Citation: Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu. Dynamics of epidemic models with asymptomatic infection and seasonal succession[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1407-1424. doi: 10.3934/mbe.2017073
[1] | [ M. E. Alexander,S. M. Moghadas, Bifurcation analysis of SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005): 1794-1816. |
[2] | [ R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, New York, 1991. |
[3] | [ J. Arino,F. Brauer,P. van den Driessche,J. Watmoughd,J. Wu, A model for influenza with vaccination and antiviral treatment, J. Theor. Biol., 253 (2008): 118-130. |
[4] | [ L. Bourouiba,A. Teslya,J. Wu, Highly pathogenic avian influenza outbreak mitigated by seasonal low pathogenic strains: insights from dynamic modeling, J. Theor. Biol., 271 (2011): 181-201. |
[5] | [ F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2001. |
[6] | [ J. M. Cushing, A juvenile-adult model with periodic vital rates, J. Math. Biol., 53 (2006): 520-539. |
[7] | [ O. Diekmann,J. A. P. Heesterbeek,J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in themodels for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990): 365-382. |
[8] | [ K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, Lecture Notes in Biomath, 11 (1976): 1-15, Berlin-Heidelberg-New York: Springer. |
[9] | [ D. J. D. Earn,P. Rohani,B. M. Bolker,B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 287 (2000): 667-670. |
[10] | [ Z. Guo,L. Huang,X. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 9 (2012): 97-110. |
[11] | [ H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000): 599-653. |
[12] | [ Y. Hsieh,J. Liu,Y. Tzeng,J. Wu, Impact of visitors and hospital staff on nosocomial transmission and spread to community, J. Theor. Biol., 356 (2014): 20-29. |
[13] | [ W. O. Kermack,A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. London A: Math., 115 (1927): 700-721. |
[14] | [ I. M. Longini,M. E. Halloran,A. Nizam,Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004): 623-633. |
[15] | [ R. Olinky,A. Huppert,L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol., 56 (2008): 827-839. |
[16] | [ I. B. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992): 473-491. |
[17] | [ H. L. Smith, Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17 (1983): 179-190. |
[18] | [ H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Univ. Press, 1995. |
[19] | [ L. Stone,R. Olinky,A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007): 533-536. |
[20] | [ Y. Tang,D. Huang,S. Ruan,W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008): 621-639. |
[21] | [ S. Towers,Z. Feng, Social contact patterns and control strategies for influenza in the elderly, Math. Biosci., 240 (2012): 241-249. |
[22] | [ S. Towers,K. Vogt Geisse,Y. Zheng,Z. Feng, Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model, J. Theor. Biol., 289 (2011): 259-268. |
[23] | [ P. Van den Driessche,J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29-48. |
[24] | [ W. Wang,S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004): 775-793. |
[25] | [ W. Wang,X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008): 699-717. |
[26] | [ D. Xiao, Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting, Discrete Contin. Dynam. Syst. -B, 21 (2016): 699-719. |
[27] | [ D. Xiao,S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007): 419-429. |
[28] | [ F. Zhang,X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007): 496-516. |
[29] | [ X. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. |