Research article Special Issues

T-S fuzzy observer-based adaptive tracking control for biological system with stage structure

  • Academic editor: Yanping Ma
  • Received: 09 March 2022 Revised: 21 May 2022 Accepted: 06 June 2022 Published: 04 July 2022
  • In this paper, the T-S fuzzy observer-based adaptive tracking control of the biological system with stage structure is studied. First, a biological model with stage structure is established, and its stability at the equilibrium points is analyzed. Considering the impact of reducing human activities on the biological population, an adaptive controller is applied to the system. Since it is difficult to measure density directly, a fuzzy state observer is designed, which is used to estimate the density of biological population. At the same time, the density of predators can track the desired density through the adjustment of adaptive controller. The stability of the biological system is guaranteed, and the observer error and tracking error are shown to converge to zero. Finally, the effectiveness of the proposed adaptive control method is verified by numerical simulation.

    Citation: Yi Zhang, Yue Song, Song Yang. T-S fuzzy observer-based adaptive tracking control for biological system with stage structure[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 9709-9729. doi: 10.3934/mbe.2022451

    Related Papers:

  • In this paper, the T-S fuzzy observer-based adaptive tracking control of the biological system with stage structure is studied. First, a biological model with stage structure is established, and its stability at the equilibrium points is analyzed. Considering the impact of reducing human activities on the biological population, an adaptive controller is applied to the system. Since it is difficult to measure density directly, a fuzzy state observer is designed, which is used to estimate the density of biological population. At the same time, the density of predators can track the desired density through the adjustment of adaptive controller. The stability of the biological system is guaranteed, and the observer error and tracking error are shown to converge to zero. Finally, the effectiveness of the proposed adaptive control method is verified by numerical simulation.



    加载中


    [1] C. Liu, L. P. Wang, Q. L. Zhang, Y. Yan, Dynamical analysis in a bioeconomic phytoplankton zooplankton system with double time delays and environmental stochasticity, Phys. A Stat. Mech. Appl., 482 (2017), 682–698. https://doi.org/10.1016/j.physa.2017.04.104 doi: 10.1016/j.physa.2017.04.104
    [2] Q. Liu, D. Q. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Dynamical behavior of a stochastic predator-prey model with stage structure for prey, Stochastic Anal. Appl., 38 (2020), 647–667. https://doi.org/10.1080/07362994.2019.1710188 doi: 10.1080/07362994.2019.1710188
    [3] X. Y. Meng, H. F. Huo, X. B. Zhang, Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey, J. Appl. Math. Comput., 60 (2019), 1–25. https://doi.org/10.1007/s12190-018-1201-0 doi: 10.1007/s12190-018-1201-0
    [4] A. Ruiz-Herrera, Attraction to equilibria in stage-structured predator prey models and bio-control problems, J. Dyn. Diff. Equations, 31 (2019), 435–450. https://doi.org/10.1007/s10884-018-9673-z doi: 10.1007/s10884-018-9673-z
    [5] K. S. Mathur, A. Srivastava, J. Dhar, Dynamics of a stage-structured SI model for food adulteration with media-induced response function, J. Eng. Math., 127 (2021), 1. https://doi.org/10.1007/s10665-021-10089-4 doi: 10.1007/s10665-021-10089-4
    [6] G. Q. Sun, S. F. Wang, M. T. Li, L. Li, J. Zhang, W. Zhang, et al., Transmission dynamics of COVID-19 in Wuhan, China: effects of lockdown and medical resources, Nonlinear Dyn., 101 (2020), 1981–1993. https://doi.org/10.1007/s11071-020-05770-9 doi: 10.1007/s11071-020-05770-9
    [7] M. C. Wang, F. Liu, M. N. Zheng, Air quality improvement from COVID-19 lockdown: evidence from China, Air Qual. Atmos. Health, 14 (2021), 591–604. https://doi.org/10.1007/s11869-020-00963-y doi: 10.1007/s11869-020-00963-y
    [8] H. Lau, V. Khosrawipour, P. Kocbach, A. Mikolajczyk, J. Schubert, J. Bania, et al., The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China, Int. Soc. Travel Med., 27 (2020), taaa037. https://doi.org/10.1093/jtm/taaa037 doi: 10.1093/jtm/taaa037
    [9] Z. B. Sun, H. Zhang, Y. F. Yang, H. Wan, Y. X. Wang, Impacts of geographic factors and population density on the COVID-19 spreading under the lockdown policies of China, Sci. Total Environ., 746 (2020), 141347. https://doi.org/10.1016/j.scitotenv.2020.141347 doi: 10.1016/j.scitotenv.2020.141347
    [10] A. Rajaei, A. Vahidi-Moghaddam, A. Chizfahm, M. Sharifi, Control of malaria outbreak using a non-linear robust strategy with adaptive gains, IET Control Theory Appl., 13 (2019), 2308–2317. https://doi.org/10.1049/iet-cta.2018.5292 doi: 10.1049/iet-cta.2018.5292
    [11] M. Sharifi, H. Moradi, Nonlinear robust adaptive sliding mode control of influenza epidemic in the presence of uncertainty, J. Process Control, 56 (2017), 48–57. https://doi.org/10.1016/j.jprocont.2017.05.010 doi: 10.1016/j.jprocont.2017.05.010
    [12] X. Zhang, L. Liu, Y. J. Liu, Adaptive fuzzy fault-tolerant control of seat active suspension systems with actuator fault, IET Control Theory Appl., 15 (2021), 1104–1114. https://doi.org/10.1049/cth2.12107 doi: 10.1049/cth2.12107
    [13] S. Q. Gao, J. K. Liu, Adaptive fault-tolerant vibration control of a wind turbine blade with actuator stuck, Int. J. Control, 93 (2020), 713–724. https://doi.org/10.1080/00207179.2018.1484572 doi: 10.1080/00207179.2018.1484572
    [14] J. P. Zhao, S. C. Tong, Y. Li, Observer-based fuzzy adaptive control for MIMO nonlinear systems with non-constant control gain and input delay, IET Control Theory Appl., 15 (2021), 1488–1505. https://doi.org/10.1049/cth2.12138 doi: 10.1049/cth2.12138
    [15] L. L. Zhang, B. Chen, C. Lin, Y. Shang, Fuzzy adaptive finite-time consensus tracking control for nonlinear multi-agent systems, Int. J. Syst. Sci., 52 (2021), 1346–1358. https://doi.org/10.1080/00207721.2020.1856450 doi: 10.1080/00207721.2020.1856450
    [16] Y. K. Yang, Y. G. Niu, Fixed-time adaptive fuzzy control for uncertain non-linear systems under event-triggered strategy, IET Control Theory Appl., 14 (2020), 1845–1854. https://doi.org/ 10.1049/iet-cta.2019.1274 doi: 10.1049/iet-cta.2019.1274
    [17] C. C. Sun, G. F. Gong, H. Y. Yang, Sliding mode control with adaptive fuzzy immune feedback reaching law, Int. J. Control, 18 (2020), 363–373. https://doi.org/10.1007/s12555-019-0285-0 doi: 10.1007/s12555-019-0285-0
    [18] C. V. Kien, N. N. Son, H. P. H. Anh, Adaptive fuzzy sliding mode control for nonlinear uncertain SISO system optimized by differential evolution algorithm, Int. J. Fuzzy Syst., 21 (2019), 755–768. https://doi.org/10.1007/s40815-018-0558-4 doi: 10.1007/s40815-018-0558-4
    [19] L. Y. Zhu, T. S. Li, R. H. Yu, Y. Wu, J. Ning, Observer-based adaptive fuzzy control for intelligent ship autopilot with input saturation, Int. J. Fuzzy Syst., 22 (2020), 1416–1429. https://doi.org/10.1007/s40815-020-00880-3 doi: 10.1007/s40815-020-00880-3
    [20] J. Na, Y. B. Huang, X. Wu, S. F. Su, G. Li, Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay, IEEE Trans. Cybern., 50 (2020), 2639–2650. https://doi.org/10.1109/TCYB.2019.2894724 doi: 10.1109/TCYB.2019.2894724
    [21] H. Y. Yue, J. M. Li, J. R. Shi, W. Yang, Adaptive fuzzy tracking control for stochastic nonlinear systems with time-varying input delays using the quadratic functions, Int. J. Uncertainty Fuzziness Knowl. Based Syst., 26 (2018), 109–142. https://doi.org/10.1142/S0218488518500071 doi: 10.1142/S0218488518500071
    [22] L. Ma, X. Huo, X. D. Zhao, G. D. Zong, Adaptive fuzzy tracking control for a class of uncertain switched nonlinear systems with multiple constraints: a small-gain approach, Int. J. Fuzzy Syst., 21 (2019), 2609–2624. https://doi.org/10.1007/s40815-019-00708-9 doi: 10.1007/s40815-019-00708-9
    [23] Y. H. Hu, L. Zhao, L. B. Wu, N. N. Zhao, Y. J. Zhang, Adaptive event-triggered fuzzy tracking control of nonlinear systems with dead-zones and unmeasurable states, Int. J. Syst. Sci., 51 (2020), 3251–3268. https://doi.org/10.1080/00207721.2020.1814445 doi: 10.1080/00207721.2020.1814445
    [24] B. M. Li, J. W. Xia, H. S. Zhang, H. Shen, Z. Wang, Event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems, J. Franklin Inst., 357 (2020), 9505–9522. https://doi.org/10.1016/j.jfranklin.2020.07.023 doi: 10.1016/j.jfranklin.2020.07.023
    [25] Y. Cao, Z. C. Wang, F. Liu, P. Li, G. Xie, Bio-inspired speed curve optimization and sliding mode tracking control for subway trains, IEEE Trans. Veh. Technol., 68 (2019), 6331–6342. https://doi.org/10.1109/TVT.2019.2914936 doi: 10.1109/TVT.2019.2914936
    [26] Z. G. Liu, B. H. Li, T. Jiao, L. R. Xue, Adaptive tracking control of uncertain nonlinear system with time delays, external disturbances and dead-zone input, Int. J. Syst. Sci., 51 (2020), 1987–2004. https://doi.org/10.1080/00207721.2020.1783021 doi: 10.1080/00207721.2020.1783021
    [27] C. J. Xi, J. X. Dong, Adaptive exact sliding tracking control of high-order strict-feedback systems with mismatched nonlinearities and external disturbances, Int. J. Robust Nonlinear Control, 30 (2020), 8228–8243. https://doi.org/10.1002/rnc.5231 doi: 10.1002/rnc.5231
    [28] K. W. Xia, Y. H. Eun, T. Y. Lee, S. Y. Park, Integrated adaptive control for spacecraft attitude and orbit tracking using disturbance observer, Int. J. Aeronaut. Space Sci., 22 (2021), 936–947. https://doi.org/10.1007/s42405-021-00359-x doi: 10.1007/s42405-021-00359-x
    [29] M. Li, Y. Chen, Y. Z. Liu, Adaptive disturbance observer-based event-triggered fuzzy control for nonlinear system, Inf. Sci., 575 (2021), 485–498. https://doi.org/10.1016/j.ins.2021.06.055 doi: 10.1016/j.ins.2021.06.055
    [30] W. H. Zhang, W. Wei, Disturbance-observer-based finite-time adaptive fuzzy control for non-triangular switched nonlinear systems with input saturation, Inf. Sci., 561 (2021), 152–167. https://doi.org/10.1016/j.ins.2021.01.026 doi: 10.1016/j.ins.2021.01.026
    [31] Q. L. Zhang, C. Liu, X. Zhang, Complexity, Analysis and Control of Singular Biological Systems, Springer-Verlag, London, 2012. https://doi.org/10.1007/978-1-4471-2303-3
    [32] Y. Zhang, Z. H. Shi, Sliding mode control for uncertain T-S fuzzy singular biological economic system, IEEE Access, 7 (2019), 14387–14395. https://doi.org/10.1109/ACCESS.2019.2891821 doi: 10.1109/ACCESS.2019.2891821
    [33] S. Hwang, H. S. Kim, Extended disturbance observer-based integral sliding mode control for nonlinear system via T-S fuzzy model, IEEE Access, 8 (2020), 116090–116105. https://doi.org/10.1109/ACCESS.2020.3004241 doi: 10.1109/ACCESS.2020.3004241
    [34] Z. J. Wu, Y. Q. Xia, X. J. Xie, Stochastic barbalat's lemma and its applications, IEEE Trans. Autom. Control, 57 (2012), 1537–1543. https://doi.org/10.1109/TAC.2011.2175071 doi: 10.1109/TAC.2011.2175071
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1638) PDF downloads(110) Cited by(1)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog