits.2020.3030236
    [107] B. Xian, B. Zhao, Y. Zhang, X. Zhang, A low-cost hardware-in-the-loop-simulation testbed of quadrotor UAV and implementation of nonlinear control schemes, Robotica, 35 (2017), 588–612. https://doi.org/10.1017/s0263574715000727 doi: 10.1017/s0263574715000727
    [108] J. Chen, C. Hua, X. Guan, Image based fixed time visual servoing control for the quadrotor UAV, IET Control Theory Appl., 13 (2019), 3117–3123. https://doi.org/10.1049/iet–cta.2019.0032 doi: 10.1049/iet–cta.2019.0032
    [109] H. Abaunza, P. Castillo, Quadrotor aggressive deployment, using a quaternion-based spherical chattering-free sliding-mode controller, IEEE Trans. Aerosp. Electron. Syst., 56 (2019), 1979–1991. https://doi.org/10.1109/taes.2019.2937663 doi: 10.1109/taes.2019.2937663
    [110] A. Villanueva, L. F. Luque-Vega, L. E. González-Jiménez, C. A. Arellano-Muro, Robust multimode flight framework based on sliding mode control for a rotary UAV, Robotica, 39 (2021), 699–717. https://doi.org/10.1017/s0263574720000673 doi: 10.1017/s0263574720000673
    [111] A. Tahir, J. M. Böling, M. H. Haghbayan, J. Plosila, Comparison of linear and nonlinear methods for distributed control of a hierarchical formation of UAVs, IEEE Access, 8 (2020), 95667–95680. https://doi.org/10.1109/access.2020.2988773 doi: 10.1109/access.2020.2988773
    [112] B. Kada, M. Khalid, M. S. Shaikh, Distributed cooperative control of autonomous multi-agent UAV systems using smooth control, J. Syst. Eng. Electron., 31 (2020), 1297–1307. https://doi.org/10.23919/jsee.2020.000100 doi: 10.23919/jsee.2020.000100
    [113] A. Aghaeeyan, F. Abdollahi, H. A. Talebi, UAV-UGVs cooperation: With a moving center based trajectory, Rob. Auton. Syst., 63 (2015), 1–9. https://doi.org/10.1016/j.robot.2014.10.005 doi: 10.1016/j.robot.2014.10.005
    [114] A. V. Savkin, H. Huang, Bioinspired bearing only motion camouflage UAV guidance for covert video surveillance of a moving target, IEEE Syst. J., (2020). https://doi.org/10.1109/jsyst.2020.3028577 doi: 10.1109/jsyst.2020.3028577
    [115] M. A. Hady, B. B. Kocer, H. Kandath, M. Pratama, Real-time uav complex missions leveraging self-adaptive controller with elastic structure, preprint, arXiv: 1907.08619.
    [116] H. Huang, A. V. Savkin, X. Li, Reactive autonomous navigation of UAVs for dynamic sensing coverage of mobile ground targets, Sensors, 20 (2020), 3720. https://doi.org/10.3390/s20133720 doi: 10.3390/s20133720
    [117] H. Alwi, C. Edwards, Sliding mode fault-tolerant control of an octorotor using linear parameter varying-based schemes, IET Control Theory Appl., 9 (2015), 618–636. https://doi.org/10.1049/iet–cta.2014.0215 doi: 10.1049/iet–cta.2014.0215
    [118] H. Hamadi, B. Lussier, I. Fantoni, C. Francis, H. Shraim, Comparative study of self tuning, adaptive and multiplexing FTC strategies for successive failures in an Octorotor UAV, Rob. Auton. Syst., 133 (2020), 103602. https://doi.org/10.1016/j.robot.2020.103602 doi: 10.1016/j.robot.2020.103602
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3453) PDF downloads(280) Cited by(5)

Article outline

Figures and Tables

Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog