Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

An efficient numerical method for a time-fractional telegraph equation


  • In this paper a time-fractional telegraph equation is considered. First the time-fractional telegraph equation is transformed into an integral-differential equation with a weakly singular kernel. Then an integral-difference discretization scheme on a graded mesh is developed to approximate the integral-differential equation. The possible singularity of the exact solution is taken into account in the convergence analysis. It is proved that the scheme is second-order convergent for both the spatial discretization and the time discretization. Numerical experiments confirm the validity of the theoretical results.

    Citation: Jian Huang, Zhongdi Cen, Aimin Xu. An efficient numerical method for a time-fractional telegraph equation[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217

    Related Papers:

    [1] M. Botros, E. A. A. Ziada, I. L. EL-Kalla . Semi-analytic solutions of nonlinear multidimensional fractional differential equations. Mathematical Biosciences and Engineering, 2022, 19(12): 13306-13320. doi: 10.3934/mbe.2022623
    [2] Yan Xie, Zhijun Liu, Ke Qi, Dongchen Shangguan, Qinglong Wang . A stochastic mussel-algae model under regime switching. Mathematical Biosciences and Engineering, 2022, 19(5): 4794-4811. doi: 10.3934/mbe.2022224
    [3] Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206
    [4] Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164
    [5] Zahra Eidinejad, Reza Saadati . Hyers-Ulam-Rassias-Kummer stability of the fractional integro-differential equations. Mathematical Biosciences and Engineering, 2022, 19(7): 6536-6550. doi: 10.3934/mbe.2022308
    [6] Reymundo Itzá Balam, Francisco Hernandez-Lopez, Joel Trejo-Sánchez, Miguel Uh Zapata . An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains. Mathematical Biosciences and Engineering, 2021, 18(1): 22-56. doi: 10.3934/mbe.2021002
    [7] Qiong Wu, Zhimin Yao, Zhouping Yin, Hai Zhang . Fin-TS and Fix-TS on fractional quaternion delayed neural networks with uncertainty via establishing a new Caputo derivative inequality approach. Mathematical Biosciences and Engineering, 2022, 19(9): 9220-9243. doi: 10.3934/mbe.2022428
    [8] Sebastian Builes, Jhoana P. Romero-Leiton, Leon A. Valencia . Deterministic, stochastic and fractional mathematical approaches applied to AMR. Mathematical Biosciences and Engineering, 2025, 22(2): 389-414. doi: 10.3934/mbe.2025015
    [9] Lin Zhang, Yongbin Ge, Xiaojia Yang . High-accuracy positivity-preserving numerical method for Keller-Segel model. Mathematical Biosciences and Engineering, 2023, 20(5): 8601-8631. doi: 10.3934/mbe.2023378
    [10] P. Auger, N. H. Du, N. T. Hieu . Evolution of Lotka-Volterra predator-prey systems under telegraph noise. Mathematical Biosciences and Engineering, 2009, 6(4): 683-700. doi: 10.3934/mbe.2009.6.683
  • In this paper a time-fractional telegraph equation is considered. First the time-fractional telegraph equation is transformed into an integral-differential equation with a weakly singular kernel. Then an integral-difference discretization scheme on a graded mesh is developed to approximate the integral-differential equation. The possible singularity of the exact solution is taken into account in the convergence analysis. It is proved that the scheme is second-order convergent for both the spatial discretization and the time discretization. Numerical experiments confirm the validity of the theoretical results.



    In this paper we study the following time-fractional telegraph equation (TFTE) [1,2,3]

    {DγC,tu(x,t)+aDγ1C,tu(x,t)+bu(x,t)=cuxx(x,t)+f(x,t),(x,t)(0,1)×(0,T],u(x,0)=ϕ1(x),  ut(x,0)=ϕ2(x),x[0,1],u(0,t)=ψ1(t),  u(1,t)=ψ2(t),t[0,T], (1.1)

    where 1<γ<2, a,b,c and T are given positive constants, f(x,t),ϕ1(x),ϕ2(x),ψ1(t) and ψ2(t) are given functions and satisfy the compatibility conditions, DγC,tu(x,t) and Dγ1C,tu(x,t) are the Caputo fractional derivatives of order γ and γ1 respectively. The Caputo fractional derivative DγC,tu(x,t) is defined by [4,Definition 2.2]

    DγC,tu(x,t)=1Γ(2γ)t0(ts)1γuss(x,s)ds.

    The Caputo operators DγC,t and Dγ1C,t have the following relationship

    DγC,tu(x,t)=1Γ(1(γ1))t0(ts)(γ1)sus(x,s)ds=Dγ1C,tut(x,t).

    Based on the above relationship, the TFTE (1.1) can be transformed into the following equivalent integral-differential equation as shown in [4,Lemma 6.2]

    {ut(x,t)+au(x,t)=aϕ1(x)+ϕ2(x)+1Γ(γ1)t0(ts)γ2[cuxx(x,s)bu(x,s)+f(x,s)]ds,(x,t)(0,1)×(0,T],u(x,0)=ϕ1(x),x[0,1],u(0,t)=ψ1(t),  u(1,t)=ψ2(t),t[0,T], (1.2)

    which simplifies the original problem to a certain extent. For the subsequent numerical discretization and error analysis, we assume

    |lf(x,t)tl|C(1+tγl),            l=0,1,2. (1.3)

    The TFTE (1.1) is used to describe some phenomena such as propagation of electric signals [5], acoustic waves in porous media [6], transport of neutron in a nuclear reactor [7], and hyperbolic heat transfer [8].

    There are a few numerical methods to solve the TFTE. Wang [9] developed a method in the reproducing kernel space by piecewise technique to solve the TFTE. Hosseini et al. [10] applied the radial basis functions and finite difference method to solve the TFTE. Kumar et al. [11] described a finite difference scheme for the generalized TFTE. Hashemi and Baleanu [12] utilized a combination of method of line and group preserving scheme to solve the TFTE. Wei et al. [13] discussed a fully discrete local discontinuous Galerkin finite element method for the TFTE. Sweilam [14] introduced the Sinc-Legendre collocation method for solving the TFTE. Mollahasani et al. [15] presented an operational method based on hybrid functions of Legendre polynomials and Block-Pulse-Functions for solving the TFTE. Hafez and Youssri [16] used a shifted Jacobi collocation scheme for a multidimensional TFTE. Bhrawy et al. [17] proposed an accurate and efficient spectral algorithm for the numerical solution of the two-sided space-time TFTE with three types of non-homogeneous boundary conditions. Youssri et al. [18,19] also developed numerical spectral Legendre approaches to solve the TFTEs. Bhrawy and Zaky [20] used a method based on the Jacobi tau approximation for solving multi-term time-space TFTE. In [2,3] B-spline collocation methods were applied to solve the TFTEs. In [21,22] wavelet methods were used to solve the TFTEs. But these papers only study the case that the solutions of the TFTEs are sufficiently smooth. Special treatment techniques, such as graded meshes [23,24,25,26,27] and mapped basis functions [28] reflecting the characteristics of the singularity of the exact solution, need to be used to solve the fractional differential equations.

    The aim of the present study is twofold. The first aim is to construct an integral-difference discretization scheme on a graded mesh to approximate the integral-differential equation with a weakly singular kernel transformed from the TFTE, which is a second-order convergence discretization scheme. The second aim is to take the possible singularity of the exact solution into account in the convergence analysis, where the singularity of the exact solution is reflected as

    |ku(x,t)xk|C,                      k=0,1,,4, (1.4)
    |l+mu(x,t)tlxm|C(1+tγl),      l=0,1,2,3,  and  m=0,1,2, (1.5)

    which can be referred in the literature [25,26,27,29] for details. We show that our discretization scheme on a graded mesh is second-order convergent for both the spatial discretization and the time discretization, although the exact solution of the TFTE may have singularity. Numerical experiments confirm the effectiveness of the theoretical results, and also verify that this scheme is more accurate than the methods given in [2,3].

    Remark 1.1 If b,c are variable coefficients and a is a variable coefficient with respect to x, the TFTE (1.1) can also be transformed into the same integral-differential equation as given in (1.2). If a is a variable coefficient with respect to t, we first approximate a with a piecewise linear interpolation function about t and then transform the approximate TFTE into an integral-differential equation as given in (1.2). If there is a nonlinear term in the TFTE, we first transform it into a linear equation by Newton iterative method and then transform it into an integral-differential equation as given in (1.2).

    Notation. Throughout the paper, C is used to indicate the positive constant independent of the mesh, and C in different places can represent different values. In order to simplify the notation, the representation gji=g(xi,tj) is introduced for any function g at the mesh point (xi,tj)(0,1)×(0,T].

    We developed the discretization scheme on a graded mesh ˉΩN,K{(xi,tj)|xi=ih,h=1/N,0i N,0jK} with time mesh points

    tj=T(jK)2γ1 (2.1)

    and time sizes tj=tjtj1 for 1jK, where the discretization parameters N and K are positive integers. The following integral-difference discretization scheme

    UjiUj1itj+aUj1i+Uji2=aϕ1,i+ϕ2,i+12Γ(γ1)j1k=1tktk1(tj1s)γ2[tkstk(cδ2xUk1ibUk1i+fk1i)   +stk1tk(cδ2xUkibUki+fki)]ds+12Γ(γ1)jk=1tktk1(tjs)γ2   [tkstk(cδ2xUk1ibUk1i+fk1i)+stk1tk(cδ2xUkibUki+fki)]ds

    for 1i<N and 1jK is used to approximate the integral-differential equation in (1.2), where Uji denotes the numerical solution at the mesh point (xi,tj) and δ2xUji=Uji+12Uji+Uji1h2. Thus, our discretization scheme for problem (1.2) is

    {UjiUj1itj+aUj1i+Uji2=aϕ1,i+ϕ2,i+12j1k=1[ξj1,k(cδ2xUk1ibUk1i+fk1i)+ηj1,k(cδ2xUkibUki+fki)]+12jk=1[ξj,k(cδ2xUk1ibUk1i+fk1i)+ηj,k(cδ2xUkibUki+fki)],1i<N,1jK,U0i=ϕ1(xi),0iN,Uj0=ψ1(tj),  UjN=ψ2(tj),1jK, (2.2)

    where

    ξj,k=1tkΓ(γ1)tktk1(tjs)γ2(tks)ds,            k=1,2,j, (2.3)
    ηj,k=1tkΓ(γ1)tktk1(tjs)γ2(stk1)ds,         k=1,2,j. (2.4)

    Let zji=Ujiuji for 0iN and 0jK. Then, from (1.2) and (2.2) we know that the error mesh function z satisfies

    {zjizj1itj+azj1i+zji2=12j1k=1[ξj1,k(cδ2xzk1ibzk1i)+ηj1,k(cδ2xzkibzki)]   +12jk=1[ξj,k(cδ2xzk1ibzk1i)+ηj,k(cδ2xzkibzki)]+Rji,1i<N,1jK,z0i=0,0iN,zj0=zjN=0,1jK, (2.5)

    where

    Rji=12(ut(xi,tj1)+ut(xi,tj))ujiuj1itj+12Γ(γ1)j1k=1tktk1(tj1s)γ2[tkstk(cδ2xuk1ibuk1i+fk1i)+stk1tk(cδ2xukibuki+fki)(c2u(xi,s)x2bu(xi,s)+f(xi,s))]ds+12Γ(γ1)jk=1tktk1(tjs)γ2[tkstk(cδ2xuk1ibuk1i+fk1i)+stk1tk(cδ2xukibuki+fki)(c2u(xi,s)x2bu(xi,s)+f(xi,s))]ds.

    Then, under the assumption (1.3) we can obtain

    |Rji|Ctjtj1|3us3(xi,s)|(stj1)ds+Cj1k=1tktk1(tj1s)γ2{tkstk(stk1)2|10(c4ux2t2b2ut2+2ft2)(xi,tk1+(stk1)y)ydy|+stk1tk(tks)2|10(c4ux2t2b2ut2+2ft2)(xi,s+(tks)y)(1y)dy|}ds+Cjk=1tktk1(tjs)γ2{tkstk(stk1)2|10(c4ux2t2b2ut2+2ft2)(xi,tk1+(stk1)y)ydy|+stk1tk(tks)2|10(c4ux2t2b2ut2+2ft2)(xi,s+(tks)y)(1y)dy|}ds+Cj1k=1tktk1(tj1s)γ2|tkstk(δ2xuk1i2u(xi,tk1)x2)+stk1tk(δ2xuki2u(xi,tk)x2)|ds+Cjk=1tktk1(tjs)γ2|tkstk(δ2xuk1i2u(xi,tk1)x2)+stk1tk(δ2xuki2u(xi,tk)x2)|dsC(tjtj1sγ32ds)2+Cj1k=1tktktk1(tj1s)γ2tktk1tγ2dtds+Cjk=1tktktk1(tjs)γ2tktk1tγ2dtds+Ch2C(N2+K2), (2.6)

    where we have used the linear interpolation remainder formula

    tkttkgk1+ttk1tkgkg(t)=1tk{(tkt)(ttk1)210g[tk1+(ttk1)s]sds+(ttk1)(tkt)210g[t+(tkt)s](1s)ds},

    the regularities (1.4) and (1.5), the assumption (1.3), the graded mesh (2.1), the inequality (see [30])

    tjtj1sα(stj1)ds12{tjtj1sα/2ds}2

    for α<0, and the following estimates

    tjtj1sγ32ds=2γ1(tγ12jtγ12j1)CK1,t1t10(tjs)γ2t10tγ2dtdsC(t1)γt10(tjs)γ2dsC(1K)2γγ1CK2γ,jk=2tktktk1(tjs)γ2tktk1tγ2dtdsCjk=2(tk)3(tjtk1)γ2tγ2k1=Cjk=2[(kK)2γ1(k1K)2γ1]3[tj(k1K)2γ1]γ2(k1K)2(γ2)γ1CK3jk=1(kK)6γ13(tjk1K)γ2(k1K)2(γ2)γ1CK2j1k=1(tjkK)γ2(kK)5γγ11KCK2tj0(tjs)γ2s5γγ1ds=CK2tγ1+5γγ1jB(4γ1,γ1)CK2.

    The following lemma gives a useful result for our convergence analysis, which is given in [31].

    Lemma 2.1 Assume that {ωk}k=0 be a sequence of non-negative real numbers satisfying

    ωk0,   ωk+1ωk,   ωk+12ωk+ωk10.

    Then for any integer K>0 and vector (V1,V2,,VK)TRK, the following inequality

    Kk=1(kp=1ωkpVp)Vk0

    holds true.

    Next we show that the sequence {βj,k}jk=1 satisfies the conditions in Lemma 2.1 by using the technique in [32], where βj,jk=tj(ξj,k+1+ηj,k) with ξj,j+1=0.

    Lemma 2.2 The sequence {βj,k}jk=0 satisfies

    βj,k0,   βj,k+1βj,k,   βj,k+12βj,k+βj,k10.

    Proof. From the definitions of the sequences {ξj,k}jk=1 and {ηj,k}jk=1 we have

    βj,jk=tjtk+1Γ(γ1)tk+1tk(tjs)γ2(tk+1s)ds+tjtkΓ(γ1)tktk1(tjs)γ2(stk1)ds=tjtk+1Γ(γ1)tk+10(tjtky)γ2(tk+1y)dy+tjtkΓ(γ2)0tk(tjtky)γ2(y+tk)dy=tjΓ(γ1)tk+1tk(tjtky)γ2(1|y|tkχ[tk,0]+tk+1χ[0,tk+1])dy (2.7)

    for 1k<j and

    βj,jj=1Γ(γ1)tjtj1(tjs)γ2(stj1)ds, (2.8)

    where

    χ[p,q](y)={1,y[p,q],0,y[p,q].

    Obviously, from (2.7) and (2.8) we have

    βj,jk0,          1kj, (2.9)

    and

    βj,j(j1)βj,jj. (2.10)

    Since

    ddk(tjtky)γ2>0,      k1  and  y(tk,tk+1),d2dk2(tjtky)γ2>0,     k1  and  y(tk,tk+1),

    we can obtain

    βj,jk1βj,jk,    and   βj,jk12βj,jk+βj,jk+10,

    which imply

    βj,k+1βj,k,    and   βj,k+12βj,k+βj,k10. (2.11)

    From (2.9)–(2.11) we know the lemma holds true.

    A modified Grönwall inequality given in [33,Lemma 3.3] also is needed in the convergence analysis of the scheme.

    Lemma 2.3 Suppose that α,C0,T>0 and dk,j=C0tk+1(tjtk)α1(k=0,1,,j1) for 0=t0<t1<<tK=T and j=1,2,,K, where tk+1=tk+1tk. Assume that g0 is positive and the sequence {φj} satisfies

    {φ0g0,φjj1k=0ak,jφk+g0,

    then

    φkCg0,             j=1,2,,K.

    For analyzing the stability and estimating the error for the discrete scheme (2.2) we introduce the discrete inner product and discrete L2-norm as follows

    v,w=hNi=0viwi   and   v=v,v,

    where v and w are two mesh functions. We also introduce the notation δxvi=vivi1h for 1iN.

    By using the technique given in [34,Theorem 3.2] we will derive the following stability result of the discrete scheme (2.2).

    Theorem 2.4 Let {Uji|0iN, 1jK} be the solution of the discrete scheme (2.2). Then the numerical solution U satisfies the following estimates

    UjC(max

    where C is a positive constant independent of N and K .

    Proof. First we rewrite (2.2) as the following equation

    \begin{array}{l} U_{i}^{j}-U_{i}^{j-1}+\frac{1}{2}a\triangle t_{j} \left(U_{i}^{j-1}+U_{i}^{j}\right) = \triangle t_{j}\left(a\phi_{1, i}+\phi_{2, i}\right)\\ +\frac{1}{2}\triangle t_{j}\sum\limits_{k = 1}^{j-1}\left[\xi_{j-1, k}\left(c\delta_{x}^{2}U_{i}^{k-1}-bU_{i}^{k-1}+f_{i}^{k-1}\right)+\eta_{j-1, k}\left(c\delta_{x}^{2}U_{i}^{k}-bU_{i}^{k}+f_{i}^{k}\right)\right]\\ +\frac{1}{2}\triangle t_{j}\sum\limits_{k = 1}^{j}\left[\xi_{j, k}\left(c\delta_{x}^{2}U_{i}^{k-1}-bU_{i}^{k-1}+f_{i}^{k-1}\right)+\eta_{j, k}\left(c\delta_{x}^{2}U_{i}^{k}-bU_{i}^{k}+f_{i}^{k}\right)\right] \end{array} (2.12)

    for 1\leq i < N and 1\leq j\leq K . Then, taking the inner produce of (2.12) with U_{i}^{j} , we can get

    \begin{array}{l} \left\|U^{j}\right\|^{2}-\langle U^{j-1}, U^{j}\rangle+\frac{1}{2}a\triangle t_{j}\langle U^{j-1}, U^{j}\rangle+\frac{1}{2}a\triangle t_{j}\left\|U^{j}\right\|^{2}\nonumber\\ = \frac{1}{2}\triangle t_{j}\sum\limits_{k = 1}^{j-1}\left[\xi_{j-1, k}\left(\langle c\delta_{x}^{2}U^{k-1}, U^{j}\rangle-\langle bU^{k-1}, U^{j}\rangle+\langle f^{k-1}, U^{j}\rangle\right)\right.\nonumber\\ \left. \ \ \ +\eta_{j-1, k}\left(\langle c\delta_{x}^{2}U^{k}, U^{j}\rangle-\langle bU^{k}, U^{j}\rangle+\langle f^{k}, U^{j}\rangle\right)\right]\nonumber\\ \ \ \ +\frac{1}{2}\triangle t_{j}\sum\limits_{k = 1}^{j}\left[\xi_{j, k}\left(\langle c\delta_{x}^{2}U^{k-1}, U^{j}\rangle-\langle bU^{k-1}, U^{j}\rangle+\langle f^{k-1}, U^{j}\rangle\right)\right.\nonumber\\ \left. \ \ \ +\eta_{j, k}\left(\langle c\delta_{x}^{2}U^{k}, U^{j}\rangle-\langle bU^{k}, U^{j}\rangle+\langle f^{k}, U^{j}\rangle\right)\right]+\triangle t_{j}\left(a\langle \phi_{1}, U^{j}\rangle+\langle \phi_{2}, U^{j}\rangle\right). \end{array}

    By recursion, we also can get the following equations

    \begin{array}{l} \left\|U^{j-1}\right\|^{2}-\langle U^{j-2}, U^{j-1}\rangle+\frac{1}{2}a\triangle t_{j-1}\langle U^{j-2}, U^{j-1}\rangle+\frac{1}{2}a\triangle t_{j-1}\left\|U^{j-1}\right\|^{2}\nonumber\\ = \frac{1}{2}\triangle t_{j-1}\sum\limits_{k = 1}^{j-2}\left[\xi_{j-2, k}\left(\langle c\delta_{x}^{2}U^{k-1}, U^{j-1}\rangle-\langle bU^{k-1}, U^{j-1}\rangle+\langle f^{k-1}, U^{j-1}\rangle\right)\right. \nonumber\\ \ \ \ \left. +\eta_{j-2, k}\left(\langle c\delta_{x}^{2}U^{k}, U^{j-1}\rangle-\langle bU^{k}, U^{j-1}\rangle+\langle f^{k}, U^{j-1}\rangle\right)\right]\nonumber\\ \ \ \ +\frac{1}{2}\triangle t_{j-1}\sum\limits_{k = 1}^{j-1}\left[\xi_{j-1, k}\left(\langle c\delta_{x}^{2}U^{k-1}, U^{j-1}\rangle-\langle bU^{k-1}, U^{j-1}\rangle+\langle f^{k-1}, U^{j-1}\rangle\right)\right. \nonumber\\ \ \ \ \left. +\eta_{j-1, k}\left(\langle c\delta_{x}^{2}U^{k}, U^{j-1}\rangle-\langle bU^{k}, U^{j-1}\rangle+\langle f^{k}, U^{j-1}\rangle\right)\right]\nonumber\\ \ \ \ +\triangle t_{j-1}\left(a\langle \phi_{1}, U^{j-1}\rangle+\langle \phi_{2}, U^{j-1}\rangle\right), \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \\ \left\|U^{2}\right\|^{2}-\langle U^{1}, U^{2}\rangle+\frac{1}{2}a\triangle t_{2}\langle U^{1}, U^{2}\rangle+\frac{1}{2}a\triangle t_{2}\left\|U^{2}\right\|^{2}\nonumber\\ = \frac{1}{2}\triangle t_{2}\sum\limits_{k = 1}^{1}\left[\xi_{1, k}\left(\langle c\delta_{x}^{2}U^{k-1}, U^{2}\rangle-\langle bU^{k-1}, U^{2}\rangle+\langle f^{k-1}, U^{2}\rangle\right)\right.\nonumber\\ \ \ \ \left.+\eta_{1, k}\left(\langle c\delta_{x}^{2}U^{k}, U^{2}\rangle-\langle bU^{k}, U^{2}\rangle+\langle f^{k}, U^{2}\rangle\right)\right]\nonumber\\ \ \ \ +\frac{1}{2}\triangle t_{2}\sum\limits_{k = 1}^{2}\left[\xi_{2, k}\left(\langle c\delta_{x}^{2}U^{k-1}, U^{2}\rangle-\langle bU^{k-1}, U^{2}\rangle+\langle f^{k-1}, U^{2}\rangle\right)\right.\nonumber\\ \ \ \ \left.+\eta_{2, k}\left(\langle c\delta_{x}^{2}U^{k}, U^{2}\rangle-\langle bU^{k}, U^{2}\rangle+\langle f^{k}, U^{2}\rangle\right)\right]+\triangle t_{2}\left(a\langle \phi_{1}, U^{2}\rangle+\langle \phi_{2}, U^{2}\rangle\right), \nonumber\\ \left\|U^{1}\right\|^{2}-\langle U^{0}, U^{1}\rangle+\frac{1}{2}a\triangle t_{1}\langle U^{0}, U^{1}\rangle+\frac{1}{2}a\triangle t_{1}\left\|U^{1}\right\|^{2}\nonumber\\ = \frac{1}{2}\triangle t_{1}\sum\limits_{k = 1}^{1}\left[\xi_{1, k}\left(\langle c\delta_{x}^{2}U^{k-1}, U^{1}\rangle-\langle bU^{k-1}, U^{1}\rangle+\langle f^{k-1}, U^{1}\rangle\right)\right.\nonumber\\ \ \ \ \left.+\eta_{1, k}\left(\langle c\delta_{x}^{2}U^{k}, U^{1}\rangle-\langle bU^{k}, U^{1}\rangle+\langle f^{k}, U^{1}\rangle\right)\right]+\triangle t_{1}\left(a\langle \phi_{1}, U^{1}\rangle+\langle \phi_{2}, U^{1}\rangle\right). \end{array}

    Applying the inequality

    \begin{eqnarray*} \langle v, w\rangle\leq \left\|v\right\|\cdot\left\|w\right\|\leq \frac{1}{2}\left\|v\right\|^{2}+\frac{1}{2}\left\|w\right\|^{2} \end{eqnarray*}

    and the equality

    \begin{eqnarray*} \langle \delta_{x}^{2}v, w\rangle = -\langle \delta_{x}v, \delta_{x}w\rangle, \end{eqnarray*}

    we have

    \begin{array}{l} \left\|U^{j}\right\|^{2}-\frac{1}{2}\left\|U^{j}\right\|^{2}-\frac{1}{2}\left\|U^{j-1}\right\|^{2}+\frac{1}{2}a\triangle t_{j}\langle U^{j-1}, U^{j}\rangle+\frac{1}{2}a\triangle t_{j}\left\|U^{j}\right\|^{2}\nonumber\\ \leq \frac{1}{2}\triangle t_{j}\sum\limits_{k = 1}^{j-1}\left[\xi_{j-1, k}\left(-\langle c\delta_{x}U^{k-1}, \delta_{x}U^{j}\rangle-\langle bU^{k-1}, U^{j}\rangle+\langle f^{k-1}, U^{j}\rangle\right)\right. \nonumber\\ \ \ \ \left. +\eta_{j-1, k}\left(-\langle c\delta_{x}U^{k}, \delta_{x}U^{j}\rangle-\langle bU^{k}, U^{j}\rangle+\langle f^{k}, U^{j}\rangle\right)\right]\nonumber\\ \ \ \ +\frac{1}{2}\triangle t_{j}\sum\limits_{k = 1}^{j}\left[\xi_{j, k}\left(-\langle c\delta_{x}U^{k-1}, \delta_{x}U^{j}\rangle-\langle bU^{k-1}, U^{j}\rangle+\langle f^{k-1}, U^{j}\rangle\right)\right. \nonumber\\ \ \ \ \left. +\eta_{j, k}\left(-\langle c\delta_{x}U^{k}, \delta_{x}U^{j}\rangle-\langle bU^{k}, U^{j}\rangle+\langle f^{k}, U^{j}\rangle\right)\right]+\triangle t_{j}\left(a\langle \phi_{1}, U^{j}\rangle+\langle \phi_{2}, U^{j}\rangle\right), \\ \left\|U^{j-1}\right\|^{2}-\frac{1}{2}\left\|U^{j-1}\right\|^{2}-\frac{1}{2}\left\|U^{j-2}\right\|^{2}+\frac{1}{2}a\triangle t_{j-1}\langle U^{j-2}, U^{j-1}\rangle+\frac{1}{2}a\triangle t_{j-1}\left\|U^{j-1}\right\|^{2}\nonumber\\ \leq \frac{1}{2}\triangle t_{j-1}\sum\limits_{k = 1}^{j-2}\left[\xi_{j-2, k}\left(-\langle c\delta_{x}U^{k-1}, \delta_{x}U^{j-1}\rangle-\langle bU^{k-1}, U^{j-1}\rangle+\langle f^{k-1}, U^{j-1}\rangle\right)\right.\\ \ \ \ \left. +\eta_{j-2, k}\left(-\langle c\delta_{x}U^{k}, \delta_{x}U^{j-1}\rangle-\langle bU^{k}, U^{j-1}\rangle+\langle f^{k}, U^{j-1}\rangle\right)\right]\nonumber\\ \ \ \ +\frac{1}{2}\triangle t_{j-1}\sum\limits_{k = 1}^{j-1}\left[\xi_{j-1, k}\left(-\langle c\delta_{x}U^{k-1}, \delta_{x}U^{j-1}\rangle-\langle bU^{k-1}, U^{j-1}\rangle+\langle f^{k-1}, U^{j-1}\rangle\right)\right.\\ \ \ \ \left. +\eta_{j-1, k}\left(-\langle c\delta_{x}U^{k}, \delta_{x}U^{j-1}\rangle-\langle bU^{k}, U^{j-1}\rangle+\langle f^{k}, U^{j-1}\rangle\right)\right]\nonumber\\ \ \ \ +\triangle t_{j-1}\left(a\langle \phi_{1}, U^{j-1}\rangle+\langle \phi_{2}, U^{j-1}\rangle\right), \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \\ \left\|U^{2}\right\|^{2}-\frac{1}{2}\left\|U^{2}\right\|^{2}-\frac{1}{2}\left\|U^{1}\right\|^{2}+\frac{1}{2}a\triangle t_{2}\langle U^{1}, U^{2}\rangle+\frac{1}{2}a\triangle t_{2}\left\|U^{2}\right\|^{2}\nonumber\\ \leq \frac{1}{2}\triangle t_{2}\sum\limits_{k = 1}^{1}\left[\xi_{1, k}\left(-\langle c\delta_{x}U^{k-1}, \delta_{x}U^{2}\rangle-\langle bU^{k-1}, U^{2}\rangle+\langle f^{k-1}, U^{2}\rangle\right)\right.\\ \left. \ \ \ +\eta_{1, k}\left(-\langle c\delta_{x}U^{k}, \delta_{x}U^{2}\rangle-\langle bU^{k}, U^{2}\rangle+\langle f^{k}, U^{2}\rangle\right)\right]\nonumber\\ \ \ \ +\frac{1}{2}\triangle t_{2}\sum\limits_{k = 1}^{2}\left[\xi_{2, k}\left(-\langle c\delta_{x}U^{k-1}, \delta_{x}U^{2}\rangle-\langle bU^{k-1}, U^{2}\rangle+\langle f^{k-1}, U^{2}\rangle\right)\right.\\ \left. \ \ \ +\eta_{2, k}\left(-\langle c\delta_{x}U^{k}, \delta_{x}U^{2}\rangle-\langle bU^{k}, U^{2}\rangle+\langle f^{k}, U^{2}\rangle\right)\right]+\triangle t_{2}\left(a\langle \phi_{1}, U^{2}\rangle+\langle \phi_{2}, U^{2}\rangle\right), \\ \left\|U^{1}\right\|^{2}-\frac{1}{2}\left\|U^{1}\right\|^{2}-\frac{1}{2}\left\|U^{0}\right\|^{2}+\frac{1}{2}a\triangle t_{1}\langle U^{0}, U^{1}\rangle+\frac{1}{2}a\triangle t_{1}\left\|U^{1}\right\|^{2}\nonumber\\ = \frac{1}{2}\triangle t_{1}\sum\limits_{k = 1}^{1}\left[\xi_{1, k}\left(-\langle c\delta_{x}U^{k-1}, \delta_{x}U^{1}\rangle-\langle bU^{k-1}, U^{1}\rangle+\langle f^{k-1}, U^{1}\rangle\right)\right.\nonumber\\ \ \ \ \left.+\eta_{1, k}\left(-\langle c\delta_{x}U^{k}, \delta_{x}U^{1}\rangle-\langle bU^{k}, U^{1}\rangle+\langle f^{k}, U^{1}\rangle\right)\right]+\triangle t_{1}\left(a\langle \phi_{1}, U^{1}\rangle+\langle \phi_{2}, U^{1}\rangle\right). \end{array}

    Adding up the above inequalities we can obtain

    \begin{eqnarray*} \left\|U^{j}\right\|^{2} & \leq & 2\sum\limits_{p = 1}^{j}\sum\limits_{k = 1}^{p-1}\triangle t_{p}\left[\xi_{p-1, k}\left(-\langle c\delta_{x}U^{k-1}, \delta_{x}U^{p}\rangle-\langle bU^{k-1}, U^{p}\rangle+\langle f^{k-1}, U^{p}\rangle\right)\right.\\ & & \left. +\eta_{p-1, k}\left(-\langle c\delta_{x}U^{k}, \delta_{x}U^{p}\rangle-\langle bU^{k}, U^{p}\rangle+\langle f^{k}, U^{p}\rangle\right)\right]\nonumber\\ & & +2\sum\limits_{p = 1}^{j}\sum\limits_{k = 1}^{p}\triangle t_{p}\left[\xi_{p, k}\left(-\langle c\delta_{x}U^{k-1}, \delta_{x}U^{p}\rangle-\langle bU^{k-1}, U^{p}\rangle+\langle f^{k-1}, U^{p}\rangle\right)\right.\\ & & \left. +\eta_{p, k}\left(-\langle c\delta_{x}U^{k}, \delta_{x}U^{p}\rangle-\langle bU^{k}, U^{p}\rangle+\langle f^{k}, U^{p}\rangle\right)\right]\nonumber\\ & &-\sum\limits_{p = 1}^{j}\triangle t_{p}a\langle U^{p-1}, U^{p}\rangle+2\sum\limits_{p = 1}^{j}\triangle t_{p}\left(a\langle \phi_{1}, U^{p}\rangle+\langle \phi_{2}, U^{p}\rangle\right) +\left\|U^{0}\right\|^{2}\nonumber\\ & \leq & 2\sum\limits_{p = 1}^{j}\sum\limits_{k = 1}^{p-1}\triangle t_{p}\left\|U^{p}\right\|\left[\xi_{p-1, k}\left(b\left\|U^{k-1}\right\|+\left\|f^{k-1}\right\|\right) +\eta_{p-1, k}\left(b\left\|U^{k}\right\|+\left\|f^{k}\right\|\right)\right]\nonumber\\ & & +2\sum\limits_{p = 1}^{j}\sum\limits_{k = 1}^{p}\triangle t_{p}\left\|U^{p}\right\|\left[\xi_{p, k}\left(b\left\|U^{k-1}\right\|+\left\|f^{k-1}\right\|\right) +\eta_{p, k}\left(b\left\|U^{k}\right\|+\left\|f^{k}\right\|\right)\right]\nonumber\\ & & +2\sum\limits_{p = 1}^{j}\triangle t_{p}\left\|U^{p}\right\|\left(a\left\|U^{p-1}\right\|+a\left\|\phi_{1}\right\|+\left\|\phi_{2}\right\|\right) +\left\|U^{0}\right\|^{2}, \end{eqnarray*}

    where we have used Lemmas 2.1 and 2.2. From the above inequality we have

    \begin{eqnarray} \left\|U^{j}\right\|^{2} & \leq & C\max\limits_{0\leq p\leq j}\left\|U^{p}\right\|\left[\sum\limits_{k = 1}^{j-1}\left(\xi_{j-1, k+1}+\eta_{j-1, k}+\xi_{j, k+1}+\eta_{j, k}\right)\left(\left\|U^{k}\right\|+\max\limits_{0\leq k\leq j}\left\|f^{k}\right\|\right)\right.\\ & & \left. +\sum\limits_{k = 1}^{j-1}\triangle t_{k+1}a\left\|U^{k}\right\|+\left\|\phi_{1}\right\|+\left\|\phi_{2}\right\|\right], \end{eqnarray} (2.13)

    where \xi_{j-1, j} = 0 . For each j , there exists j^{*} (1\leq j^{*}\leq j) such that

    \begin{eqnarray*} \left\|U^{j^{*}}\right\| = \max\limits_{0\leq p\leq j}\left\|U^{p}\right\|. \end{eqnarray*}

    Since j in (2.13) is any integer from 0 to N , we have

    \begin{eqnarray*} \left\|U^{j^{*}}\right\| & \leq & C\left[\sum\limits_{k = 1}^{j^{*}-1}\left(\xi_{j^{*}-1, k+1}+\eta_{j^{*}-1, k}+\xi_{j^{*}, k+1}+\eta_{j^{*}, k}\right)\left(\left\|U^{k}\right\|+\max\limits_{0\leq k\leq j}\left\|f^{k}\right\|\right)\right.\nonumber\\ & & \left. +\sum\limits_{k = 1}^{j^{*}-1}\triangle t_{k+1}a\left\|U^{k}\right\|+\left\|\phi_{1}\right\|+\left\|\phi_{2}\right\|\right]. \end{eqnarray*}

    Combining the above inequality with Lemma 2.2 we have

    \begin{eqnarray} \left\|U^{j}\right\| & \leq & \left[\sum\limits_{k = 1}^{j-1}\left(\xi_{j-1, k+1}+\eta_{j-1, k}+\xi_{j, k+1}+\eta_{j, k}\right)\left(\left\|U^{k}\right\|+\max\limits_{0\leq k\leq j}\left\|f^{k}\right\|\right)\right.\\ & & \left. +\sum\limits_{k = 1}^{j-1}\triangle t_{k+1}a\left\|U^{k}\right\|+\left\|\phi_{1}\right\|+\left\|\phi_{2}\right\|\right] \end{eqnarray} (2.14)

    for 1\leq j^{*}\leq j\leq K . Furthermore, we have

    \begin{eqnarray} \xi_{j, k+1}+\eta_{j, k} & = & \frac{1}{\Gamma(\gamma+1)}\left\{\frac{1}{\triangle t_{k}}\left[\left(t_{j}-t_{k-1}\right)^{\gamma}-\left(t_{j}-t_{k}\right)^{\gamma}\right] -\frac{1}{\triangle t_{k+1}}\left[\left(t_{j}-t_{k}\right)^{\gamma}-\left(t_{j}-t_{k+1}\right)^{\gamma}\right]\right\}\\ & = & \frac{1}{\Gamma(\gamma)}\left[\left(t_{j}-\theta_{k}\right)^{\gamma-1}-\left(t_{j}-\theta_{k+1}\right)^{\gamma-1}\right]\\ & \leq & \frac{2}{\Gamma(\gamma)}\triangle t_{k+1}\left(t_{j}-t_{k+1}\right)^{\gamma-2}\\ & \leq & \frac{2^{3-\gamma}}{\Gamma(\gamma)}\triangle t_{k+1}\left(t_{j}-t_{k}\right)^{\gamma-2}, \end{eqnarray} (2.15)

    where we have used the mean value theorem with \theta_{k}\in \left(t_{k-1}, t_{k}\right) and the inequality n\leq 2\left(n-1\right) for n\geq 2 . Combining (2.14) and (2.15) we can get

    \begin{eqnarray*} \left\|U^{j}\right\| & \leq & C\left\{\sum\limits_{k = 1}^{j-1}\triangle t_{k+1}\left[1+ \left(t_{j-1}-t_{k}\right)^{\gamma-2}+ \left(t_{j}-t_{k}\right)^{\gamma-2}\right] \left(\left\|U^{k}\right\|+\max\limits_{0\leq k\leq j}\left\|f^{k}\right\|\right)+\left\|\phi_{1}\right\|+\left\|\phi_{2}\right\|\right\}\nonumber\\ & \leq & C\left(\max\limits_{0\leq k\leq j}\left\|f^{k}\right\|+\left\|\phi_{1}\right\|+\left\|\phi_{2}\right\|\right) \end{eqnarray*}

    for 1\leq j\leq K , where Lemma 2.3 has been used. This inequality implies the theorem holds true.

    Next we derive the error estimates for the integral-difference discretization scheme (2.2).

    Theorem 2.5 Under the regularity conditions (1.4) and (1.5) and the assumption (1.3), we have the following error estimates

    \begin{eqnarray*} \left\|U^{j}-u^{j}\right\|\leq C\left(N^{-2}+K^{-2}\right), \ \ \ \ \ \ \ \ 1\leq j\leq K, \end{eqnarray*}

    where C is a positive constant independent of N and K .

    Proof. Applying Theorem 2.4 to the error equation (2.5) we can derive

    \begin{eqnarray*} \left\|U^{j}\right\| \leq C\max\limits_{0\leq k\leq j}\left\|R^{k}\right\|\leq C\left(N^{-2}+K^{-2}\right), \end{eqnarray*}

    where we have used the estimates (2.6). From this we complete the proof.

    In this section we present some numerical results to indicate experimentally the efficiency and accuracy of the integral-difference discretization scheme. Errors and convergence rates for the integral-difference discretization scheme are presented for two examples.

    Example 4.1 We first consider the TFTE (1.1) with a = b = 1, c = \pi, \phi_{1}(x) = \phi_{2}(x) = \psi_{1}(t) = 0 and \psi_{2}(t) = t^{3}\sin^{2}(1) , where f(x, t) is chosen such that the exact solution is u(x, t) = t^{3}\sin^{2}(x) . This equation has been tested in [2,3].

    We measure the accuracy in the discrete L_{2} -norm and L_{\infty} -norm

    \begin{eqnarray*} e^{N, K}_{L_{2}} = {\max\limits_{1\leq j\leq K}\left\|u^{j}-U^{j}\right\|}, \ \ \ \ \ \ e^{N, K}_{L_{\infty}} = {\max\limits_{0\leq i\leq N, 0\leq j\leq K}\left|u^{j}_{i}-U^{j}_{i}\right|}, \end{eqnarray*}

    and the convergence rate

    \begin{eqnarray*} r^{N, K}_{L_{2}} = \log_{2}(e^{N, K}_{L_{2}}/e^{2N, 2K}_{L_{2}}), \ \ \ \ \ \ \ \ r^{N, K}_{L_{\infty}} = \log_{2}(e^{N, K}_{L_{\infty}}/e^{2N, 2K}_{L_{\infty}}), \end{eqnarray*}

    respectively. In order to further confirm that the convergence rate in the time direction is consistent with the theoretical convergence rate, we also measure the convergence rates by fixing a large N as follows

    \begin{eqnarray*} \bar{r}^{N, K}_{L_{2}} = \log_{2}(e^{N, K}_{L_{2}}/e^{N, 2K}_{L_{2}}), \ \ \ \ \ \ \ \ \bar{r}^{N, K}_{L_{\infty}} = \log_{2}(e^{N, K}_{L_{\infty}}/e^{N, 2K}_{L_{\infty}}), \end{eqnarray*}

    respectively. The numerical results for Example 4.1 are tabulated in Tables 1 and 2.

    Table 1.  Error estimates e_{L_{2}}^{N, K}, e_{L_{\infty}}^{N, K} and convergence rates r_{L_{2}}^{N, K}, r_{L_{\infty}}^{N, K} for Example 4.1.
    \gamma norm Number of mesh points \left(K, N\right)
    \left(32, 32\right) \left(64, 64\right) \left(128,128\right) \left(256,256\right) \left(512,512\right)
    1.2 L_{2} 5.9593e-4 1.6516e-4 4.4234e-5 1.1648e-5 3.0354e-6
    1.851 1.901 1.925 1.940 -
    L_{\infty} 8.5299e-4 2.3639e-4 6.3289e-5 1.6662e-5 4.3412e-6
    1.851 1.901 1.925 1.940 -
    1.4 L_{2} 1.9673e-4 5.1561e-5 1.3295e-5 3.3967e-6 8.6265e-7
    1.932 1.955 1.969 1.977 -
    L_{\infty} 2.8577e-4 7.4813e-5 1.9284e-5 4.9245e-6 1.2503e-6
    1.934 1.956 1.969 1.978 -
    1.6 L_{2} 8.3665e-5 2.1305e-5 5.3828e-6 1.3545e-6 3.4004e-7
    1.973 1.985 1.991 1.994 -
    L_{\infty} 1.2489e-4 3.1809e-5 8.0322e-6 2.0206e-6 5.0714e-7
    1.973 1.986 1.991 1.994 -
    1.8 L_{2} 3.8982e-5 9.7671e-6 2.4448e-6 6.1165e-7 1.5298e-7
    1.997 1.998 1.999 1.999 -
    L_{\infty} 5.6986e-5 1.4245e-5 3.5643e-6 8.9169e-7 2.2303e-7
    2.000 1.999 1.999 1.999 -

     | Show Table
    DownLoad: CSV
    Table 2.  Error estimates e_{L_{2}}^{N, K}, e_{L_{\infty}}^{N, K} and convergence rates \bar{r}_{L_{2}}^{N, K}, \bar{r}_{L_{\infty}}^{N, K} for Example 4.1 with N = 1024 .
    \gamma norm Number of mesh points K
    32 64 128 256 512 1024
    1.2 L_{2} 6.1879e-4 1.7080e-4 4.5625e-5 1.1979e-5 3.1016e-6 7.8528e-7
    1.857 1.904 1.929 .949 1.982 -
    L_{\infty} 8.8009e-4 2.4294e-4 6.4901e-5 1.7044e-5 4.4176e-6 1.1229e-6
    1.857 1.904 1.929 1.948 1.976 -
    1.4 L_{2} 2.1850e-4 5.6970e-5 1.4630e-5 3.7144e-6 9.2607e-7 2.1819e-7
    1.939 1.961 1.978 2.004 2.086 -
    L_{\infty} 3.1067e-4 8.1008e-5 2.0808e-5 5.2871e-6 1.3225e-6 3.1617e-7
    1.939 1.961 1.977 1.999 2.064 -
    1.6 L_{2} 1.0424e-4 2.6426e-5 6.6476e-6 1.6552e-6 3.9985e-7 8.5239e-8
    1.980 1.991 2.006 2.050 2.230 -
    L_{\infty} 1.4812e-4 3.7555e-5 9.4509e-6 2.3574e-6 5.7372e-7 1.2711e-7
    1.980 1.990 2.003 2.039 2.174 -
    1.8 L_{2} 5.2400e-5 1.3135e-5 3.2750e-6 , 8.0479e-7 1.8676e-7 3.8256e-8
    1.996 2.004 2.025 2.107 2.287 -
    L_{\infty} 7.4474e-5 1.8678e-5 4.6619e-6 1.1498e-6 2.7124e-7 5.5771e-8
    1.995 2.002 2.020 2.084 2.282 -

     | Show Table
    DownLoad: CSV

    Example 4.2 We now consider the TFTE (1.1) with a = b = c = 1, \phi_{1}(x) = \phi_{2}(x) = 0 , \psi_{1}(t) = \psi_{2}(t) = t^{\gamma} , where f(x, t) is chosen such that the exact solution is u(x, t) = t^{\gamma}\left(x^{2}-x+1\right) . We also measure the accuracy in the discrete L_{2} -norm e^{N, K}_{L_{2}} , L_{\infty} -norm e^{N, K}_{L_{\infty}} and the convergence rates r^{N, K}_{L_{2}}, r^{N, K}_{L_{\infty}}, \bar{r}^{N, K}_{L_{2}}, \bar{r}^{N, K}_{L_{\infty}} as previously defined, respectively. The numerical results for Example 4.2 are tabulated in Tables 3 and 4.

    Table 3.  Error estimates e_{L_{2}}^{N, K}, e_{L_{\infty}}^{N, K} and convergence rates r_{L_{2}}^{N, K}, r_{L_{\infty}}^{N, K} for Example 4.2.
    \gamma norm Number of mesh points \left(K, N\right)
    \left(32, 32\right) \left(64, 64\right) \left(128,128\right) \left(256,256\right) \left(512,512\right)
    1.2 L_{2} 1.1821e-4 2.9391e-5 7.3519e-6 1.8372e-6 4.5927e-7
    2.008 1.999 2.001 2.000 -
    L_{\infty} 1.6019e-4 3.9819e-5 9.9670e-6 2.4906e-6 6.2257e-7
    2.008 1.998 2.001 2.000 -
    1.4 L_{2} 6.6529e-5 .6604e-5 4.1490e-6 1.0373e-6 2.5931e-7
    2.002 2.001 2.000 2.000 -
    L_{\infty} 9.1346e-5 2.2775e-5 5.6898e-6 1.4225e-6 3.5562e-7
    2.004 2.001 2.000 2.000 -
    1.6 L_{2} 4.2340e-5 1.0580e-5 2.6446e-6 6.6114e-7 1.6528e-7
    2.001 2.000 2.000 2.000 -
    L_{\infty} 6.0023e-5 1.4954e-5 3.7358e-6 9.3402e-7 2.3349e-7
    2.005 2.001 2.000 2.000 -
    1.8 L_{2} 2.1727e-5 5.4316e-6 1.3587e-6 3.3967e-7 8.4917e-8
    2.000 1.999 2.000 2.000 -
    L_{\infty} 3.2980e-5 8.2122e-6 2.0523e-6 5.1287e-7 1.2821e-7
    2.006 2.001 2.001 2.000 -

     | Show Table
    DownLoad: CSV
    Table 4.  Error estimates e_{L_{2}}^{N, K}, e_{L_{\infty}}^{N, K} and convergence rates \bar{r}_{L_{2}}^{N, K}, \bar{r}_{L_{\infty}}^{N, K} for Example 4.2 with N = 1024 .
    \gamma norm Number of mesh points K
    32 64 128 256 512 1024
    1.2 L_{2} 1.1827e-4 2.9395e-5 7.3521e-6 1.8372e-6 4.5927e-7 1.1482e-7
    2.008 1.999 2.001 2.000 2.000 -
    L_{\infty} 1.6027e-4 3.9823e-5 9.9673e-6 2.4906e-6 6.2257e-7 1.5564e-7
    2.009 1.998 2.001 2.000 2.000 -
    1.4 L_{2} 6.6566e-5 1.6606e-5 4.1491e-6 1.0373e-6 2.5931e-7 6.4828e-8
    2.003 2.001 2.000 2.000 2.000 -
    L_{\infty} 9.1393e-5 2.2778e-5 5.6900e-6 1.4225e-6 3.5562e-7 8.8905e-8
    2.004 2.001 2.000 2.000 2.000 -
    1.6 L_{2} 4.2366e-5 1.0582e-5 2.6447e-6 6.6114e-7 1.6528e-7 4.1321e-8
    2.001 2.000 2.000 2.000 2.000 -
    L_{\infty} 6.0036e-5 1.4956e-5 3.7359e-6 9.3403e-7 2.3350e-7 5.8373e-8
    2.005 2.001 2.000 2.000 2.000 -
    1.8 L_{2} 2.1742e-5 5.4325e-6 1.3587e-6 , 3.3967e-7 8.4917e-8 2.1229e-8
    2.001 1.999 2.000 2.000 2.000 -
    L_{\infty} 3.3046e-5 8.2120e-6 2.0523e-6 5.1287e-7 1.2821e-7 3.2051e-8
    2.009 2.001 2.001 2.000 2.000 -

     | Show Table
    DownLoad: CSV

    Tables 14 show that the numerical solution of the integral-difference discretization scheme on a graded mesh converges to the exact solution with second-order accuracy for both the spatial discretization and the time discretization in the discrete L_{2} -norm and in the discrete L_{\infty} -norm, respectively. Moreover, compared with the previous methods with only first-order convergence for the time discretization, our discretization scheme improves the previous results given in [2,3].

    In this paper, the TFTE is transformed into an equivalent integral-differential equation with a weakly singular kernel by using the integral transformation. Then an integral-difference discretization scheme on a graded mesh is developed to approximate the integral-differential equation. The stability and convergence are proved by using the L_{2} -norm. The possible singularity of the exact solution is taken into account in the convergence analysis. It is shown that the scheme is second-order convergent for both the spatial discretization and the time discretization. The numerical experiments demonstrate the validity of our theoretical results and also verify that this scheme is more accurate than the methods given in [2,3]. In future we will extend this method to variable-order fractional differential equations.

    We would like to thank the anonymous reviewers for their valuable suggestions and comments for the improvement of this paper. The authors declare that there is no conflict of interests regarding the publication of this article. The work was supported by Ningbo Municipal Natural Science Foundation (Grant Nos. 2021J178, 2021J179) and Zhejiang Province Public Welfare Technology Application Research Project (Grant No. LGF22H260003).

    The authors declare there is no conflict of interest.



    [1] W. Hachbusch, Integral equations theory and numerical treatments, Birkhäuser Basel, (1995), 120.
    [2] O. Tasbozan, A. Esen, Quadratic B-spline Galerkin method for numerical solution of fractional telegraph equations, J. Math. Sci. Appl., 18 (2017), 23–29. https://doi.org/10.18052/www.scipress.com/BMSA.18.23 doi: 10.18052/www.scipress.com/BMSA.18.23
    [3] M. Yaseen, M. Abbas, An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation, Appl. Math. J. Chinese Univ., 35 (2020), 359–378. https://doi.org/10.1007/s11766-020-3883-y doi: 10.1007/s11766-020-3883-y
    [4] K. Diethlm, The Analysis of Fractional Differential Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 2010.
    [5] P. Jordan, A. Puri, Digital signal propagation in dispersive media, J. Appl. Phys., 85 (1999), 1273–1282. https://doi.org/10.1063/1.369258 doi: 10.1063/1.369258
    [6] H. Pascal, Pressure wave propagation in a fluid flowing through a porous medium and problems related to interpretation of Stoneley wave at tenuation in acoustical well logging, Intern. J. Eng. Sci., 24 (1986), 1553–1570. https://doi.org/10.1016/0020-7225(86)90163-1 doi: 10.1016/0020-7225(86)90163-1
    [7] V. A. Vyawahare, P. Nataraja, Fractional order modelling of neurtron transport in a nuclear reactor, Appl. Math. Model., 37 (2013), 9747–9767. https://doi.org/10.1016/j.apm.2013.05.023 doi: 10.1016/j.apm.2013.05.023
    [8] A. Barletta, E. Zanchini, A thermal potential for mulation of hyperbolic heat conduction, J. Heat Transf., 121 (1999), 166–169. https://doi.org/10.1115/1.2825933 doi: 10.1115/1.2825933
    [9] Y. L. Wang, M. J. Du, C. L. Temuer, D. Tian, Using reproducing kernel for solving a class of time-fractional telegraph equation with initial value conditions, Int. J. Comput. Math., 95 (2018), 1609–1621. https://doi.org/10.1080/00207160.2017.1322693 doi: 10.1080/00207160.2017.1322693
    [10] V. R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem., 38 (2014), 31–39. https://doi.org/10.1016/j.enganabound.2013.10.009 doi: 10.1016/j.enganabound.2013.10.009
    [11] K. Kumar, R. K. Pandey, S. Yadav, Finite difference scheme for a fractional telegraph equation with generalized fractional derivative terms, Physica A, 535 (2019), 122271. https://doi.org/10.1016/j.physa.2019.122271 doi: 10.1016/j.physa.2019.122271
    [12] M. Hashemi, D. Baleanu, Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line, J. Comput. Phys., 316 (2016), 10–20. https://doi.org/10.1016/j.jcp.2016.04.009 doi: 10.1016/j.jcp.2016.04.009
    [13] L. Wei, H. Dai, D. Zhang, Z. Si, Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation, Calcolo, 51 (2014), 175–192. https://doi.org/10.1007/s10092-013-0084-6 doi: 10.1007/s10092-013-0084-6
    [14] N. H. Sweilam, A. M. Nagy, A. A. El-Sayed, Solving time-fractional order telegraph equation via Sinc-Legendre collocation method, Mediterr. J. Math., 13 (2016), 5119–5133. https://doi.org/10.1007/s00009-016-0796-3 doi: 10.1007/s00009-016-0796-3
    [15] N. Mollahasani, M. M. Moghadam, K. Afrooz, A new treatment based on hybrid functions to the solution of telegraph equations of fractional order, Appl. Math. Model., 40 (2016), 2804–2814. https://doi.org/10.1016/j.apm.2015.08.020 doi: 10.1016/j.apm.2015.08.020
    [16] R. M. Hafez, Y. H. Youssri, Shifted Jacobi collocation scheme for multidimensional time-fractional order telegraph equation, Iran. J. Numer. Anal. Optim., 10 (2020), 195–223. https://doi.org/10.22067/IJNAO.V10I1.82774 doi: 10.22067/IJNAO.V10I1.82774
    [17] A. H. Bhrawy, M. A. Zaky, J. A. Machado, Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev tau approximation, J. Optimiz. Theory App., 174 (2017), 321–341. https://doi.org/10.1007/s10957-015-0790-1 doi: 10.1007/s10957-015-0790-1
    [18] Y. H. Youssri, W. M. Abd-Elhameed, Numerical spectral Legendre-Galerkin algorithm for solving time fractional telegraph equation, Rom. J. Phys., 63 (2018), 107.
    [19] E. Doha, W. Abd-Elhameed, N. Elkot, Y. Youssri, Numerical spectral Legendre approach for solving space-time fractional advection-dispersion problems, J. Egypt. Math. Soc., 26 (2018), 167–183. https://doi.org/10.21608/JOMES.2018.9472 doi: 10.21608/JOMES.2018.9472
    [20] A. H. Bhrawy, M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281 (2015), 876–895. https://doi.org/10.1016/j.jcp.2014.10.060 doi: 10.1016/j.jcp.2014.10.060
    [21] A. Sadeghian, S. Karbassi, M. Hushmandasl, M. Heydari, Numerical solution of time-fractional telegraph equation by Chebyshev wavelet method, Int. J. Theoret. Appl. Phys., 2 (2012), 163–181.
    [22] X. Xu, D. Xu, Legendre wavelets direct method for the numerical solution of time-fractional order telegraph equations, Mediterr. J. Math., 15 (2018), 27. https://doi.org/10.1007/s00009-018-1074-3 doi: 10.1007/s00009-018-1074-3
    [23] A. S. Hendy, M. A. Zaky, Combined Galerkin spectral/finite difference method over graded meshes for the generalized nonlinear fractional Schrödinger equation, Nonlinear Dynam., 103 (2021), 2493–2507. https://doi.org/10.1007/s00009-018-1074-3 doi: 10.1007/s00009-018-1074-3
    [24] A. S. Hendy, M. A. Zaky, Graded mesh discretization for coupled system of nonlinear multi-term time-space fractional diffusion equations, Eng. Comput., in press. https://doi.org/10.1007/s00366-020-01095-8
    [25] H. L. Liao, D. Li, J. Zhang, Sharp error estimate of a nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829
    [26] M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329
    [27] P. Lyu, S. Vong, A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation, J. Sci. Comput., 80 (2019), 1607–1628. https://doi.org/10.1007/s10915-019-00991-6 doi: 10.1007/s10915-019-00991-6
    [28] I. G. Ameen, M. A. Zaky, E. H. Doha, Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative, J. Comput. Appl. Math., 392 (2021), 113468. https://doi.org/10.1016/j.cam.2021.113468 doi: 10.1016/j.cam.2021.113468
    [29] J. L. Gracia, E. O'Riordan, M. Stynes, A fitted scheme for a Caputo initial-boundary value problem, J. Sci. Comput., 76 (2018), 583–609. https://doi.org/10.1007/s10915-017-0631-4 doi: 10.1007/s10915-017-0631-4
    [30] C. de Boor, Good approximation by splines with variable knots, in A. Meir, A. Sharma (Eds.), Spline Functions and Approximation Theory, Proceedings of Symposium held at the University of Alberta, Edmonton, 1972.
    [31] J. C. Lopez-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27 (1990), 20–31. https://doi.org/10.1137/0727002 doi: 10.1137/0727002
    [32] H. Chen, D. Xu, J. Zhou, A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel, J. Comput. Appl. Math., 356 (2019), 152–163. https://doi.org/10.1016/j.cam.2019.01.031 doi: 10.1016/j.cam.2019.01.031
    [33] C. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614–631. https://doi.org/10.1016/j.jcp.2016.04.039 doi: 10.1016/j.jcp.2016.04.039
    [34] J. Huang, Y. Tang, L. Vázquez, J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algor., 64 (2013), 707–720.
  • This article has been cited by:

    1. Ebimene James Mamadu, Henrietta Ify Ojarikre, Simon Ajiroghene Ogumeyo, Daniel Chinedu Iweobodo, Ebikonbo-Owei Anthony Mamadu, Jonathan Tsetimi, Ignatius Nkonyeasua Njoseh, A least squares finite element method for time fractional telegraph equation with Vieta-Lucas basis functions, 2024, 24, 24682276, e02170, 10.1016/j.sciaf.2024.e02170
    2. Ebimene James Mamadu, Henrietta Ify Ojarikre, Daniel Chinedu Iweobodo, Joseph Nwaka Onyeoghane, Jude Chukwuyem Nwankwo, Ebikonbo-Owei Anthony Mamadu, Jonathan Tsetimi, Ignatius Nkonyeasua Njoseh, An approximate solution of multi-term fractional telegraph equation with quadratic B-spline basis functions, 2024, 26, 24682276, e02486, 10.1016/j.sciaf.2024.e02486
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2337) PDF downloads(150) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog