Research article Special Issues

Dynamics of a stochastic COVID-19 epidemic model considering asymptomatic and isolated infected individuals


  • Received: 05 January 2022 Revised: 20 February 2022 Accepted: 03 March 2022 Published: 21 March 2022
  • Coronavirus disease (COVID-19) has a strong influence on the global public health and economics since the outbreak in $ 2020 $. In this paper, we study a stochastic high-dimensional COVID-19 epidemic model which considers asymptomatic and isolated infected individuals. Firstly we prove the existence and uniqueness for positive solution to the stochastic model. Then we obtain the conditions on the extinction of the disease as well as the existence of stationary distribution. It shows that the noise intensity conducted on the asymptomatic infections and infected with symptoms plays an important role in the disease control. Finally numerical simulation is carried out to illustrate the theoretical results, and it is compared with the real data of India.

    Citation: Jiying Ma, Wei Lin. Dynamics of a stochastic COVID-19 epidemic model considering asymptomatic and isolated infected individuals[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 5169-5189. doi: 10.3934/mbe.2022242

    Related Papers:

  • Coronavirus disease (COVID-19) has a strong influence on the global public health and economics since the outbreak in $ 2020 $. In this paper, we study a stochastic high-dimensional COVID-19 epidemic model which considers asymptomatic and isolated infected individuals. Firstly we prove the existence and uniqueness for positive solution to the stochastic model. Then we obtain the conditions on the extinction of the disease as well as the existence of stationary distribution. It shows that the noise intensity conducted on the asymptomatic infections and infected with symptoms plays an important role in the disease control. Finally numerical simulation is carried out to illustrate the theoretical results, and it is compared with the real data of India.



    加载中


    [1] A. Din, A. Khan, D. Baleanu, Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model, Chaos Solitons Fractals, 139 (2020), 110036. https://doi.org/10.1016/j.chaos.2020.110036 doi: 10.1016/j.chaos.2020.110036
    [2] K. Chatterjee, K. Chatterjee, A. Kumar, S. Shankar, Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model, Med. J. Armed. Forces. India, 76 (2020), 147–155. https://doi.org/10.1016/j.mjafi.2020.03.022 doi: 10.1016/j.mjafi.2020.03.022
    [3] World Health Organization, WHO Coronavirus (COVID-19) dashboard: Overview. Available from: https://covid19.who.int/.
    [4] Y. He, S. Gao, D. Xie, An SIR epidemic model with time-varying pulse control schemes and saturated infectious force, Appl. Math. Model., 37 (2013), 8131–8140. http://dx.doi.org/10.1016/j.apm.2013.03.035 doi: 10.1016/j.apm.2013.03.035
    [5] M. Erdem, M. Safan, C. Castillo-Chavez, Mathematical analysis of an SIQR influenza model with imperfect quarantine, Bull. Math. Biol., 79 (2017), 1612–1636. https://doi.org/10.1007/s11538-017-0301-6 doi: 10.1007/s11538-017-0301-6
    [6] H. Hethcote, Z. Ma, S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180 (2002), 141–160. https://doi.org/10.1016/s0025-5564(02)00111-6 doi: 10.1016/s0025-5564(02)00111-6
    [7] X. Meng, S. Zhao, T. Feng, T. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433 (2016), 227–242. https://doi.org/10.1016/j.jmaa.2015.07.056 doi: 10.1016/j.jmaa.2015.07.056
    [8] A. Din, Y. Li, M. A. Shah, The complex dynamics of hepatitis B infected individuals with optimal control, J. Syst. Sci. Complex., 34 (2021), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0 doi: 10.1007/s11424-021-0053-0
    [9] A. Din, T. Khan, Y. Li, H. Tahir, A. Khan, W. A. Khan, Mathematical analysis of dengue stochastic epidemic model, Results Phys., 20 (2021), 103719. https://doi.org/10.1016/j.rinp.2020.103719 doi: 10.1016/j.rinp.2020.103719
    [10] D. Adak, A. Majumder, N. Bairagi, Mathematical perspective of Covid-19 pandemic: disease extinction criteria in deterministic and stochastic models, Chaos Solitons Fractals, 142 (2021), 110381. https://doi.org/10.1016/j.chaos.2020.110381 doi: 10.1016/j.chaos.2020.110381
    [11] N. P. Rachaniotis, T. K. Dasaklis, F. Fotopoulos, P. Tinios, A two-phase stochastic dynamic model for COVID-19 mid-term policy recommendations in Greece: a pathway towards mass vaccination, Int. J. Environ. Res. Public Health, 18 (2021), 2497. https://doi.org/10.3390/ijerph18052497 doi: 10.3390/ijerph18052497
    [12] E. B. Postnikov, Estimation of COVID-19 dynamics "on a back-of-envelope": does the simplest SIR model provide quantitative parameters and predictions?, Chaos Solitons Fractals, 135 (2020), 109841. https://doi.org/10.1016/j.chaos.2020.109841 doi: 10.1016/j.chaos.2020.109841
    [13] S. Khajanchi, K. Sarkar, Forecasting the daily and cumulative number of cases for the COVID-19 pandemic in India, Chaos, 30 (2020), 071101. https://doi.org/10.1063/5.0016240 doi: 10.1063/5.0016240
    [14] T. Chen, J. Rui, Q. Wang, Z. Zhao, J. Cui, L. Yin, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect. Dis. Pov., 9 (2020), 24. https://doi.org/10.1186/s40249-020-00640-3 doi: 10.1186/s40249-020-00640-3
    [15] H. A. Adekola, I. A. Adekunle, H. O. Egberongbe, S. A. Onitilo, I. N. Abdullahi, Mathematical modeling for infectious viral disease: The COVID-19 perspective, J. Public Affairs, 20 (2020), e2306. https://doi.org/10.1002/pa.2306 doi: 10.1002/pa.2306
    [16] R. U. Din, A. R. Seadawy, K. Shah, A. Ullah, D. Baleanu, Study of global dynamics of COVID-19 via a new mathematical model, Results Phys., 19 (2020), 103468. https://doi.org/10.1016/j.rinp.2020.103468 doi: 10.1016/j.rinp.2020.103468
    [17] A. J. Kucharski, T. W. Russell, C. Diamond, Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4 doi: 10.1016/S1473-3099(20)30144-4
    [18] J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A Modeling Study, Lancet, 395 (2020), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 doi: 10.1016/S0140-6736(20)30260-9
    [19] A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos Solitons Fractals, 141 (2020), 110286. https://doi.org/10.1016/j.chaos.2020.110286 doi: 10.1016/j.chaos.2020.110286
    [20] A. Meiksin, Using the SEIR model to constrain the role of contaminated fomites in spreading an epidemic: An application to COVID-19 in the UK, Math. Biosci. Eng., 19 (2022), 3564–3590. https://doi.org/10.3934/mbe.2022164 doi: 10.3934/mbe.2022164
    [21] I. F. Mello, L. Squillante, G. O. Gomes, A. C. Seridonio, M. de Souza, Epidemics, the Ising-model and percolation theory: A comprehensive review focused on Covid-19, Physica A, 573 (2021), 125963. https://doi.org/10.1016/j.physa.2021.125963 doi: 10.1016/j.physa.2021.125963
    [22] J. Guan, Y. Wei, Y. Zhao, F. Chen, Modeling the transmission dynamics of COVID-19 epidemic: a systematic review, J. Biomed. Res., 34 (2020), 422–430. https://doi.org/10.7555/JBR.34.20200119 doi: 10.7555/JBR.34.20200119
    [23] K. Sarkar, S. Khajanchi, J. J. Nieto, Modeling and forecasting the COVID-19 pandemic in India, Chaos Solitons Fractals, 139 (2020), 110049. https://doi.org/10.1016/j.chaos.2020.110049 doi: 10.1016/j.chaos.2020.110049
    [24] J. R. Beddington, R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463–465. https://doi.org/10.1126/science.197.4302.463 doi: 10.1126/science.197.4302.463
    [25] J. Gu, Z. Gao, W. Li, Modeling of epidemic spreading with white Gaussian noise, Chin. Sci. Bull., 56 (2011), 3683–3688. https://doi.org/10.1007/s11434-011-4753-z doi: 10.1007/s11434-011-4753-z
    [26] A. M. Kareem, S. N. Al-Azzawi, A stochastic differential equations model for internal COVID-19 dynamics, J. Phys. Conf. Ser., 1818 (2021), 012121. https://doi.org/10.1088/1742-6596/1818/1/012121 doi: 10.1088/1742-6596/1818/1/012121
    [27] M. Mahrouf, A. Boukhouima, H. Zine, E. M. Lotfi, D. F. M. Torres, N. Yousfi, Modeling and forecasting of COVID-19 spreading by delayed stochastic differential equations, Axioms, 10 (2021), 18. https://doi.org/10.3390/axioms10010018 doi: 10.3390/axioms10010018
    [28] A. Din, Y. Li, $L\acute{e}vy$ noise impact on a stochastic hepatitis B epidemic model under real statistical data and its fractal-fractional Atangana-Baleanu order model, Phys. Scr., 96 (2021), 124008. https://doi.org/10.1088/1402-4896/ac1c1a doi: 10.1088/1402-4896/ac1c1a
    [29] A. Din, The stochastic bifurcation analysis and stochastic delayed optimal control for epidemic model with general incidence function, Chaos, 31 (2021), 123101. https://doi.org/10.1063/5.0063050 doi: 10.1063/5.0063050
    [30] X. Mao, Stochastic differential equations and their applications, Horwood, Chichester, 1997.
    [31] L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26–53. https://doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017
    [32] Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
    [33] D. Li, J. Cui, M. Liu, S. Liu, The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bull. Math. Biol., 77 (2015), 1705–1743. https://doi.org/10.1007/s11538-015-0101-9 doi: 10.1007/s11538-015-0101-9
    [34] Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463–7502. https://doi.org/10.1016/j.jde.2015.08.024 doi: 10.1016/j.jde.2015.08.024
    [35] T. Khan, G. Zaman, Y. El-Khatib, Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Results Phys., 24 (2021), 104004. https://doi.org/10.1016/j.rinp.2021.104004 doi: 10.1016/j.rinp.2021.104004
    [36] A. El Koufi, N. El Koufi, Stochastic differential equation model of Covid-19: Case study of Pakistan, Results Phys., 34 (2022), 105218. https://doi.org/10.1016/j.rinp.2022.105218 doi: 10.1016/j.rinp.2022.105218
    [37] R. Khasminskii, Stochastic stability of diferential equations, 2nd edition, Heidelberg, Berlin, 2012.
    [38] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2084) PDF downloads(140) Cited by(3)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog