This paper discusses a class of fractional Langevin equations on a star graph with mixed boundary conditions. Using Schaefer's fixed point theorem and Banach contraction mapping principle, the existence and uniqueness of solutions are established. Finally, two examples are constructed to illustrate the application of the obtained results. This study provides new results that enrich the existing literature on the fractional boundary value problem for graphs.
Citation: Wei Zhang, Jifeng Zhang, Jinbo Ni. Existence and uniqueness results for fractional Langevin equations on a star graph[J]. Mathematical Biosciences and Engineering, 2022, 19(9): 9636-9657. doi: 10.3934/mbe.2022448
This paper discusses a class of fractional Langevin equations on a star graph with mixed boundary conditions. Using Schaefer's fixed point theorem and Banach contraction mapping principle, the existence and uniqueness of solutions are established. Finally, two examples are constructed to illustrate the application of the obtained results. This study provides new results that enrich the existing literature on the fractional boundary value problem for graphs.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Ltd., 204 (2006), 1–523. https://doi.org/10.1016/S0304-0208(06)80001-0 |
[2] | X. Zheng, H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58 (2020), 330–352. https://doi.org/10.1137/19M1245621 doi: 10.1137/19M1245621 |
[3] | V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equations, 22 (2006), 558–576. https://doi.org/10.1002/num.20112 doi: 10.1002/num.20112 |
[4] | B. Ahmad, J. Henderson, R. Luca, Boundary Value Problems for Fractional Differential Equations and Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 9 (2021). https://doi.org/10.1142/11942 |
[5] | B. Ahmad, M. Alghanmi, A. Alsaedi, J. J. Nieto, Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions, Appl. Math. Lett., 116 (2021), 1–10. https://doi.org/10.1016/j.aml.2021.107018 doi: 10.1016/j.aml.2021.107018 |
[6] | R. Luca, On a class of nonlinear singular Riemann-Liouville fractional differential equations, Results Math., 73 (2018), 1–15. https://doi.org/10.1007/s00025-018-0887-5 doi: 10.1007/s00025-018-0887-5 |
[7] | R. Luca, Positive solutions for a system of fractional differential equations with $p$-Laplacian operator and multi-point boundary conditions, Nonlinear Anal. Model. Control, 23 (2018), 771–801. https://doi.org/10.15388/NA.2018.5.8 doi: 10.15388/NA.2018.5.8 |
[8] | G. Lumer, Connecting of local operators and evolution equations on networks, in Potential Theory Copenhagen, Lect. Notes Math., Springer, Berlin, Heidelberg, 787 (1979), 219–234. https://doi.org/10.1007/BFb0086338 |
[9] | A. I. Vol'pert, Differential equations on graphs, Math. Model. Nat. Phenom., 10 (2015), 6–15. https://doi.org/10.1051/mmnp/201510502 doi: 10.1051/mmnp/201510502 |
[10] | J. R. Graef, L. Kong, M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem on a graph, Fract. Calc. Appl. Anal., 17 (2014), 499–510. https://doi.org/10.2478/s13540-014-0182-4 doi: 10.2478/s13540-014-0182-4 |
[11] | V. Mehandiratta, M. Mehra, G. Leugering, Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph, J. Math. Anal. Appl., 477 (2019), 1243–1264. https://doi.org/10.1016/j.jmaa.2019.05.011 doi: 10.1016/j.jmaa.2019.05.011 |
[12] | W. Zhang, W. Liu, Existence and Ulam's type stability results for a class of fractional boundary value problems on a star graph, Math. Methods Appl. Sci., 43 (2020), 8568–8594. https://doi.org/10.1002/mma.6516 doi: 10.1002/mma.6516 |
[13] | S. Etemad, S. Rezapour, On the existence of solutions for fractional boundary value problems on the ethane graph, Adv. Differ. Equations, 2020 (2020), 1–20. https://doi.org/10.1186/s13662-020-02736-4 doi: 10.1186/s13662-020-02736-4 |
[14] | D. Baleanu, S. Etemad, H. Mohammadi, S. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul., 100 (2021), 1–13. https://doi.org/10.1016/j.cnsns.2021.105844 doi: 10.1016/j.cnsns.2021.105844 |
[15] | W. Ali, A. Turab, J. J. Nieto, On the novel existence results of solutions for a class of fractional boundary value problems on the cyclohexane graph, J. Inequal. Appl., 2022 (2022), 1–19. https://doi.org/10.1186/s13660-021-02742-4 doi: 10.1186/s13660-021-02742-4 |
[16] | V. Mehandiratta, M. Mehra, G. Leugering, Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge: A study of fractional calculus on metric graph, Networks Heterogen. Media, 16 (2021), 155–185. https://doi.org/10.3934/nhm.2021003 doi: 10.3934/nhm.2021003 |
[17] | A. Turab, W. Sintunavarat, The novel existence results of solutions for a nonlinear fractional boundary value problem on the ethane graph, Alexandria Eng. J., 60, 2021, 5365–5374. https://doi.org/10.1016/j.aej.2021.04.020 |
[18] | G. Mophou, G. Leugering, P. S. Fotsing, Optimal control of a fractional Sturm-Liouville problem on a star graph, Optimization, 70 (2021), 659–687. https://doi.org/10.1080/02331934.2020.1730371 doi: 10.1080/02331934.2020.1730371 |
[19] | A. Turab, Z. D. Mitrović, A. Savić, Existence of solutions for a class of nonlinear boundary value problems on the hexasilinane graph, Adv. Differ. Equations, 2021 (2021), 1–20. https://doi.org/10.1186/s13662-021-03653-w doi: 10.1186/s13662-021-03653-w |
[20] | W. Coffey, Y. P. Kalmykov, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 27 (2012). https://doi.org/10.1142/8195 |
[21] | R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001. |
[22] | H. Fazli, J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos Solitons Fractals, 114 (2018), 332–337. https://doi.org/10.1016/j.chaos.2018.07.009 doi: 10.1016/j.chaos.2018.07.009 |
[23] | A. Salem, F. Alzahrani, B. Alghamdi, Langevin equation involving two fractional orders with three-point boundary conditions, Differ. Integr. Equations, 33 (2020), 163–180. |
[24] | M. M. Matar, J. Alzabut, J. M. Jonnalagadda, A coupled system of nonlinear Caputo-Hadamard Langevin equations associated with nonperiodic boundary conditions, Math. Methods Appl. Sci., 44 (2021), 2650–2670. https://doi.org/10.1002/mma.6711 doi: 10.1002/mma.6711 |
[25] | Y. Liu, R. Agarwal, Existence of solutions of BVPs for impulsive fractional Langevin equations involving Caputo fractional derivatives, Turk. J. Math., 43 (2019), 2451–2472. https://doi.org/10.3906/mat-1905-23 doi: 10.3906/mat-1905-23 |
[26] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 198 (1999), 1–340. https://doi.org/10.1016/s0076-5392(99)x8001-5 |
[27] | A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. https://doi.org/10.1007/978-0-387-21593-8 |