Research article Special Issues

Numerical analysis of biothermal-fluids and cardiac thermal pulse of abdominal aortic aneurysm


  • Received: 19 May 2022 Revised: 12 July 2022 Accepted: 12 July 2022 Published: 20 July 2022
  • Abdominal aortic aneurysms are serious and difficult to detect, conditions can be deadly if they rupture. In this study, the heat transfer and flow physics of Abdominal Aortic Aneurysm (AAA) were discussed and associated with cardiac cycle to illustrate the cardiac thermal pulse (CTP) of AAA. A CTP and infrared thermography (IRT) evaluation-based on AAA and abdomen skin surface detection method was proposed, respectively. Infrared thermography (IRT) is a promising imaging technique that may detect AAA quicker and cheaper than other imaging techniques (as biomarker). From CFD rigid-wall and FSI Analysis, the transient bioheat transfer effect resulted in a distinct thermal signature (circular thermal elevation) on the temperature profile of midriff skin surface, at both regular body temperature and supine position, under normal clinical temperature. However, it is important to note that thermography is not a perfect technology, and it does have some limitations, such as lack of clinical trials. There is still work to be done to improve this imaging technique and make it a more viable and accurate method for detecting abdominal aortic aneurysms. However, thermography is currently one of the most convenient technologies in this field, and it has the potential to detect abdominal aortic aneurysms earlier than other techniques. CTP, on the other hand, was used to examine the thermal physics of AAA. In CFD rigid-wall Analysis, AAA had a CTP that only responded to systolic phase at regular body temperature. In contrast, a healthy abdominal aorta displayed a CTP that responded to the full cardiac cycle, including diastolic phase at all simulated cases. Besides, the findings from FSI Analysis suggest the influence of numerical simulation techniques on the prediction of thermal physics behaviours of AAA and abdominal skin surface. Lastly, this study correlated the relationship between natural convective heat transfer coefficient with AAA and provided reference for potential clinical diagnostic using IRT in clinical implications.

    Citation: EYK Ng, Leonard Jun Cong Looi. Numerical analysis of biothermal-fluids and cardiac thermal pulse of abdominal aortic aneurysm[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10213-10251. doi: 10.3934/mbe.2022479

    Related Papers:

  • Abdominal aortic aneurysms are serious and difficult to detect, conditions can be deadly if they rupture. In this study, the heat transfer and flow physics of Abdominal Aortic Aneurysm (AAA) were discussed and associated with cardiac cycle to illustrate the cardiac thermal pulse (CTP) of AAA. A CTP and infrared thermography (IRT) evaluation-based on AAA and abdomen skin surface detection method was proposed, respectively. Infrared thermography (IRT) is a promising imaging technique that may detect AAA quicker and cheaper than other imaging techniques (as biomarker). From CFD rigid-wall and FSI Analysis, the transient bioheat transfer effect resulted in a distinct thermal signature (circular thermal elevation) on the temperature profile of midriff skin surface, at both regular body temperature and supine position, under normal clinical temperature. However, it is important to note that thermography is not a perfect technology, and it does have some limitations, such as lack of clinical trials. There is still work to be done to improve this imaging technique and make it a more viable and accurate method for detecting abdominal aortic aneurysms. However, thermography is currently one of the most convenient technologies in this field, and it has the potential to detect abdominal aortic aneurysms earlier than other techniques. CTP, on the other hand, was used to examine the thermal physics of AAA. In CFD rigid-wall Analysis, AAA had a CTP that only responded to systolic phase at regular body temperature. In contrast, a healthy abdominal aorta displayed a CTP that responded to the full cardiac cycle, including diastolic phase at all simulated cases. Besides, the findings from FSI Analysis suggest the influence of numerical simulation techniques on the prediction of thermal physics behaviours of AAA and abdominal skin surface. Lastly, this study correlated the relationship between natural convective heat transfer coefficient with AAA and provided reference for potential clinical diagnostic using IRT in clinical implications.



    加载中


    [1] F. A. Lederle, J. A. Freischlag, T. C. Kyriakides, F. T. Padberg, J. S. Matsumura, T. R. Kohler, et al., Outcomes following endovascular vs open repair of abdominal aortic aneurysm: A randomized trial, JAMA, 302 (2009), 1535-1542. https://doi.org/10.1001/jama.2009.1426 doi: 10.1001/jama.2009.1426
    [2] A. Chervu, G. P. Clagett, R. J. Valentine, S. I. Myers, P. J. Rossi, Role of physical examination in detection of abdominal aortic aneurysms, Surgery, 117 (1995), 454-457. https://doi.org/10.1016/S0039-6060(05)80067-4 doi: 10.1016/S0039-6060(05)80067-4
    [3] B. Keisler, C. Carter, Abdominal aortic aneurysm, Am. Fam. Phys., 91 (2015), 538-543.
    [4] P. M. Shaw, J. Loree, R. C. Gibbons, Abdominal Aortic Aneurysm, StatPearls Publishing, Treasure Island (FL), 2022.
    [5] T. Canchi, A. Saxena, E. Y. K. Ng, E. C. H. Pwee, S. Narayanan, Application of fluid-structure interaction methods to estimate the mechanics of rupture in asian abdominal aortic aneurysms, Bionanoscience, 8 (2018), 1035-1044. https://doi.org/10.1007/s12668-018-0554-z doi: 10.1007/s12668-018-0554-z
    [6] L. Smith-Burgess, Early identification and detection of abdominal aortic aneurysms, Nurs. Times, 113 (2017), 36-39.
    [7] D. C. Brewster, J. L. Cronenwett, J. W. Hallett, K. W. Johnston, W. C. Krupski, J. S. Matsumura, Guidelines for the treatment of abdominal aortic aneurysms: Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery, J. Vasc. Surg., 37 (2003), 1106-1117. https://doi.org/10.1067/mva.2003.363 doi: 10.1067/mva.2003.363
    [8] K. C. Kent, R. M. Zwolak, N. N. Egorova, T. S. Riles, A. Manganaro, A. J. Moskowitz, et al., Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals, J. Vasc. Surg., 52 (2010), 539-548. https://doi.org/10.1016/j.jvs.2010.05.090 doi: 10.1016/j.jvs.2010.05.090
    [9] H. Bengtsson, D. Bergqvist, N. H. Sternby, Increasing prevalence of abdominal aortic aneurysms: A necropsy study, Eur. J. Surg., 158 (1992), 19-23.
    [10] F. L. Moll, J. T. Powell, G. Fraedrich, F. Verzini, S. Haulon, M. Waltham, et al., Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery, Eur. J. Vasc. Endovasc. Surg., 41 (2011), S1-S58. https://doi.org/10.1016/j.ejvs.2010.09.011 doi: 10.1016/j.ejvs.2010.09.011
    [11] J. Lieberg, L. L. Pruks, M. Kals, K. Paapstel, A. Aavik, J. Kals, Mortality after elective and ruptured abdominal aortic aneurysm surgical repair: 12-year single-center experience of Estonia, Scand. J. Surg., 107 (2018), 152-157. https://doi.org/10.1177/1457496917738923 doi: 10.1177/1457496917738923
    [12] R. E. Brightwell, A. M. Choong, A. G. Barnett, P. J. Walker, Changes in temperature affect the risk of abdominal aortic aneurysm rupture, ANZ J. Surg., 84 (2014), 871-876. https://doi.org/10.1111/ans.12446 doi: 10.1111/ans.12446
    [13] A. Saxena, E. Y. K. Ng, C. Manchanda, T. Canchi, Cardiac thermal pulse at the neck-skin surface as a measure of stenosis in the carotid artery, Therm. Sci. Eng. Prog., 19 (2020), 100603. https://doi.org/10.1016/j.tsep.2020.100603 doi: 10.1016/j.tsep.2020.100603
    [14] E. Y. K. Ng, E. Y. L. Pang, Thermal elevation on midriff skin surface as a potential diagnostic feature for abdominal aortic aneurysm using infrared thermography (IRT), Int. J. Therm. Sci., 172 (2022), 107305. https://doi.org/10.1016/j.ijthermalsci.2021.107305 doi: 10.1016/j.ijthermalsci.2021.107305
    [15] C. M. Scotti, A. D. Shkolnik, S. C. Muluk, E. A. Finol, Fluid-structure interaction in abdominal aortic aneurysms: Effects of asymmetry and wall thickness, Biomed. Eng. Online, 4 (2005), 64. https://doi.org/10.1186/1475-925x-4-64 doi: 10.1186/1475-925x-4-64
    [16] W. Hao, S. Gong, S. Wu, J. Xu, M. Go, A. Friedman, et al., A mathematical model of aortic aneurysm formation, PLoS One, 12 (2017), e0170807. https://doi.org/10.1371/journal.pone.0170807 doi: 10.1371/journal.pone.0170807
    [17] S. Lin, X. Han, Y. Bi, S. Ju, L. Gu, Fluid-structure interaction in abdominal aortic aneurysm: Effect of modeling techniques, Biomed Res. Int., 2017 (2017), 7023078. https://doi.org/10.1155/2017/7023078 doi: 10.1155/2017/7023078
    [18] G. A. Holzapfel, T. C. Gasser, R. W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast., 61 (2000), 1-48. https://doi.org/10.1023/A:1010835316564 doi: 10.1023/A:1010835316564
    [19] J. Humphrey, Introduction, World Dev., 23 (1995), 1-7. https://doi.org/10.1016/0305-750X(95)90011-O doi: 10.1016/0305-750X(95)90011-O
    [20] G. A. Holzapfel, R. W. Ogden, Constitutive modelling of arteries, Proc. Math. Phys. Eng. Sci., 466 (2010), 1551-1597. https://doi.org/10.1098/rspa.2010.0058 doi: 10.1098/rspa.2010.0058
    [21] C. Reeps, M. Gee, A. Maier, M. Gurdan, H. H. Eckstein, W. A. Wall, The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm, J. Vasc. Surg., 51 (2010), 679-688. https://doi.org/10.1016/j.jvs.2009.10.048 doi: 10.1016/j.jvs.2009.10.048
    [22] C. M. Scotti, J. Jimenez, S. C. Muluk, E. A. Finol, Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction, Comput. Methods Biomech. Biomed. Eng., 11 (2008), 301-322. https://doi.org/10.1080/10255840701827412 doi: 10.1080/10255840701827412
    [23] J. H. Leung, A. R. Wright, N. Cheshire, J. Crane, S. A. Thom, A. D. Hughes, et al., Fluid structure interaction of patient specific abdominal aortic aneurysms: A comparison with solid stress models, Biomed. Eng. Online, 5 (2006), 33. https://doi.org/10.1186/1475-925X-5-33 doi: 10.1186/1475-925X-5-33
    [24] Y. Mesri, H. Niazmand, A. Deyranlou, Numerical study on fluid-structure interaction in a patient-specific abdominal aortic aneurysm for evaluating wall heterogeneity and material model effects on its rupture, J. Appl. Fluid Mech., 10 (2017), 1699-1709. https://doi.org/10.18869/acadpub.jafm.73.243.27678 doi: 10.18869/acadpub.jafm.73.243.27678
    [25] A. Grytsan, P. N. Watton, G. A. Holzapfel, A thick-walled fluid-solid-growth model of abdominal aortic aneurysm evolution: application to a patient-specific geometry, J. Biomech. Eng., 137 (2015). https://doi.org/10.1115/1.4029279 doi: 10.1115/1.4029279
    [26] H. Schmid, A. Grytsan, E. Poshtan, P. N. Watton, M. Itskov, Influence of differing material properties in media and adventitia on arterial adaptation—Application to aneurysm formation and rupture, Comput. Methods Biomech. Biomed. Eng., 16 (2013), 33-53. https://doi.org/10.1080/10255842.2011.603309 doi: 10.1080/10255842.2011.603309
    [27] K. Y. Volokh, Modeling failure of soft anisotropic materials with application to arteries, J. Mech. Behav. Biomed. Mater., 4 (2011), 1582-1594. https://doi.org/10.1016/j.jmbbm.2011.01.002 doi: 10.1016/j.jmbbm.2011.01.002
    [28] P. N. Watton, N. A. Hill, M. Heil, A mathematical model for the growth of the abdominal aortic aneurysm, Biomech. Model. Mechanobiol., 3 (2004), 98-113. https://doi.org/10.1007/s10237-004-0052-9 doi: 10.1007/s10237-004-0052-9
    [29] M. L. Raghavan, D. A. Vorp, Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability, J. Biomech., 33 (2000), 475-482. https://doi.org/10.1016/S0021-9290(99)00201-8 doi: 10.1016/S0021-9290(99)00201-8
    [30] M. J. Riedl, Optical Design Fundamentals for Infrared Systems, SPIE press, Bellingham, 2001.
    [31] A. Saxena, E. Y. K. Ng, M. Mathur, C. Manchanda, N. A. Jajal, Effect of carotid artery stenosis on neck skin tissue heat transfer, Int. J. Therm. Sci., 145 (2019), 106010. https://doi.org/10.1016/j.ijthermalsci.2019.106010 doi: 10.1016/j.ijthermalsci.2019.106010
    [32] G. Varjú, C. F. Pieper, J. B. Renner, V. B. Kraus, Assessment of hand osteoarthritis: Correlation between thermographic and radiographic methods, Rheumatology, 43 (2004), 915-919. https://doi.org/10.1093/rheumatology/keh204 doi: 10.1093/rheumatology/keh204
    [33] K. Woźniak, L. Szyszka-Sommerfeld, G. Trybek, D. Piątkowska, Assessment of the sensitivity, specificity, and accuracy of thermography in identifying patients with TMD, Med. Sci. Monit., 21 (2015), 1485-1493. https://doi.org/10.12659/MSM.893863 doi: 10.12659/MSM.893863
    [34] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, CRC Press, Boca Raton, (1980), 214.
    [35] C. Childs, H. Soltani, Abdominal cutaneous thermography and perfusion mapping after caesarean section: A scoping review, Int. J. Environ. Res. Public Health, 17 (2020), 8693. https://doi.org/10.3390/ijerph17228693 doi: 10.3390/ijerph17228693
    [36] R. B. Barnes, Thermography of the human body, Science, 140 (1963), 870-877. https://doi.org/10.1126/science.140.3569.870 doi: 10.1126/science.140.3569.870
    [37] O. Ley, T. Kim, Determination of atherosclerotic plaque temperature in large arteries, Int. J. Therm. Sci., 47 (2008), 147-156. https://doi.org/10.1016/j.ijthermalsci.2007.01.034 doi: 10.1016/j.ijthermalsci.2007.01.034
    [38] T. Canchi, S. D. Kumar, E. Y. K. Ng, S. Narayanan, A review of computational methods to predict the risk of rupture of abdominal aortic aneurysms, Biomed. Res. Int., 2015 (2015), 861627. https://doi.org/10.1155/2015/861627 doi: 10.1155/2015/861627
    [39] J. Xu, A. Psikuta, J. Li, S. Annaheim, R. M. Rossi, Influence of human body geometry, posture and the surrounding environment on body heat loss based on a validated numerical model, Build. Environ., 166 (2019), 106340. https://doi.org/10.1016/j.buildenv.2019.106340 doi: 10.1016/j.buildenv.2019.106340
    [40] Y. Kurazumi, T. Tsuchikawa, N. Matsubara, T. Horikoshi, Convective heat transfer area of the human body, Eur. J. Appl. Physiol., 93 (2004), 273-285. https://doi.org/10.1007/s00421-004-1207-1 doi: 10.1007/s00421-004-1207-1
    [41] Y. Kurazumi, T. Tsuchikawa, J. Ishii, K. Fukagawa, Y. Yamato, N. Matsubara, Radiative and convective heat transfer coefficients of the human body in natural convection, Build. Environ., 43 (2008), 2142-2153. https://doi.org/10.1016/j.buildenv.2007.12.012 doi: 10.1016/j.buildenv.2007.12.012
    [42] K. Ouriel, R. M. Green, C. Donayre, C. K. Shortell, J. Elliott, J. A. DeWeese, An evaluation of new methods of expressing aortic aneurysm size: Relationship to rupture, J. Vasc. Surg., 15 (1992), 12-20. https://doi.org/10.1016/0741-5214(92)70008-9 doi: 10.1016/0741-5214(92)70008-9
    [43] C. M. Scotti, E. A. Finol, Compliant biomechanics of abdominal aortic aneurysms: A fluid-structure interaction study, Comput. Struct., 85 (2007), 1097-1113. https://doi.org/10.1016/j.compstruc.2006.08.041 doi: 10.1016/j.compstruc.2006.08.041
    [44] S. Bernad, E. Bernad, T. Barbat, C. Brisan, V. Albulescu, An analysis of blood flow dynamics in AAA, in Etiology, Pathogenesis and Pathophysiology of Aortic Aneurysms and Aneurysm Rupture, IntechOpen, 2011.
    [45] W. S. Cobb, J. M. Burns, K. W. Kercher, B. D. Matthews, H. J. Norton, B. T. Heniford, Normal intraabdominal pressure in healthy adults, J. Surg. Res., 129 (2005), 231-235. https://doi.org/10.1016/j.jss.2005.06.015 doi: 10.1016/j.jss.2005.06.015
    [46] B. Hernández-Gascón, E. Peña, H. Melero, G. Pascual, M. Doblaré, M. P. Ginebra, et al., Mechanical behaviour of synthetic surgical meshes: Finite element simulation of the herniated abdominal wall, Acta Biomater., 7 (2011), 3905-3913. https://doi.org/10.1016/j.actbio.2011.06.033 doi: 10.1016/j.actbio.2011.06.033
    [47] E. S. Di Martino, G. Guadagni, A. Fumero, G. Ballerini, R. Spirito, P. Biglioli, et al., Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm, Med. Eng. Phys., 23 (2001), 647-655. https://doi.org/10.1016/S1350-4533(01)00093-5 doi: 10.1016/S1350-4533(01)00093-5
    [48] M. H. Cardoso, Experimental study of the human anterolateral abdominal wall: Biomechanical properties of fascia and muscles, 2012. Available from: https://repositorio-aberto.up.pt/bitstream/10216/65576/1/000154315.pdf.
    [49] ANSYS Mechanical Material Reference, Release 2021 R1 ed., ANSYS, Inc., Canonsburg, (2021), 93-106.
    [50] J. Xiang, V. M. Tutino, K. V. Snyder, H. Meng, CFD: Computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment, Am. J. Neuroradiol., 35 (2014), 1849-1857. https://doi.org/10.3174/ajnr.A3710 doi: 10.3174/ajnr.A3710
    [51] F. Gijsen, F. van de Vosse, J. D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model, J. Biomech., 32 (1999), 601-608. https://doi.org/10.1016/S0021-9290(99)00015-9 doi: 10.1016/S0021-9290(99)00015-9
    [52] K. Perktold, M. Resch, H. Florian, Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model, J. Biomech. Eng., 113 (1991), 464-475. https://doi.org/10.1115/1.2895428 doi: 10.1115/1.2895428
    [53] J. P. V. Geest, M. S. Sacks, D. A. Vorp, The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta, J. Biomech., 39 (2006), 1324-1334. https://doi.org/10.1016/j.jbiomech.2005.03.003 doi: 10.1016/j.jbiomech.2005.03.003
    [54] D. A. Vorp, M. L. Raghavan, M. W. Webster, Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry, J. Vasc. Surg., 27 (1998), 632-639. https://doi.org/10.1016/S0741-5214(98)70227-7 doi: 10.1016/S0741-5214(98)70227-7
    [55] S. Pasta, A. Rinaudo, A. Luca, M. Pilato, C. Scardulla, T. G. Gleason, et al., Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysms with bicuspid and tricuspid aortic valve, J. Biomech., 46 (2013), 1729-1738. https://doi.org/10.1016/j.jbiomech.2013.03.029 doi: 10.1016/j.jbiomech.2013.03.029
    [56] J. Pearce, S. Thomsen, Blood vessel architectural features and their effects on thermal phenomena in Matching the Energy Source to the Clinical Need: A Critical Review, SPIE, (2000), 122-168.
    [57] F. A. Duck, Chapter 2—Thermal properties of tissue, in Physical Properties of Tissues (ed. F. A. Duck), Academic Press, London, (1990), 9-42.
    [58] G. Giannakoulas, G. Giannoglou, J. Soulis, T. Farmakis, S. Papadopoulou, G. Parcharidis, et al., A computational model to predict aortic wall stresses in patients with systolic arterial hypertension, Med. Hypotheses, 65 (2005), 1191-1195. https://doi.org/10.1016/j.mehy.2005.06.017 doi: 10.1016/j.mehy.2005.06.017
    [59] G. J. Müller, A. Roggan, Laser-induced Interstitial Thermotherapy, SPIE Optical Engineering Press, 1995.
    [60] M. Halabian, B. Beigzadeh, A. Karimi, H. A. Shirazi, M. H. Shaali, A combination of experimental and finite element analyses of needle-tissue interaction to compute the stresses and deformations during injection at different angles, J. Clin. Monit. Comput., 30 (2016), 965-975. https://doi.org/10.1007/s10877-015-9801-9 doi: 10.1007/s10877-015-9801-9
    [61] S. Mukhopadhyay, M. S. Mandal, S. Mukhopadhyay, Heat transfer in pulsatile blood flow obeying Cross viscosity model through an artery with aneurysm, J. Eng. Math., 131 (2021), 6. https://doi.org/10.1007/s10665-021-10172-w doi: 10.1007/s10665-021-10172-w
    [62] Y. G. Stergiou, A. G. Kanaris, A. A. Mouza, S. V. Paras, Fluid-structure interaction in abdominal aortic aneurysms: Effect of haematocrit, Fluids, 4 (2019), 11. https://doi.org/10.3390/fluids4010011 doi: 10.3390/fluids4010011
    [63] J. D. Humphrey, G. A. Holzapfel, Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms, J. Biomech., 45 (2012), 805-814. https://doi.org/10.1016/j.jbiomech.2011.11.021 doi: 10.1016/j.jbiomech.2011.11.021
    [64] Y. Chu, D. S. Bilal, M. Hajizadeh, Hybrid ferrofluid along with MWCNT for augmentation of thermal behavior of fluid during natural convection in a cavity, Math. Methods Appl. Sci., 2020. https://doi.org/10.1002/mma.6937 doi: 10.1002/mma.6937
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2778) PDF downloads(159) Cited by(6)

Article outline

Figures and Tables

Figures(21)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog