Research article Special Issues

Biological control for predation invasion based on pair approximation


  • Received: 25 May 2022 Revised: 26 June 2022 Accepted: 11 July 2022 Published: 20 July 2022
  • Biological invasions have been paid more attention since invasive species may cause certain threats to local ecosystems. When biological control is adopted, selecting control species for effect better becomes the focus of latest studies. A food web system, with one native species, one invasive species as predator, and one introduced control species preying on both native and invasive species, is established based on pair approximation, in which the spatial landscape of biological invasion and control is concerned, and the local and global dispersal strategies of invasive species, in addition to the predation preferences of control species for native and invasive species, are considered. The influence of the initial density and initial spatial structures of the control species is investigated and the effects of control species releasing time are analyzed. Generally, the earlier the species introduction, the better the control effect, especially for invasive species dispersing globally. Interestingly, too low control species predation preference for native species can lead to unsuccessful introduction, while too much predation preference will have a weak control effect. The larger the control species predatory preference for invasive species is, the more conducive it is to biological control. The extinction of the invasive species is closely related to the initial density and concentration of the control species. This study gives some insights on selecting control species, its appropriate releasing time, and the density and spatial aggregation of it. Some real-life examples are elaborated on, which provides references for biological invasion control.

    Citation: Zhiyin Gao, Sen Liu, Weide Li. Biological control for predation invasion based on pair approximation[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10252-10274. doi: 10.3934/mbe.2022480

    Related Papers:

  • Biological invasions have been paid more attention since invasive species may cause certain threats to local ecosystems. When biological control is adopted, selecting control species for effect better becomes the focus of latest studies. A food web system, with one native species, one invasive species as predator, and one introduced control species preying on both native and invasive species, is established based on pair approximation, in which the spatial landscape of biological invasion and control is concerned, and the local and global dispersal strategies of invasive species, in addition to the predation preferences of control species for native and invasive species, are considered. The influence of the initial density and initial spatial structures of the control species is investigated and the effects of control species releasing time are analyzed. Generally, the earlier the species introduction, the better the control effect, especially for invasive species dispersing globally. Interestingly, too low control species predation preference for native species can lead to unsuccessful introduction, while too much predation preference will have a weak control effect. The larger the control species predatory preference for invasive species is, the more conducive it is to biological control. The extinction of the invasive species is closely related to the initial density and concentration of the control species. This study gives some insights on selecting control species, its appropriate releasing time, and the density and spatial aggregation of it. Some real-life examples are elaborated on, which provides references for biological invasion control.



    加载中


    [1] R. Dirzo, P. H. Raven, Global state of biodiversity and loss, Annu. Rev. Environ. Resour., 28 (2003), 137-167. https://doi.org/10.1146/annurev.energy.28.050302.105532 doi: 10.1146/annurev.energy.28.050302.105532
    [2] M. Sean, F. Richard, B. Thomas, W. James, Biodiversity: The ravages of guns, nets and bulldozers, Nature, 536 (2016), 143-145. https://doi.org/10.1038/536143a doi: 10.1038/536143a
    [3] M. Enders, M. T. Hutt, J. M. Jeschke, Drawing a map of invasion biology based on a network of hypotheses, Ecosphere, 9 (2018), e02146. https://doi.org/10.1002/ecs2.2146 doi: 10.1002/ecs2.2146
    [4] K. Schulze, K. Knights, L. Coad, J. Geldmann, F. Leverington, A. Eassom, et al., An assessment of threats to terrestrial protected areas, Conserv. Lett., 11 (2018), e12435. https://doi.org/10.1111/conl.12435 doi: 10.1111/conl.12435
    [5] X. Liu, T. M. Blackburn, T. Song, X. Wang, C. Huang, Y. Li, Animal invaders threaten protected areas worldwide, Nat. Commun., 11 (2020), 2892. https://doi.org/10.1038/s41467-020-16719-2 doi: 10.1038/s41467-020-16719-2
    [6] R. T. Shackleton, L. C. Foxcroft, P. Pyšek, L. E. Wood, D. M. Richardson, Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme, Biol. Conserv., 243 (2020), 108424. https://doi.org/10.1016/j.biocon.2020.108424 doi: 10.1016/j.biocon.2020.108424
    [7] S. Branco, N. Videira, M. Branco, M. R. Paiva, A review of invasive alien species impacts on eucalypt stands and citrus orchards ecosystem services: towards an integrated management approach, J. Environ. Manage., 149 (2015), 17-26. https://doi.org/10.1016/j.jenvman.2014.09.026 doi: 10.1016/j.jenvman.2014.09.026
    [8] B. A. Jones, Invasive species impacts on human well-being using the life satisfaction index, Ecol. Econ., 134 (2017), 250-257. https://doi.org/10.1016/j.ecolecon.2017.01.002 doi: 10.1016/j.ecolecon.2017.01.002
    [9] K. Petren, T. J. Case, An experimental demonstration of exploitation competition in an ongoing invasion, Ecology, 77 (1996), 118-132. https://doi.org/10.2307/2265661 doi: 10.2307/2265661
    [10] Z. A. Itoo, Z. A. Reshi, The multifunctional role of ectomycorrhizal associations in forest ecosystem processes, Bot. Rev., 79 (2013), 371–400. https://doi.org/10.1007/s12229-013-9126-7 doi: 10.1007/s12229-013-9126-7
    [11] A. M. Stefanowicz, M. Stanek, M. Nobis, S. Zubek, Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties, Sci. Total Environ., 574 (2017), 938-946. https://doi.org/10.1016/j.scitotenv.2016.09.120 doi: 10.1016/j.scitotenv.2016.09.120
    [12] D. S. Wilcove, D. Rothstein, J. Dubow, A. Phillips, E. Losos, Quantifying threats to imperiled species in the United States, BioScience, 48 (1998), 607-615. https://doi.org/10.2307/1313420 doi: 10.2307/1313420
    [13] G. Mollot, J. H. Pantel, T. N. Romanuk, The effects of invasive species on the decline in species richness: a global meta-analysis, Adv. Ecol. Res., 56 (2017), 61-83. https://doi.org/10.1016/bs.aecr.2016.10.002 doi: 10.1016/bs.aecr.2016.10.002
    [14] Y. Kumagai, R. B. Gibson, P. Filion, Evaluating long-term urban resilience through an examination of the history of green spaces in Tokyo, Local Environ., 20 (2015), 1018-1039. https://doi.org/10.1080/13549839.2014.887060 doi: 10.1080/13549839.2014.887060
    [15] D. Pimentel, L. Lach, R. Zuniga, D. Morrison, Environmental and economic costs of nonindigenous species in the United States, BioScience, 50 (1999), 53-65. https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO; 2 doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
    [16] C. Lard, J. Schmidt, B. Morris, L. Estes, C. Ryan, D. Bergquist, An economic impact of imported fire ants in the United States of America, Technical Research Report, (2006), 1999-2001.
    [17] F. Kraus, Impacts from invasive reptiles and amphibians, Annu. Rev. Ecol. Evol. Syst., 46 (2015), 75-97. https://doi.org/10.1146/annurev-ecolsys-112414-054450 doi: 10.1146/annurev-ecolsys-112414-054450
    [18] K. Chalkowski, C. A. Lepczyk, S. Zohdy, Parasite ecology of invasive species: conceptual framework and new hypotheses, Trends Parasitol., 34 (2018), 655-663. https://doi.org/10.1016/j.pt.2018.05.008 doi: 10.1016/j.pt.2018.05.008
    [19] Microbes and pathogens, in Theoretical Approaches to Biological Control (eds. B. Hawkins and H. Cornell), Cambridge University Press, (1999), 3-21. https://doi.org/10.1017/CBO9780511542077.022
    [20] K. Takayama, X. Liu, Y. Kakui, K. Yamashita, M. Manda, Y. Nakanishi, et al., The influence of free-ranging ducks (Indian runner, Chinese native duck and crossbred duck) on emerging weeds and pest insect infestations in paddy fields, Jpn. J. Livest. Manage., 34 (1998), 1-11. https://doi.org/10.20652/jjlm.34.1_1 doi: 10.20652/jjlm.34.1_1
    [21] Y. Shan, Y. Zhu, J. Li, N. Wang, Q. Yu, C. Xue, Acute lethal and sublethal effects of four insecticides on the lacewing (Chrysoperla sinica Tjeder), Chemosphere, 250 (2020), 126321. https://doi.org/10.1016/j.chemosphere.2020.126321 doi: 10.1016/j.chemosphere.2020.126321
    [22] M. Boriani, Chouioia cunea Yang (Hymenoptera, Eulophidae), parasitoid of Hyphantria cunea (Drury) (Lepidoptera Arctiidae), new for Europe, Boll. Zool. Agrar. Bachic., 23 (1991), 193-196. https://doi.org/10.13140/2.1.3361.8565 doi: 10.13140/2.1.3361.8565
    [23] P. E. Hulme, Beyond control: wider implications for the management of biological invasions, J. Appl. Ecol., 43 (2006), 835-847. https://doi.org/10.1111/j.1365-2664.2006.01227.x doi: 10.1111/j.1365-2664.2006.01227.x
    [24] P. M. J. Brown, T. Adriaens, H. Bathon, J. Cuppen, A. Goldarazena, T. Hägg, et al., Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid, BioControl, 53 (2008), 5–21. https://doi.org/10.1007/s10526-007-9132-y doi: 10.1007/s10526-007-9132-y
    [25] D. E. Hiebeler, Populations on fragmented landscapes with spatially structured heterogeneities: landscape generation and local dispersal, Ecology, 81 (2000), 1629-1641. https://doi.org/10.2307/177312 doi: 10.2307/177312
    [26] J. Liao, Z. Ying, D. A. Woolnough, A. D. Miller, Z. Li, I. Nijs, Coexistence of species with different dispersal cross landscapes: a critical role of a spatial correlation in disturbance, Proc. R. Soc. B, 283 (2016), 20160537. https://doi.org/10.1098/rspb.2016.0537 doi: 10.1098/rspb.2016.0537
    [27] R. Wittenberg, Invasive Alien Species: A Toolkit of Best Prevention and Management Practices (eds. M. J. W. Cock), CAB International, (2001), 4-47. https://doi.org/10.1079/9780851995694.0000
    [28] L. W. J. Anderson, California's reaction to Caulerpa taxifolia: a model for invasive species rapid response, Biol. Invasions, 7 (2005), 1003-1016. https://doi.org/10.1007/s10530-004-3123-z doi: 10.1007/s10530-004-3123-z
    [29] L. Wang, Y. P. Liu, R. W. Wang, Weak predation strength promotes stable coexistence of predators and prey in the same chain and across chains, Int. J. Bifurcation Chaos, 30 (2020). https://doi.org/10.1142/S0218127420502284 doi: 10.1142/S0218127420502284
    [30] J. M. Chase, A. A. Burgett, E. G. Biro, Habitat isolation moderates the strength of top-down control in experimental pond food webs, Ecology, 91 (2010), 637-643. https://doi.org/10.1890/09-0262.1 doi: 10.1890/09-0262.1
    [31] J. Liao, D. Bearup, Y. Wang, I. Nijs, D. Bonte, Y. Li, et al., Robustness of metacommunities with omnivory to habitat destruction: disentangling patch fragmentation from patch loss, Ecology, 98 (2017), 1631-1639. https://doi.org/10.1002/ecy.1830 doi: 10.1002/ecy.1830
    [32] S. Nie, W. Li, How spatial structure of species and disturbance influence the ecological invasion, Ecol. Modell., 431 (2020). https://doi.org/10.1016/j.ecolmodel.2020.109199 doi: 10.1016/j.ecolmodel.2020.109199
    [33] R. MacArthur, Species packing and competitive equilibrium for many species, Theor. Popul Biol., 1 (1970), 1-11. https://doi.org/10.1016/0040-5809(70)90039-0 doi: 10.1016/0040-5809(70)90039-0
    [34] J. R. Ziegler, Dispersal and reproduction in Tribolium: the influence of initial density, Environ. Entomol., 7 (1978), 149-156. https://doi.org/10.1093/ee/7.1.149 doi: 10.1093/ee/7.1.149
    [35] A. K. Gerry, S. D. Wilson, The influence of initial size on the competitive responses of six plant species, Ecology, 76 (1995), 272-279. https://doi.org/10.2307/1940648 doi: 10.2307/1940648
    [36] L. M. Puth, D. M. Post, Studying invasion: have we missed the boat? Ecol. Lett., 8 (2005), 715-721. https://doi.org/10.1111/j.1461-0248.2005.00774.x doi: 10.1111/j.1461-0248.2005.00774.x
    [37] K. S. McCann, J. B. Rasmussen, J. Umbanhowar, The dynamics of spatially coupled food webs, Ecol. Lett., 8 (2005), 513-523. https://doi.org/10.1111/j.1461-0248.2005.00742.x doi: 10.1111/j.1461-0248.2005.00742.x
    [38] S. S. Greenleaf, N. M. Williams, R. Winfree, C. Kremen, Bee foraging ranges and their relationship to body size, Oecologia, 153 (2007), 589-596. https://doi.org/10.1007/s00442-007-0752-9 doi: 10.1007/s00442-007-0752-9
    [39] B. E. McLaren, R. O. Peterson, Wolves, moose, and tree rings on Isle Royale, Science, 266 (1994), 1555-1558. https://doi.org/10.1126/science.266.5190.1555 doi: 10.1126/science.266.5190.1555
    [40] A. P. Beckerman, M. Uriarte, O. J. Schmitz, Experimental evidence for a behavior-mediated trophic cascade in a terrestrial food chain, Proc. Natl. Acad. Sci. U. S. A., 94 (1997), 10735-10738. https://doi.org/10.1073/pnas.94.20.10735 doi: 10.1073/pnas.94.20.10735
    [41] F. H. Bormann, G. E. Likens, Catastrophic disturbance and the steady state in northern hardwood forests, Am. Sci., 67 (1979), 660-669. https://www.osti.gov/biblio/5608130
    [42] W. B. Espeut, On the Acclimatization of the Indian Mungoos in Jamaica, Proc. Zool. Soc. London, 50 (2010), 712-714. https://doi.org/10.1111/j.1096-3642.1883.tb02783.x doi: 10.1111/j.1096-3642.1883.tb02783.x
    [43] T. A. Shiganova, Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure, Fish. Oceanogr., 7 (1998), 305-310. https://doi.org/10.1046/j.1365-2419.1998.00080.x doi: 10.1046/j.1365-2419.1998.00080.x
    [44] K. Johst, R. Brandl, S. Eber, Metapopulation persistence in dynamic landscapes: the role of dispersal distance, Oikos, 98 (2002), 263-270. https://doi.org/10.1034/j.1600-0706.2002.980208.x doi: 10.1034/j.1600-0706.2002.980208.x
    [45] A. Miller, D. Reilly, S. Bauman, K. Shea, Interactions between frequency and size of disturbance affect competitive outcomes, Ecol. Res., 27 (2012), 783-791. https://doi.org/10.1007/s11284-012-0954-4 doi: 10.1007/s11284-012-0954-4
    [46] R. Ju, H. Li, C. Shih, B. Li, Progress of biological invasions research in China over the last decade, Biodiversity Sci., 20 (2012), 581-611. https://doi.org/10.3724/SP.J.1003.2012.31148 doi: 10.3724/SP.J.1003.2012.31148
    [47] O. Cano-Rocabayera, A. de Sostoa, L. Coll, A. Maceda-Veiga, Managing small, highly prolific invasive aquatic species: exploring an ecosystem approach for the eastern mosquitofish (Gambusia holbrooki), Sci. Total Environ., 673 (2019), 594-604. https://doi.org/10.1016/j.scitotenv.2019.02.460 doi: 10.1016/j.scitotenv.2019.02.460
    [48] F. Ge, X. Liu, W. Pang, Y. Dang, Biological control efficiency of ladybirds on arthropod pests in cotton agroecosystems, Chin. J. Appl. Ecol., 13 (2002), 841-844. Available from: http://www.cjae.net/EN/Y2002/V/I7/841.
    [49] E. Caudera, S. Viale, S. Bertolino, J. Cerri, E. Venturino, A mathematical model supporting a hyperpredation effect in the apparent competition between invasive eastern cottontail and native European hare, Bull. Math. Biol., 83 (2021). https://doi.org/10.1007/s11538-021-00873-9 doi: 10.1007/s11538-021-00873-9
    [50] L. E. Johnson, Killer algae, Biodivers. Conserv., 10 (2001), 305–307. https://doi.org/10.1023/A:1008950708167
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1924) PDF downloads(98) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog