
Research on the relationship between drugs and targets is the key to precision medicine. Ion channel is a kind of important drug targets. Aiming at the urgent needs of corona virus disease 2019 (COVID-19) treatment and drug development, this paper designed a mixed graph network model to predict the affinity between ion channel targets of COVID-19 and drugs. According to the simplified molecular input line entry specification (SMILES) code of drugs, firstly, the atomic features were extracted to construct the point sets, and edge sets were constructed according to atomic bonds. Then the undirected graph with atomic features was generated by RDKit tool and the graph attention layer was used to extract the drug feature information. Five ion channel target proteins were screened from the whole SARS-CoV-2 genome sequences of NCBI database, and the protein features were extracted by convolution neural network (CNN). Using attention mechanism and graph convolutional network (GCN), the extracted drug features and target features information were connected. After two full connection layers operation, the drug-target affinity was output, and model was obtained. Kiba dataset was used to train the model and determine the model parameters. Compared with DeepDTA, WideDTA, graph attention network (GAT), GCN and graph isomorphism network (GIN) models, it was proved that the mean square error (MSE) of the proposed model was decreased by 0.055, 0.04, 0.001, 0.046, 0.013 and the consistency index (CI) was increased by 0.028, 0.016, 0.003, 0.03 and 0.01, respectively. It can predict the drug-target affinity more accurately. According to the prediction results of drug-target affinity of SARS-CoV-2 ion channel targets, seven kinds of small molecule drugs acting on five ion channel targets were obtained, namely SCH-47112, Dehydroaltenusin, alternariol 5-o-sulfate, LPA1 antagonist 1, alternariol, butin, and AT-9283.These drugs provide a reference for drug repositioning and precise treatment of COVID-19.
Citation: Xianfang Wang, Qimeng Li, Yifeng Liu, Zhiyong Du, Ruixia Jin. Drug repositioning of COVID-19 based on mixed graph network and ion channel[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 3269-3284. doi: 10.3934/mbe.2022151
[1] | Maurizio Verri, Giovanna Guidoboni, Lorena Bociu, Riccardo Sacco . The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics. Mathematical Biosciences and Engineering, 2018, 15(4): 933-959. doi: 10.3934/mbe.2018042 |
[2] | Fang Wang, Jiaming Wang, Mingxin Li, Jun Hu, Kehua Song, Jianguo Zhang, Yubo Fan . Biomechanical study of the effect of traction on elbow joint capsule contracture. Mathematical Biosciences and Engineering, 2023, 20(12): 21451-21466. doi: 10.3934/mbe.2023949 |
[3] | Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira . Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences and Engineering, 2017, 14(1): 179-193. doi: 10.3934/mbe.2017012 |
[4] | Christophe Prud'homme, Lorenzo Sala, Marcela Szopos . Uncertainty propagation and sensitivity analysis: results from the Ocular Mathematical Virtual Simulator. Mathematical Biosciences and Engineering, 2021, 18(3): 2010-2032. doi: 10.3934/mbe.2021105 |
[5] | Tran Quang-Huy, Phuc Thinh Doan, Nguyen Thi Hoang Yen, Duc-Tan Tran . Shear wave imaging and classification using extended Kalman filter and decision tree algorithm. Mathematical Biosciences and Engineering, 2021, 18(6): 7631-7647. doi: 10.3934/mbe.2021378 |
[6] | Tuoi Vo, William Lee, Adam Peddle, Martin Meere . Modelling chemistry and biology after implantation of a drug-eluting stent. Part Ⅰ: Drug transport. Mathematical Biosciences and Engineering, 2017, 14(2): 491-509. doi: 10.3934/mbe.2017030 |
[7] | Li Cai, Qian Zhong, Juan Xu, Yuan Huang, Hao Gao . A lumped parameter model for evaluating coronary artery blood supply capacity. Mathematical Biosciences and Engineering, 2024, 21(4): 5838-5862. doi: 10.3934/mbe.2024258 |
[8] | Xu Bie, Yuanyuan Tang, Ming Zhao, Yingxi Liu, Shen Yu, Dong Sun, Jing Liu, Ying Wang, Jianing Zhang, Xiuzhen Sun . Pilot study of pressure-flow properties in a numerical model of the middle ear. Mathematical Biosciences and Engineering, 2020, 17(3): 2418-2431. doi: 10.3934/mbe.2020131 |
[9] | Subhadip Paul, Prasun Kumar Roy . The consequence of day-to-day stochastic dose deviation from the planned dose in fractionated radiation therapy. Mathematical Biosciences and Engineering, 2016, 13(1): 159-170. doi: 10.3934/mbe.2016.13.159 |
[10] | Rebecca Vandiver . Effect of residual stress on peak cap stress in arteries. Mathematical Biosciences and Engineering, 2014, 11(5): 1199-1214. doi: 10.3934/mbe.2014.11.1199 |
Research on the relationship between drugs and targets is the key to precision medicine. Ion channel is a kind of important drug targets. Aiming at the urgent needs of corona virus disease 2019 (COVID-19) treatment and drug development, this paper designed a mixed graph network model to predict the affinity between ion channel targets of COVID-19 and drugs. According to the simplified molecular input line entry specification (SMILES) code of drugs, firstly, the atomic features were extracted to construct the point sets, and edge sets were constructed according to atomic bonds. Then the undirected graph with atomic features was generated by RDKit tool and the graph attention layer was used to extract the drug feature information. Five ion channel target proteins were screened from the whole SARS-CoV-2 genome sequences of NCBI database, and the protein features were extracted by convolution neural network (CNN). Using attention mechanism and graph convolutional network (GCN), the extracted drug features and target features information were connected. After two full connection layers operation, the drug-target affinity was output, and model was obtained. Kiba dataset was used to train the model and determine the model parameters. Compared with DeepDTA, WideDTA, graph attention network (GAT), GCN and graph isomorphism network (GIN) models, it was proved that the mean square error (MSE) of the proposed model was decreased by 0.055, 0.04, 0.001, 0.046, 0.013 and the consistency index (CI) was increased by 0.028, 0.016, 0.003, 0.03 and 0.01, respectively. It can predict the drug-target affinity more accurately. According to the prediction results of drug-target affinity of SARS-CoV-2 ion channel targets, seven kinds of small molecule drugs acting on five ion channel targets were obtained, namely SCH-47112, Dehydroaltenusin, alternariol 5-o-sulfate, LPA1 antagonist 1, alternariol, butin, and AT-9283.These drugs provide a reference for drug repositioning and precise treatment of COVID-19.
The biomechanical characterization of biological soft tissues was initially developed by Y.C. Fung on his classical biomechanical treatments [1,2]. He was one of the firsts, together with Fronek, to used a ``new kind'' of elasticity to describe the mechanical behavior of the soft tissues [3], they called this new behavior as pseudo-elasticity. A few years later a new generation of researchers continued on this sense, one of the most know is Holzapfel that together with Gasser and Ogden proposed a new constitutive framework for arterial wall mechanics behavior [4], basically based in a non linear elastic theory introduced by Ogden [5]. In 2004 this group of research realized a comparison of a multi-layer structural model for arterial walls applying a Fung type model, i.e. viscoelasticity. They explored the problematic that emerge on the material stability, in the convergence sense and others problems relatives to the viscoelastic formulation, then in 2010 Holzapfel and Ogden proposed a constitutive modeling of arteries [6] that originated a whole new constitutive frame, named hyperelasticity. Based on strain-energy functions and that represents a huge step on the task of arteries biomechanical characterization, and a great variety of progress was developed and published, like the modeling of biomechanical effects originated by an aneurysm [7,8], the 3D modelling of the human aorta [9,10] or the visco/hyperelastic model that simulate the nonlinear dynamics of atherosclerotic coronary arteries used to predict the initiation of heart attack [11,12].
No often it is not the original Fung's propose for modeling arteries biomechanical behavior, he originally describe the mechanical behavior of the artery as a viscoelastic material. In general, this behavior may be imagined as a spectrum with elastic deformation in one limit case and viscous flow in the other, with varying combinations of the two spread over the range between. Thus, valid constitutive equations for viscoelastic behavior embody elastic deformation and viscous flow as special cases and at the same time provide for response patterns that characterize behavior blends of the two. Intrinsically, such equations will involve not only stress and strain, but time-rates of both stress and strain as well [13]. As mentioned before this kind of materials models, has a great inconvenient related with the convergence on the finite element method software, frequently used to solve this mathematical models [8,6,14,15]. To avoid this situation we can use a prony series and the relaxation function, but again to obtain an accurate solution we need to use a large number of prony series that elevates the computer time on the task of solution finding.
At recent times the fractional calculus theory has been used to modeling viscoelastic materials [16,17,18], consequently some researchers used to model biological soft tissues [19,20], like the use of Kelvin-Voigt fractional viscoelastic model employed to determinate the biomechanical properties of the human liver tissue or the pancreas by Wex [21,22], using stress relaxation test to articular cartilage [23], and even the human calcaneal fat pad [24] using fractional derivatives kernels. Recently this material models are used to estimate the biological changes of the mechanical behavior due to the presence of tumors [25]. Craiem et al [26,27,28] use a fractional viscoelastic constitutive model to describe the arterial biomechanics response, using uniaxial relaxation test.
One of the greatest advantages consist on that many of the basic viscoelastic ideas can be introduce within the context of a one-dimensional state of stress. Once the relaxation modulus, the creep compliance and the complex modulus are obtained, its functions can be included by a subroutine on a FEM software, with the necessary geometry restrictions [29] and the viscoelastic relaxation modifications, or by an finite element model specially develop for fractional differential and integral operators [30].
Viscoelastic fractional models have taken a recent boom in the task of modeling the mechanical behaviour of polymers and soft tissues. Due to the fact that the definition of the fractional derivative provide a new formulation to describe the mechanical behaviour of a material that exhibits a behavior that oscillates between the hooke solids model and the Newtonian fluids [31]. That is one of the principal characteristics of the soft tissues.
The circulatory system is basically composed of the heart and blood vessel system. At the time, the blood vessel system are composing of arteries, arterioles and veins. Arteries are basically conform of three internal layers, known as Tunica Intima, Tunica Media and Tunica Externa or Adventicia, with a semi-cylindrical form and mainly compose of collagen, elastin and muscular fibers [32]. In young humans, the intima is an extremely thin layer (80nm) like a membrane separate to the media for a lay of elastin, the media are form of soft muscular cells merge on a collagen and elastin cellular matrix, finally the externa is the thick layer compose of collagen and fibroblasts [33].
This particular conformation brings the artery a mixed mechanical material behavior know as viscoelasticity [1]. In general, viscoelastic behavior may be imagined as a spectrum with elastic deformation as one limiting case and viscous flow the other extreme case, with varying combinations of the two spread over the range between. Thus, valid constitutive equations for viscoelastic behavior embody elastic deformation and viscous flow as special cases and at the same time provide for response patterns that characterize behavior blends of the two.
Intrinsically, such equations will involve not only stress and strain, but time-rates of both stress and strain as well [13].
We first develop the mathematical and mechanical background that support the present research, with the finality that those readers interested on the topics be familiarized with the basic concepts.
Linear viscoelasticity is a common theory to approximate the time-dependent behaviour of polymers, and materials that exhibit similar characteristics at relatively low temperatures and stress.
The development of the mathematical theory of linear viscoelasticity is based on the principle that the mechanical stress on a certain period of time is directly proportional to the strain rate. In that way, if we have that stress and stress rate are infinitesimal and the stress-strain relation depend on time, that relationship can be expressed by a differential equation with constant coefficients.
The stress-strain relationship can be described, assuming that the Maxwell-Boltzmann principle are satisfied, by the constitutive equation:
σ(t)=t∫−∞G(t−ξ)dε(ξ)dξdξ | (2.1) |
or
ε(t)=t∫−∞J(t−ξ)dσ(ξ)dξdξ | (2.2) |
were G(t) and J(t) are the stress relaxation modulus and the creep compliance respectively. These important functions are commonly employing on material characterization, and are describing above.
The creep test consists of instantaneously subjecting the material to a simple shear stress of magnitude σ0 and maintaining that stress constant thereafter while measuring the shear strain as a function of time. The resulting strain is called the creep. In the stress relaxation test, and instantaneous shear strain of magnitude ε0 is imposed on the material sample and maintained at the value while the resulting stress, is recorded as a function of time. The decrease in the stress values over the duration of the test is referred to as the stress relaxation.
The behavior of viscoelastic materials when are subject to harmonic stress or strain is an important part of the theory of viscoelasticity and sustains a fundamental part of the research. Cyclic experiments are used to identify the mechanical behavior of the material and to determine the values of the elastic and viscous plots of this, maintaining a balance between complexity and simulation capacity of the phenomena. Data processing could be carried out in the same way for a non-cyclic signal, but it would have to be extensive in time to have enough information to fit the model and its processing would be complex.
Consider the response of the material, when is applying a harmonic shear strain of frequency ω as:
ε(t)=ε0sin(ωt) | (2.3) |
At the same time the strain rate changes with the same frequency ω with a translation ϕ with respect to the stress,
σ(t)=σ0sin(ωt+ϕ) | (2.4) |
replacing equation 2.4 on equation 2.1, will be able to obtain the constitutive equation:
σ(t)=ε0(G′sin(ωt)+G′′cos(ωt)) | (2.5) |
with
G′(ω)=ω∫∞0G(t−ξ)sin(ω(t−ξ)) d(t−ξ) | (2.6) |
and
G′′(ω)=ω∫∞0G(t−ξ)cos(ω(t−ξ)) d(t−ξ) | (2.7) |
where G′(ω), G′′(ω) are known as the storage and loss modulus respectively. Expressing the harmonic functions on the complex plane we have
σ∗ε∗=G∗=G′+iG′′ | (2.8) |
where G∗ are define as the complex modulus, and is simply the norm of the loss and storage modulus contributions.
At recent times the fractional calculus theory, has used to formulate a wide range of new models on the biomechanics and mechanobiology field [20], the fractional differential and integral equations have a great development specially in the task of characterize the mechanical behavior of soft tissues [19] like the brain [25], liver [21], arteries [27,28,34] and even the human calcaneal fat pad [24].
We now consider the fractional generalization of the Standard Linear Solid (FSLS), show on Figure 1. For this purpose, is sufficient to replace the first order derivative with the fractional Caputo [35] derivative of order ν∈(0,1) in their constitutive equations. We obtain the following stress-strain relationship and the corresponding material functions are described latter.
The equation 2.9 is basically the same that in integer order, but here we replace the first derivative with the Caputo fractional differential operator
∗0Dνtσ(t)+e2ησ(t)=(e1+e2) ∗0Dνtε(t)+e1e2ηε(t) | (2.9) |
applying the Laplace transform to both sides of the equation 2.9 we obtain,
[sν+e2η]ˉσ(s)=[(e1+e2)sν+(e1e2η)]ˉε(s) | (2.10) |
solving for ˉε(s)
ˉε(s)=sν+α(e1+e2)sν+βˉσ(s) | (2.11) |
where α=e2η and β=e1e2η, applying the Laplace inverse transform and the convolution law, we have the analytical solution for FSLS model,
ε(t)=[δ(t)e1+e2+1(e1+e2)t∞∑n=1(−ζtν)nΓ(nν)+αtν−1e1+e2∞∑n=0(−ζtν)nΓ(ν(n+1))]∗σ(t) | (2.12) |
where δ(t) is the traditional Dirac's delta, ∗ is a convolution and ζ=βe1.
Now we proceed to the implementation of the FSLS to the artery modeling process, first we describe the relaxation modulus, the creep compliance and the complex modulus, all necessary for the mechanical one dimensional characterization on the material [36]. Next we briefly shown the process to the creation of the vectorized image and the exportation to CAD software that aloud to be treating like a solid with the mechanical properties and restrictions.
The values of the constants used on the research are taking for experimental creep relaxation test realized on [27] and are e1=0.68, e2=0.39, η=2.14 and ν=0.23. Now we describe the material model functions like the relaxation modulus, creep compliance and complex modulus. The relaxation modulus for the FSLS has the form,
G(t)=e1+e2⋅Eν[−(e2ηtν)] | (3.1) |
where
Eν,φ[(−e2ηtν)]=∞∑n=0(−e2ηtν)nΓ(νn+φ) | (3.2) |
is the Mittag-Lleffler function [20] with ν,φ∈R+ and e1η∈R. On Figure 2 are plot the relaxation modulus function for four fractional order values, and the constants value mentioned before.
In the same way, we obtain and plot the creep compliance function, for different fractional values ν, the creep compliance function J(t) have the form:
J(t)=μ+(1e1−μ)[1−Eν[−(e1e2μηtν)]] | (3.3) |
where μ=1e1+e2.
The complex modulus, present on Figure 2, complete the set of basic functions required for the mechanical characterization.
The axial dicom images are used to obtain a 2D geometry for every one of the slices, taking care on identify properly witch points generate each one of the segments, to do that its necessary to establish a consistent metric respect the patient's measure and an appropriate Hounsfield scale. The coordinates are localized and saved on a csv file. Now a spline curve can be generated through the geometric pattern, this way the cloud of points on each slice are limit by a close contour. This processes are repeat for the creation of each one of the slices and each one of the respective segments of the artery, the intima, the media and the adventicia. This procedure is illustrated in the left side of Figure 3.
Once the geometric patterns are due in all the set of axial images. Again a spline is applied to the set of slices, now to generate the 3D artery segment representation. Therefore this geometry is save on.iges format and export to CAD software, for the three layer solid representation. Now this is able to function properly in finite element method analysis software as see on the right side of Figure 3.
Like in all the others numerical methods, the precision of the method consist basically on the size of the step. If the element is the sufficient small the method converge to the require solution with minimal error. For that reason we need to do the finest mesh that can be possible in function that the processor is able to work.
The artery have a total volume of 0.2865 cm3 and are meshed with 654,977 eight node brick elements, i.e. the mesh consist on 2,000,000 element for cubic centimeter. This size of the mesh it's necessary to are secure that the finite element method converge to the require solution, because in other way the software can enter on a infinity loop or brings an non sense solution, from this number of elements the convergence is the same. The mechanical properties of the three segments are shown in table 1.
Omega g∗ | Omega g∗ | Omega k∗ | Omega k∗ | Frecuency |
real | imag | real | imag | Hz |
2.02E-11 | 4.32E-06 | 2.18E-11 | 3.94E-06 | 0.001 |
2.02E-09 | 4.32E-05 | 2.18E-09 | 0.000038 | 0.01 |
2.02E-07 | 0.000432 | 2.18E-07 | 0.000389 | 0.1 |
2.01E-05 | 0.004323 | 2.17E-05 | 0.003897 | 1.0 |
-0.056137 | 0.166779 | 0.116504 | -0.018474 | 23.0 |
0.113203 | 0.267329 | 0.313763 | 0.479758 | 100.0 |
0.989947 | 0.032453 | 0.514424 | -0.426401 | 350.0 |
The finite element method software are configured to realize the viscoelastic material routine by the property implementation of the frequency data test. Once the data are introduced on the software, we need to apply a load on the internal intima surface, simulating the pressure caused by a blood flow rate of 120/80 mmHg as shown on Figure 4 [37], and a constant load pressure on the exterior externa surface due to muscular compression originated by the muscles that round the artery, the temperature of the body will be consider constant, the extremes of the aorta are fixed by a constraint option and for last the interaction between the layers is set as a tie restriction.
The result of the solid's deformation is shown on top of Figure 5, where the simulation exhibit a tendency or pattern of the deformation route and not necessarily the real deformation, the behavior showed by the artery concord with those founded and predicted previously by [24,19].
In Figure 5 the efforts of von Mises also known as equivalent efforts are show since these are obtained from a relationship that combines the main efforts in an equivalent effort that can be used to compare with the effort of transfer of the analyzed material. The values of the von Mises stress obtained in this research are consistent with previously developed investigations in the experimental field where values of 0.213 MPa for blood pressure of 120mmHg are reported, which coincides with the results obtained by simulation using the viscoelastic fractional method.
In previous research it is founded that the area where the maximum stress values are presented, is distributed in the intimate layer of the artery and is located in the place where it changes its geometry, that is, where there is a change in artery curvature [40].
Finally, Figure 6 shows the distribution of internal pressure caused by blood flow where 0.03MPa pressure zones are identified in general and some 0.098MP maximum pressure zones, which is consistent with the results previously published by Holzapfel [41]
The results obtained were compared with experiments carried out in 2014, where fractional models have been used to characterize various soft tissues, showing that the parameters determined in the research are within the range of those previously found [24,25,19].
The stress distribution and the maximum values funded in the research concords with those previously reported by Holzapfel [40,41], using an hyperelastic model with prony series.
First we obtained the reconstruction of a segment of the aortic artery based on medical images obtained from a computerized axial tomography scanner, using the Hounsfield scale we could identify each of its three constituent layers (intima, media and adventitia). In addition, the process of exporting the medical image in a vectorized geometry was carried out with which it was possible to export to a solid form, that could be manipulated in a finite element software.
Compared with previous works where simulations of the biomechanical effects of the artery were performed using geometric idealizations, considering the layers of the artery as perfect cylinders, it was observed that when doing this what is had for the state of stress consists of a distribution perfectly symmetrical of the stresses, and in the case of the state of deformations in the same way there is a constant deformation in all directions of the solid. However, the geometry of the artery does not consist of a series of cylinders, so it was found in the development of the investigation that the distribution of stress has its local maximum, speaking of von Mises stress, at the point where the artery presents a change in curvature that generates a great deformation at that point, unlike to a uniform deformation, will end up affecting more to one end of the artery.
In this paper we shown that viscoelastic fractional models represents properly the mechanical behavior of the aortic artery, based on a uniaxial simple model.
In addition, it has been proven that with the viscoelastic fractional model, values similar to those previously provided in the literature are obtained without the use of prony series, which considerably reduces the computation time required.
We want to thankful the institutions that supported the present research project, Tecnológico Nacional de México / Instituto Tecnológico Superior de Cajeme, the Biomechanics Investigation Group from Universidad Tecnológica de la Habana, La Habana, Cuba and the Pontificia Universidad Católica de Valparaíso, Chile.
All authors declare no conflicts of interest in this paper.
[1] |
K. Huang, T. Fu, L. M. Glass, M. Zitnik, C. Xiao, J. Sun, DeepPurpose: a deep learning library for drug–target interaction prediction, Bioinformatics, 36 (2020), 5545–5547. https://doi.org/10.1093/bioinformatics/btaa1005 doi: 10.1093/bioinformatics/btaa1005
![]() |
[2] |
T. U. Singh, S. Parida, M. C. Lingaraju, M. Kesavan, D. Kumar, R. K. Singh, Drug repurposing approach to fight COVID-19, Pharmacol. Rep., 72 (2020), 1479–1508. https://doi.org/10.1007/s43440-020-00155-6 doi: 10.1007/s43440-020-00155-6
![]() |
[3] |
R. Yan, Y. Zhang, Y. Li, L. Xia, Y. Guo, Q. Zhou, Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science, 367 (2020), 1444–1448. https://doi.org/10.1126/science.abb2762 doi: 10.1126/science.abb2762
![]() |
[4] | A. Elfiky, N. S. Ibrahim, Anti-SARS and anti-HCV drugs repurposing against the Papain-like protease of the newly emerged coronavirus (2019-nCoV), preprint. https://doi.org/10.21203/rs.2.23280/v1 |
[5] | R. Arya, A. Das, V. Prashar, M. Kumar, Potential inhibitors against papain-like protease of novel coronavirus (COVID-19) from FDA approved drugs, preprint, chemrXiv. https://doi.org/10.26434/chemrxiv.11860011 |
[6] |
D. Zhang, K. Wu, X. Zhang, S. Deng, B. Peng, In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus, J. Integr. Med., 18 (2020), 152–158. https://doi.org/10.1016/j.joim.2020.02.005 doi: 10.1016/j.joim.2020.02.005
![]() |
[7] |
A. S. Hauser, M. M. Attwood, M. Rask-Andersen, H. B. Schiöth, D. E. Gloriam, Trends in GPCR drug discovery: new agents, targets and indications, Nat. Rev. Drug Discovery, 16 (2017), 829–842. https://doi.org/10.1038/nrd.2017.178 doi: 10.1038/nrd.2017.178
![]() |
[8] | N. Wang, Y. Li, S. Liu, L. Gao, C. Liu, X. Bao, et al., Bioinformatics analysis and validation of differentially expressed microRNAs with their target genes involved in GLP-1RA facilitated osteogenesis, Curr. Bioinf., 16 (2021), 928–942. https://dx.doi.org/10.2174/1574893615999200508091615 |
[9] |
D. Weininger, SMILES: a chemical language and information system, J. Chem. Inf. Comput. Sci., 28 (1988), 31–36. https://doi.org/10.1021/ci00057a005 doi: 10.1021/ci00057a005
![]() |
[10] |
B. R. Beck, B. Shin, Y. Choi, S. Park, K. Kang, Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model, Comput. Struct. Biotechnol. J., 18 (2020), 784–790. https://doi.org/10.1016/j.csbj.2020.03.025 doi: 10.1016/j.csbj.2020.03.025
![]() |
[11] | T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in Proceedings of the International Conference on Learning Representations (ICLR), (2017). https://arXiv.org/abs/1609.02907 |
[12] |
H. Jiang, P. Cao, M. Xu, J. Yang, Z. Osmar, Hi-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction, Comput. Biol. Med., 127 (2020), 104096. https://doi.org/10.1016/j.compbiomed.2020.104096. doi: 10.1016/j.compbiomed.2020.104096
![]() |
[13] | P. Veličković, G. Cucurull, A. Casanova, A. Romero, P Liò, Y. Bengio, Graph attention networks, in Proceedings of the International Conference on Learning Representations (ICLR), (2018). https://doi.org/10.17863/CAM.48429 |
[14] |
C. Yang, P. Wang, J. Tan, Q. Liu, X. Li, Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks, Comput. Biol. Med., 139 (2021), 104963–104963. https://doi.org/10.1016/j.compbiomed.2021.104963 doi: 10.1016/j.compbiomed.2021.104963
![]() |
[15] | K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?, in Proceedings of the International Conference on Learning Representations (ICLR), 2019. https://arXiv.org/abs/1810.00826 |
[16] |
H. Öztürk, A. Özgür, E. Ozkirimli, DeepDTA: deep drug-target binding affinity prediction, Bioinformatics, 34 (2018), 821–829. https://doi.org/10.1093/bioinformatics/bty593 doi: 10.1093/bioinformatics/bty593
![]() |
[17] | H. Öztürk, E. Ozkirimli, A. Özgür, WideDTA: prediction of drug-target binding affinity, preprint, arXiv: 1902.04166. https://arXiv.org/abs/1902.04166v1 |
[18] | X. Guo, W. Zhou, B. Shi, et al., An efficient multiple kernel support vector regression model for assessing dry weight of hemodialysis patients, Curr. Bioinf., 16 (2021), 284–293. https://dx.doi.org/10.2174/1574893615999200614172536 |
[19] |
N. J. Reynolds, S. W. Mccombie, B. B. Shankar, W. R. Bishop, G. J. Fisher, SCH 47112, a novel staurosporine derivative, inhibits 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and epidermal hyperplasia in hairless mouse skin, Arch. Dermatol. Res., 289 (19979), 540–546. https://doi.org/10.1007/s004030050236 doi: 10.1007/s004030050236
![]() |
[20] |
I. Kruman, Q. Guo, M. P. Mattson, Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells, J. Neurosci. Res., 51 (1998), 293–308. https://doi.org/10.1002/(SICI)1097-4547(19980201)51:3<293::AID-JNR3>3.0.CO;2-B doi: 10.1002/(SICI)1097-4547(19980201)51:3<293::AID-JNR3>3.0.CO;2-B
![]() |
[21] |
Y. Mizushina, N. Maeda, I. Kuriyama, H. Yoshida, Dehydroaltenusin is a specific inhibitor of mammalian DNA polymerase α, Expert Opin. Invest. Drugs, 20 (2011), 1523. https://doi.org/10.1517/13543784.2011.619977 doi: 10.1517/13543784.2011.619977
![]() |
[22] |
E Fliszár-Nyúl, B. Lemli, S. Kunsági-Máté, L. Dellafiora, C. Dall'Asta, G. Cruciani, et al., Interaction of mycotoxin alternariol with serum albumin, Int. J. Mol. Sci., 20 (2019), 2352. https://doi.org/10.3390/ijms20092352 doi: 10.3390/ijms20092352
![]() |
[23] |
J. Duan, Y. Guan, F. Mu, C. Guo, E. Zhang, Y. Yin, et al., Protective effect of butin against ischemia/reperfusion-induced myocardial injury in diabetic mice: involvement of the AMPK/GSK-3β/Nrf2 signaling pathway, Sci. Rep., 7 (2017), 41491. https://doi.org/10.1038/srep41491 doi: 10.1038/srep41491
![]() |
[24] |
S. Howard, V. Berdini, J. A. Boulstridge, M. G. Carr, D. M. Cross, J. Curry, et al., Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity, J. Med. Chem., 52 (2009), 379–388. https://doi.org/10.1021/jm800984v doi: 10.1021/jm800984v
![]() |
[25] |
H. Li, Y. Gong, Y. Liu, H. Lin, G. Wang, Detection of transcription factors binding to methylated DNA by deep recurrent neural network, Briefings Bioinf., 2021 (2021), https://doi.org/10.1093/bib/bbab533. doi: 10.1093/bib/bbab533
![]() |
[26] |
L. Zhang, Y. Yang, L. Chai, Q. Li, J. Liu, H. Lin, et al., A deep learning model to identify gene expression level using co-binding transcription factor signals, Briefings Bioinf., 2021 (2021), https://doi.org/10.1093/bib/bbab501 doi: 10.1093/bib/bbab501
![]() |
[27] |
H. Lv, L. Shi, J. W. Berkenpas, F. Y. Dao, H. Zulfiqar, H. Ding, et al., Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design, Briefings Bioinf., 22 (2021), 1–10. https://doi.org/10.1093/bib/bbab320 doi: 10.1093/bib/bbab320
![]() |
[28] | Z. Chen, Q. Zhou, A. Khan, J. Jill, R. Xiong, X. Liu, New trends of deep learning in clinical cardiology, Curr. Bioinf., 16 (2021), 954–962. https://dx.doi.org/10.2174/1574893615999200719234517 |
1. | Qiyin Lv, Yuan Zhang, Ping He, Yao Chen, Yiwen Wang, Negative Poisson’s ratio artificial blood vessel skeleton multi-objective optimization design and numerical modelling, 2025, 0954-4062, 10.1177/09544062241312888 |
Omega g∗ | Omega g∗ | Omega k∗ | Omega k∗ | Frecuency |
real | imag | real | imag | Hz |
2.02E-11 | 4.32E-06 | 2.18E-11 | 3.94E-06 | 0.001 |
2.02E-09 | 4.32E-05 | 2.18E-09 | 0.000038 | 0.01 |
2.02E-07 | 0.000432 | 2.18E-07 | 0.000389 | 0.1 |
2.01E-05 | 0.004323 | 2.17E-05 | 0.003897 | 1.0 |
-0.056137 | 0.166779 | 0.116504 | -0.018474 | 23.0 |
0.113203 | 0.267329 | 0.313763 | 0.479758 | 100.0 |
0.989947 | 0.032453 | 0.514424 | -0.426401 | 350.0 |
Omega g∗ | Omega g∗ | Omega k∗ | Omega k∗ | Frecuency |
real | imag | real | imag | Hz |
2.02E-11 | 4.32E-06 | 2.18E-11 | 3.94E-06 | 0.001 |
2.02E-09 | 4.32E-05 | 2.18E-09 | 0.000038 | 0.01 |
2.02E-07 | 0.000432 | 2.18E-07 | 0.000389 | 0.1 |
2.01E-05 | 0.004323 | 2.17E-05 | 0.003897 | 1.0 |
-0.056137 | 0.166779 | 0.116504 | -0.018474 | 23.0 |
0.113203 | 0.267329 | 0.313763 | 0.479758 | 100.0 |
0.989947 | 0.032453 | 0.514424 | -0.426401 | 350.0 |