Research article Special Issues

RTPN method for cooperative interception of maneuvering target by gun-launched UAV


  • Received: 18 January 2022 Revised: 11 March 2022 Accepted: 14 March 2022 Published: 21 March 2022
  • According to the actual situation of gun-launched UAV intercepting "Low-slow-small" target and the specific maneuverability of gun-launched UAV, an enhanced real proportion guidance law (RTPN) guidance interception method is designed. The traditional RTPN method does not consider the saturation overload limit and the capture region of arbitrary maneuvering target. In addition, aiming at the measurement error and the dynamic response delay of the gun-launched UAV during the interception, the EKF data fusion track prediction algorithm is proposed. Simulation results show that the proposed method can effectively solve the problem.

    Citation: Jiguang Li, Mingyang Xie, Yanfei Dong, Hucheng Fan, Xin Chen, Gaomin Qu, Zhanfeng Wang, Peng Yan. RTPN method for cooperative interception of maneuvering target by gun-launched UAV[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 5190-5206. doi: 10.3934/mbe.2022243

    Related Papers:

  • According to the actual situation of gun-launched UAV intercepting "Low-slow-small" target and the specific maneuverability of gun-launched UAV, an enhanced real proportion guidance law (RTPN) guidance interception method is designed. The traditional RTPN method does not consider the saturation overload limit and the capture region of arbitrary maneuvering target. In addition, aiming at the measurement error and the dynamic response delay of the gun-launched UAV during the interception, the EKF data fusion track prediction algorithm is proposed. Simulation results show that the proposed method can effectively solve the problem.



    加载中


    [1] Z. Bai, K. Li, W. Su, L. Chen, Capture region of RTPN guidance law against arbitrarily maneuvering targets, Acta Aeronaut. Astronaut. Sin., 41 (2020), 323947. http://dx.doi.org/10.7527/S1000-6893.2020.23947 doi: 10.7527/S1000-6893.2020.23947
    [2] M. Ma, S. Song, Multi-missile cooperative guidance law for intercepting maneuvering target, Aero Weaponry, 28 (2021), 19–27. http://dx.doi.org/10.12132/ISSN.1673-5048.2021.0040 doi: 10.12132/ISSN.1673-5048.2021.0040
    [3] K. Li, H. Shin, A. Tsourdos, M. Tahk, Capturability of 3D PPN against lower-speed maneuvering target for homing phase, IEEE Trans. Aerosp. Electron. Syst., 56 (2019), 711–722. https://doi.org/10.1109/TAES.2019.2938601 doi: 10.1109/TAES.2019.2938601
    [4] S. Ghosh, D. Ghose, S. Raha, Capturability analysis of a 3-D retro-PN guidance law for higher speed nonmaneuvering targets, IEEE Trans. Control Syst. Technol., 22 (2014), 1864–1874. https://doi.org/10.1109/TCST.2013.2289014 doi: 10.1109/TCST.2013.2289014
    [5] K. Li, Y. Liang, W. Su, L. Chen, Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception, Sci. China: Technol. Sci., 61 (2018), 1161–1174. https://doi.org/10.1007/s11431-018-9310-5 doi: 10.1007/s11431-018-9310-5
    [6] S. Ghosh, D. Ghose, S. Raha, Composite guidance for impact angle control against higher speed targets, J. Guid. Control Dyn., 39 (2016), 98–117. https://doi.org/10.2514/1.G001232 doi: 10.2514/1.G001232
    [7] J. Zhou, H. Lei, F. Hou, W. Zhao, Capture region analysis of proportional navigation and retro proportional navigation guidance for hypersonic target interception, J. Astronaut., 39 (2018), 1003–1012. https://doi.org/10.3873/j.issn.10001328.2018.09.008 doi: 10.3873/j.issn.10001328.2018.09.008
    [8] R. Wang, S. Tang, Intercepting higher-speed targets using generalized relative biased proportional navigation, J. Northwest. Polytech. Univ., 37 (2019), 682–690. https://doi.org/10.1051/jnwpu/20193740682 doi: 10.1051/jnwpu/20193740682
    [9] K. Li, W. Su, L. Chen, Performance analysis of realistic true proportional navigation against maneuvering targets using Lyapunov-like approach, Aerosp. Sci. Technol., 69 (2017), 333–341. https://doi.org/10.1016/j.ast.2017.06.036 doi: 10.1016/j.ast.2017.06.036
    [10] K. Li, T. Zhang, L. Chen. Ideal proportional navigation for exoatmospheric interception, Chin. J. Aeronaut., 26 (2013), 976–985. https://doi.org/10.1016/j.cja.2013.06.007 doi: 10.1016/j.cja.2013.06.007
    [11] T. Wang, J. Zhou. Capture region analysis of three-dimensional ideal proportional navigation law, J. Northwest. Polytech. Univ., 25 (2007), 83–86.
    [12] F Tyan, Capture region of a GIPN guidance law for missile and target with bounded maneuverability, IEEE Trans. Aerosp. Electron. Syst., 47 (2011), 201–213. https://doi.org/10.1109/TAES.2011.5705670 doi: 10.1109/TAES.2011.5705670
    [13] K. Li, L. Chen, Y. Zhang, Dimension reduction method of true proportional navigation guidance law, J. Natl. Univ. Def. Technol., 34 (2012), 1–5.
    [14] Y. Liu, K. Li, L. Chen, Y. Liang, Novel augmented proportional navigation guidance law for mid-range autonomous rendezvous, Acta Astronaut., 162 (2019), 526–535. https://doi.org/10.1016/j.actaastro.2019.05.031 doi: 10.1016/j.actaastro.2019.05.031
    [15] K. Li, H. Shin, A. Tsourdos, Capturability of a sliding-mode guidance law with finite-time convergence, IEEE Trans. Aerosp. Electron. Syst., 56 (2020), 2312–2325. https://doi.org/10.1109/TAES.2019.2948519 doi: 10.1109/TAES.2019.2948519
    [16] T. Garai, S. Mukhopadhyay, D. Ghose, Approximate closed-form solutions of realistic true proportional navigation guidance using the Adomian decomposition method, Proc. Inst. Mech. Eng., Part G, 223 (2009), 189–199. https://doi.org/10.1243/09544100JAERO457 doi: 10.1243/09544100JAERO457
    [17] K. Li, H. Shin, A. Tsourdos, M. Tahk, Performance of 3-D PPN against arbitrarily maneuvering target for homing phase, IEEE Trans. Aerosp. Electron. Syst., 56 (2020), 78–91. https://doi.org/10.1109/TAES.2020.2987404 doi: 10.1109/TAES.2020.2987404
    [18] K. Li, Z. Bai, H. Shin, A. Tsourdos, M. Tahk, Capturability of 3D RTPN guidance law against true-arbitrarily maneuvering target with maneuverability limitation, Chin. J. Aeronaut., 2021. https://doi.org/10.1016/j.cja.2021.10.004 doi: 10.1016/j.cja.2021.10.004
    [19] C. D. Yang, C. C. Yang, Analytical solution of three-dimensional realistic true proportional navigation, J. Guid. Control Dyn., 19 (2012), 569–577. https://doi.org/10.2514/3.21659 doi: 10.2514/3.21659
    [20] J. Moon, K. Kim, Y. Kim, Design of missile guidance law via variable structure control, J. Guid. Control Dyn., 24 (2012), 659–664. https://doi.org/10.2514/2.4792 doi: 10.2514/2.4792
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1791) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog