Research article

Partition dimension of COVID antiviral drug structures

  • Received: 13 April 2022 Revised: 09 June 2022 Accepted: 10 June 2022 Published: 15 July 2022
  • In November 2019, there was the first case of COVID-19 (Coronavirus) recorded, and up to 3$ ^{rd }$ of April 2020, 1,116,643 confirmed positive cases, and around 59,158 dying were recorded. Novel antiviral structures of the SARS-COV-2 virus is discussed in terms of the metric basis of their molecular graph. These structures are named arbidol, chloroquine, hydroxy-chloroquine, thalidomide, and theaflavin. Partition dimension or partition metric basis is a concept in which the whole vertex set of a structure is uniquely identified by developing proper subsets of the entire vertex set and named as partition resolving set. By this concept of vertex-metric resolvability of COVID-19 antiviral drug structures are uniquely identified and helps to study the structural properties of structure.

    Citation: Ali Al Khabyah, Muhammad Kamran Jamil, Ali N. A. Koam, Aisha Javed, Muhammad Azeem. Partition dimension of COVID antiviral drug structures[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10078-10095. doi: 10.3934/mbe.2022471

    Related Papers:

  • In November 2019, there was the first case of COVID-19 (Coronavirus) recorded, and up to 3$ ^{rd }$ of April 2020, 1,116,643 confirmed positive cases, and around 59,158 dying were recorded. Novel antiviral structures of the SARS-COV-2 virus is discussed in terms of the metric basis of their molecular graph. These structures are named arbidol, chloroquine, hydroxy-chloroquine, thalidomide, and theaflavin. Partition dimension or partition metric basis is a concept in which the whole vertex set of a structure is uniquely identified by developing proper subsets of the entire vertex set and named as partition resolving set. By this concept of vertex-metric resolvability of COVID-19 antiviral drug structures are uniquely identified and helps to study the structural properties of structure.



    加载中


    [1] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in wuhan, china, Lancet, 395 (2020), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 doi: 10.1016/S0140-6736(20)30183-5
    [2] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res., 30 (2020), 269–271. https://doi.org/10.1038/s41422-020-0282-0 doi: 10.1038/s41422-020-0282-0
    [3] D. Zhou, S. Dai, Q. Tong, COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression, J. Antimicrob. Chemother., 75 (2020), 1667–1670. https://doi.org/10.1093/jac/dkaa114 doi: 10.1093/jac/dkaa114
    [4] J. Lung, Y. Lin, Y. Yang, Y. Chou, L. Shu, Y. Cheng, et al., The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase, J. Med. Virol., 92 (2020), 693–697. https://doi.org/10.1002/jmv.25761 doi: 10.1002/jmv.25761
    [5] J. S. Morse, T. Lalonde, S. Xu, W. R. Liu, Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV, ChemBioChem, 21 (2020), 730–738. https://doi.org/10.1002/cbic.202000047 doi: 10.1002/cbic.202000047
    [6] X. Xu, P. Chen, J. Wang, J. Feng, H. Zhou, X. Li, et al., Evolution of the novel coronavirus from the ongoing wuhan outbreak and modeling of its spike protein for risk of human transmission, Sci. China Life Sci., 63 (2020), 457–460. https://doi.org/10.1007/s11427-020-1637-5 doi: 10.1007/s11427-020-1637-5
    [7] T. K. Warren, R. Jordan, M. K. Lo, A. S. Ray, R. L. Mackman, V. Soloveva, et al., Therapeutic efficacy of the small molecule GS-5734 against ebola virus in rhesus monkeys, Nature, 531 (2016), 381–385. https://doi.org/10.1038/nature17180 doi: 10.1038/nature17180
    [8] A. Savarino, L. D. Trani, I. Donatelli, R. Cauda, A. Cassone, New insights into the antiviral effects of chloroquine, Lancet Infect. Dis., 6 (2006), 67–69. https://doi.org/10.1016/S1473-3099(06)70361-9 doi: 10.1016/S1473-3099(06)70361-9
    [9] Y. Yan, Z. Zou, Y. Sun, X. Li, K. F. Xu, Y. Wei, et al., Anti-malaria drug chloroquine is highly effective in treating avian influenza a h5n1 virus infection in an animal model, Cell Res., 23 (2013), 300–302. https://doi.org/10.1038/cr.2012.165 doi: 10.1038/cr.2012.165
    [10] Johnson & Johnson is already ramping up production on its fanxiexian_myfh1 billion coronavirus vaccine. Available from: https://www.forbes.com/sites/thomasbrewster/2020/03/30/johnson–johnson-is-already-ramping-up-production-on-its-1-billion-coronavirus-vaccine/?sh=2a66d09aaa66.
    [11] Z. F. Yang, L. P. Bai, W. Huang, X. Li, S. Zhao, N. Zhong, et al., Comparison of in vitro antiviral activity of tea polyphenols against influenza a and b viruses and structure–activity relationship analysis, Fitoterapia, 93 (2014), 47–53. https://doi.org/10.1016/j.fitote.2013.12.011 doi: 10.1016/j.fitote.2013.12.011
    [12] P. Chowdhury, M. Sahuc, Y. Rouillé, C. Rivière, N. Bonneau, A. Vandeputte, et al., Theaflavins, polyphenols of black tea, inhibit entry of hepatitis c virus in cell culture, PLOS One, 13 (2018), e0198226. https://doi.org/10.1371/journal.pone.0198226 doi: 10.1371/journal.pone.0198226
    [13] A. Ali, W. Nazeer, M. Munir, S. M. Kang, M-polynomials and topological indices of zigzagand rhombic benzenoid systems, Open Chem., 16 (2018), 122–135. https://doi.org/10.1515/chem-2018-0010 doi: 10.1515/chem-2018-0010
    [14] M. K. Jamil, M. Imran, K. A. Sattar, Novel face index for benzenoid hydrocarbons, Mathematics, 8 (2020), 312. https://doi.org/10.3390/math8030312 doi: 10.3390/math8030312
    [15] M. K. Siddiqui, M. Naeem, N. A. Rahman, M. Imran, Computing topological indices of certain networks, J. Optoelectron. Adv. Mater., 18 (2016), 9–10.
    [16] M. Nadeem, M. Azeem, H. A. Siddiqui, Comparative study of zagreb indices for capped, semi-capped, and uncapped carbon nanotubes, Polycyclic Aromat. Compd., 2021 (2020), 1–18. https://doi.org/10.1080/10406638.2021.1890625 doi: 10.1080/10406638.2021.1890625
    [17] M. F. Nadeem, M. Imran, H. M. A. Siddiqui, M. Azeem, A. Khalil, Y. Ali, Topological aspects of metal-organic structure with the help of underlying networks, Arabian J. Chem., 14 (2021), 103157. https://doi.org/10.1016/j.arabjc.2021.103157 doi: 10.1016/j.arabjc.2021.103157
    [18] A. N. A. Koam, A. Ahmad, M. E. Abdelhag, M. Azeem, Metric and fault-tolerant metric dimension of hollow coronoid, IEEE Access, 9 (2021), 81527–81534. https://doi.org/10.1109/ACCESS.2021.3085584 doi: 10.1109/ACCESS.2021.3085584
    [19] A. Ahmad, A. N. A. Koam, M. H. F. Siddiqui, M. Azeem, Resolvability of the starphene structure and applications in electronics, Ain Shams Eng. J., 13 (2022), 101587. https://doi.org/10.1016/j.asej.2021.09.014 doi: 10.1016/j.asej.2021.09.014
    [20] M. Azeem, M. F. Nadeem, Metric-based resolvability of polycyclic aromatic hydrocarbons, Eur. Phys. J. Plus, 136 (2021), 395. https://doi.org/10.1140/epjp/s13360-021-01399-8 doi: 10.1140/epjp/s13360-021-01399-8
    [21] Z. Hussain, M. Munir, M. Choudhary, S. M. Kang, Computing metric dimension and metric basis of $2d$ lattice of alpha-boron nanotubes, Symmetry, 10 (2018), 300. https://doi.org/10.3390/sym10080300 doi: 10.3390/sym10080300
    [22] S. Imran, M. K. Siddiqui, M. Hussain, Computing the upper bounds for the metric dimension of cellulose network, Appl. Math. E-notes, 19 (2019), 585–605.
    [23] A. N. A. Koam, A. Ahmad, Barycentric subdivision of cayley graphs with constant edge metric dimension, IEEE Access, 8 (2020), 80624–80628. https://doi.org/10.1109/ACCESS.2020.2990109 doi: 10.1109/ACCESS.2020.2990109
    [24] X. Liu, M. Ahsan, Z. Zahid, S. Ren, Fault-tolerant edge metric dimension of certain families of graphs, AIMS Math., 6 (0202), 1140–1152. http://dx.doi.org/2010.3934/math.2021069
    [25] J. B. Liu, Z. Zahid, R. Nasir, W. Nazeer, Edge version of metric dimension anddoubly resolving sets of the necklace graph, Mathematics, 6 (2018), 243. https://doi.org/10.3390/math6110243 doi: 10.3390/math6110243
    [26] H. Raza, Y. Ji, Computing the mixed metric dimension of a generalized petersengraph $p (n, 2)$, Front. Phys., 8 (2020), 211. https://doi.org/10.3389/fphy.2020.00211 doi: 10.3389/fphy.2020.00211
    [27] M. F. Nadeem, M. Azeem, A. Khalil, The locating number of hexagonal möbius ladder network, J. Appl. Math. Comput., 66 (2021), 149–165. https://doi.org/10.1007/s12190-020-01430-8 doi: 10.1007/s12190-020-01430-8
    [28] M. Ahsan, Z. Zahid, S. Zafar, A. Rafiq, M. Sarwar Sindhu, M. Umar, Computing the edge metric dimension of convex polytopes related graphs, J. Math. Comput. Sci., 22 (2021), 174–188. http://dx.doi.org/10.22436/jmcs.022.02.08 doi: 10.22436/jmcs.022.02.08
    [29] A. Ahmad, M. Baca, S. Sultan, Minimal doubly resolving sets of necklace graph, Math. Rep., 20 (2018), 123–129.
    [30] T. Vetrik, A. Ahmad, Computing the metric dimension of the categorial product of graphs, Int. J. Comput. Math., 94 (2017), 363–371. https://doi.org/10.1080/00207160.2015.1109081 doi: 10.1080/00207160.2015.1109081
    [31] A. Ahmad, S. Sultan, On minimal doubly resolving sets of circulant graphs, Acta Mech. Slovaca, 20 (2017), 6–11. https://doi.org/10.21496/ams.2017.002 doi: 10.21496/ams.2017.002
    [32] A. Ahmad, M. Imran, O. Al-Mushayt, S. A. H. Bokhary, On the metric dimension of barcycentric subdivision of cayley graphs $cay(z_{n}\oplus z_{m})$, Miskolc Math. Notes, 16 (2015), 637–646. https://doi.org/10.18514/MMN.2015.1192 doi: 10.18514/MMN.2015.1192
    [33] J. B. Liu, M. F. Nadeem, M. Azeem, Bounds on the partition dimension of convex polytopes, Comb. Chem. Throughput Screening, 25 (2020), 547–553. https://doi.org/10.2174/1386207323666201204144422 doi: 10.2174/1386207323666201204144422
    [34] M. Azeem, M. Imran, M. F. Nadeem, Sharp bounds on partition dimension of hexagonal mobius ladder, J. King Saud Univ. Sci., 34 (2022), 101779. https://doi.org/10.1016/j.jksus.2021.101779 doi: 10.1016/j.jksus.2021.101779
    [35] N. Mehreen, R. Farooq, S. Akhter, On partition dimension of fullerene graphs, AIMS Math., 3 (2018), 343–352. http://dx.doi.org/10.3934/Math.2018.3.343 doi: 10.3934/Math.2018.3.343
    [36] A. Shabbir, M. Azeem. On the partition dimension of tri-hexagonal alpha-boron nanotube, IEEE Access, 9 (2021), 55644–55653. https://doi.org/10.1109/ACCESS.2021.3071716 doi: 10.1109/ACCESS.2021.3071716
    [37] M. K. Siddiqui, M. Imran, Computing the metric and partition dimension of h-naphtalenic and vc5c7 nanotubes, J. Optoelectron. Adv. Mater., 17 (2015), 790–794.
    [38] H. M. A. Siddiqui, M. Imran, Computing metric and partition dimension of 2-dimensional lattices of certain nanotubes, J. Comput. Theor. Nanosci., 11 (2014), 2419–2423. https://doi.org/10.1166/jctn.2014.3656 doi: 10.1166/jctn.2014.3656
    [39] E. C. M. Maritz, T. Vetrík, The partition dimension of circulant graphs, Quaestiones Math., 41 (2018), 49–63. https://doi.org/10.2989/16073606.2017.1370031 doi: 10.2989/16073606.2017.1370031
    [40] Z. Hussain, S. Kang, M. Rafique, M. Munir, U. Ali, A. Zahid, et al., Bounds for partition dimension of m-wheels, Open Phys., 17 (2019), 340–344. https://doi.org/10.1515/phys-2019-0037 doi: 10.1515/phys-2019-0037
    [41] Amrullah, E. Baskoro, R. Simanjuntak, S. Uttunggadewa, The partition dimension of a subdivision of a complete graph, Procedia Comput. Sci., 74 (2015), 53–59. https://doi.org/10.1016/j.procs.2015.12.075 doi: 10.1016/j.procs.2015.12.075
    [42] C. Wei, M. F. Nadeem, H. M. A. Siddiqui, M. Azeem, J. B. Liu, A. Khalil, On partition dimension of some cycle-related graphs, Mathematical Problems in Engineering, 2021 (2021), 4046909. https://doi.org/10.1155/2021/4046909 doi: 10.1155/2021/4046909
    [43] J. Santoso, Darmaji, The partition dimension of cycle books graph, J. Phys. Conf. Ser., 974 (2018), 012070.
    [44] Darmaji, R. Alfarisi, On the partition dimension of comb product of path and complete graph, in AIP Conference Proceedings, (2017), 020038. https://doi.org/10.1063/1.4994441
    [45] A. Nadeem, A. Kashif, S. Zafar, Z. Zahid, On 2-partition dimension of the circulant graphs, J. Intell. Fuzzy Syst., 40 (2021), 9493–9503. https://doi.org/10.3233/JIFS-201982 doi: 10.3233/JIFS-201982
    [46] P.J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congr. Numerantium, 14 (1975), 549–559.
    [47] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Comb., 2 (1976), 191–195.
    [48] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of graph, Aequationes Math., 59 (2000), 45–54. https://doi.org/10.1007/PL00000127 doi: 10.1007/PL00000127
    [49] G. Chartrand, L. Eroh, M. A. O. Johnson, R. Ortrud, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0
    [50] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229.
    [51] A. Sebö, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 383–393. https://doi.org/10.1287/moor.1030.0070 doi: 10.1287/moor.1030.0070
    [52] M. F. Nadeem, M. Hassan, M. Azeem, S. Ud-Din Khan, M. R. Shaik, M. A. F. Sharaf, et al., Application of resolvability technique to investigate the different polyphenyl structures for polymer industry, J. Chem., 2021 (2021), 6633227. https://doi.org/10.1155/2021/6633227 doi: 10.1155/2021/6633227
    [53] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, et al., On the metric dimension of cartesian product of graphs, SIAM J. Discrete Math., 21 (2007), 423–441. https://doi.org/10.1137/050641867 doi: 10.1137/050641867
    [54] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, et al., Network discovery and verification, IEEE J. Selected Areas in Commun., 24 (2006), 2168–2181. https://doi.org/10.1109/JSAC.2006.884015 doi: 10.1109/JSAC.2006.884015
    [55] V. Chvatal, Mastermind, Combinatorica, 3 (1983), 325–329. https://doi.org/10.1007/BF02579188 doi: 10.1007/BF02579188
    [56] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Visual Graphics Image Process., 25 (1984), 113–121. https://doi.org/10.1016/0734-189X(84)90051-3 doi: 10.1016/0734-189X(84)90051-3
    [57] C. Hernando, M. Mora, P. J. Slater, D. R. Wood, Fault-tolerant metric dimension of graphs, Convexity Discrete Struct., 5 (2008), 81–85.
    [58] J. Wei, M. Cancan, A. Rehman, M. Siddiqui, M. Nasir, M. Younas, et al., On topological indices of remdesivir compound used in treatment of corona virus (COVID 19), Polycyclic Aromat. Compd., 2021 (2021), 1–19. https://doi.org/10.1080/10406638.2021.1887299 doi: 10.1080/10406638.2021.1887299
    [59] S. Mondal, N. De, A. Pal, Topological indices of some chemical structures applied for the treatment of COVID-19 patients, Polycyclic Aromat. Compd., 42 (2022), 1–15. https://doi.org/10.1080/10406638.2020.1770306 doi: 10.1080/10406638.2020.1770306
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1748) PDF downloads(84) Cited by(3)

Article outline

Figures and Tables

Figures(7)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog