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Abstract: Research on the relationship between drugs and targets is the key to precision medicine. Ion 
channel is a kind of important drug targets. Aiming at the urgent needs of corona virus disease 2019 
(COVID-19) treatment and drug development, this paper designed a mixed graph network model to 
predict the affinity between ion channel targets of COVID-19 and drugs. According to the simplified 
molecular input line entry specification (SMILES) code of drugs, firstly, the atomic features were 
extracted to construct the point sets, and edge sets were constructed according to atomic bonds. Then 
the undirected graph with atomic features was generated by RDKit tool and the graph attention layer 
was used to extract the drug feature information. Five ion channel target proteins were screened from 
the whole SARS-CoV-2 genome sequences of NCBI database, and the protein features were extracted 
by convolution neural network (CNN). Using attention mechanism and graph convolutional network 
(GCN), the extracted drug features and target features information were connected. After two full 
connection layers operation, the drug-target affinity was output, and model was obtained. Kiba dataset 
was used to train the model and determine the model parameters. Compared with DeepDTA，WideDTA， 
graph attention network (GAT)，GCN and graph isomorphism network (GIN) models, it was proved 
that the mean square error (MSE) of the proposed model was decreased by 0.055, 0.04, 0.001, 0.046, 
0.013 and the consistency index (CI) was increased by 0.028, 0.016, 0.003, 0.03 and 0.01, respectively. 
It can predict the drug-target affinity more accurately. According to the prediction results of drug-target 
affinity of SARS-CoV-2 ion channel targets, seven kinds of small molecule drugs acting on five ion 
channel targets were obtained, namely SCH-47112, Dehydroaltenusin, alternariol 5-o-sulfate, LPA1 
antagonist 1, alternariol, butin, and AT-9283.These drugs provide a reference for drug repositioning 
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and precise treatment of COVID-19. 

Keywords: COVID-19; graph neural network; attention mechanism; drug-target affinity; drug 
repositioning 

 

1. Introduction 

COVID-19 has caused huge losses and led to great health and economic burdens to the world. 
Currently, drug discovery for COVID-19 caused by SARS-CoV-2 is still ongoing. Accurate prediction 
of drug-target interactions (DTI) is crucial for drug discovery. Recently, deep learning models have 
been used for DTI prediction and drug repurposing of COVID-19. Huang et al. presents DeepPurpose, 
a comprehensive deep learning library for DTI prediction [1]. Number of drugs such as remdesivir, 
favipiravir, lopinavir have shown inhibitory effects against the SARS-CoV2 in-vitro as well as in 
clinical conditions [2].The mainly targets of SARS-CoV-2 include S protein, angiotensin converting 
enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), 3CLpro, RNA-dependent RNA 
polymerase (RdRp), etc. Zhou’s team of Westlake University analyzes the electron micros-copy 
structure of complexes between S protein and ACE2 [3]. The ACE2 receptor recognized by the S 
protein and TMPRSS2 have also been identified as potential targets, they are both key molecules in 
the initial stage of viral invasion of the host. There are already several drugs that can target ACE2, 
including captopril, propofol and tiliquinol, and some polypeptides and antibody drugs, but their anti-
SARS-CoV-2 activity is unknown. Egyptian scientists use high-resolution PLpro crystals of SARS-
CoV as a template to predict the structure, and predict the binding ability of several anti-SARS-CoV 
PLpro and anti-HCV NS3 drugs to novel coronavirus PLpro using docking method [4]. Similarly, some 
studies have screened 2525 FDA-listed drugs in the ZINC database using the structure of homology 
modeling, and found 16 molecules with strong affinity [5]. Chinese scientists obtains 7 molecules that 
could bind PLpro from traditional natural compounds by using ADME filtration and molecular docking, 
and search Chinese medicines containing these ingredients [6]. However, these above methods have 
shortcoming in the drug-target interaction prediction Accurate drug-target interactions plays a key role 
in drug repositioning, which can not only deepen the understanding of drug action, but also reposition 
drugs from the perspective of pharmacology. 

Most drug targets come from enzymes, G-protein-coupled receptors (GPCRs), ion channels and 
nuclear receptors, which account for 88% of the total drug targets [7,8]. Ion channels are composed of 
a special class of proteins, which are assembled and embedded on the cell membrane to form a pathway 
that allows the rapid transport of inorganic ions across the cell membrane. Ion channels are involved 
in a variety of important biological functions, such as cell excitation, muscle contraction, gland 
secretion, nervous system development, and regulation of gene expression. The occurrence and 
development of many diseases (such as neuropathic pain, arrhythmia, hypertension, etc.) are related to 
the dysfunction of ion channels. Therefore, ion channels have become one of the classic targets for 
pharmaceutical companies to study. 

Therefore, a DTI prediction model for COVID-19 based on graph network and ion channels was 
proposed in this paper. Firstly, the atomic features were extracted, and the undirected graph was 
generated by RDKit tool. The sequence of each target protein was regarded as a string recognized by 
computer, and the features of the sequences were extracted by convolution neural network. Attention 
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mechanism and graph convolution net-work were used to predict the drug-target affinity and screen 
drugs that act on the target proteins of SARS-CoV-2. 

The main contributions of this paper are as follows: (1) graph representation learning of drugs 
based on attention mechanism to achieve drug feature extraction; (2) a mixed graph network model 
was constructed to predict drug-target affinity; (3) seven drugs acting on SARS-CoV-2 target proteins 
were found from the prediction results, which provided a reference for drug repositioning. 

2. Materials and methods 

2.1. Graph representation of drugs 

SMILES, developed by David Weininger is a standard language for expressing molecular 
structures with ASCII strings. Using this language, chemical formulas can be converted and stored in 
the form of text in computers [9]. For each drug, according to its SMILES code, RDKit is used to 
construct the molecular graph, which serves as the input of the graph convolutional network. The nodes 
of the graph represent the features of the drug atoms, and the edges represent the bonds between the 
atoms. The feature vector of a drug atom was composed of five features: atom type, atomic level, total 
number of hydrogen, implicit value of atom, and whether the atom is aromatic. 

2.2. Ion channel target proteins of COVID-19 

The amino acid sequences of SARS-CoV-2 ion channel target proteins were extracted from the 
whole SARS-CoV-2 genome sequences (accession NC_045512.2) of the Nation-al Center for 
Biotechnology Information (NCBI) database. They were 3C-like proteinase (YP_009725301.1), RNA-
dependent RNA polymerase (YP_009725307), helicase (YP_009725308.1), 3'-to-5' exonuclease 
(YP_009725309.1) and 2'-O-ribose methyltransferase (YP_009725311.1), respectively [10]. 

2.3. Graph convolutional network 

GCN is a graph-based convolutional network model proposed in 2017 [11,12]. The formula is as 
follows: 

 
    1 11

2 2σl
l lH D AD H W

             (1) 

where  1lH   is the output matrix of layer l,  lW  is the weight matrix of layer l,  lH  is the input 
matrix. σ is the activation function, and the ReLU function is usually used. D  is the degree matrix, 
A  = A + I, where A is the adjacency matrix of node i in the graph, and I is the identity matrix with the 
same shape as A, i.e., the physical meaning of which is to consider its own features information when 
calculating node features. 

2.4. Graph attention network 

GAT proposes an attention-based architecture to learn hidden representations of nodes in a graph 
by applying a self-attention mechanism [13,14]. Its principle is to obtain the attention coefficient of a 
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certain node and its neighbor nodes, and then perform a weighted summation of all surrounding 
neighbor nodes according to the attention coefficient, and then obtain the feature value of this node after 
the neighbor nodes are aggregated. The calculation formula of the attention coefficient is as follows: 

exp(LeakyReLU( [ || ]))

exp(LeakyReLU( [ || ])
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where vector iH


 and vector jH


 are transformed with the learnable parameter W and connected, and 

then multiplied by a learnable parameter AT  to obtain the attention of node i and node j. LeakyReLU 
function is used as an activation function and finally get the attention coefficients of node i and j. The 
node feature formula is as follows: 
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          (3) 

After the training of the attention coefficient, all neighbor node vectors jH


  of node i are 

aggregated with the attention coefficient, and then W is used. In this way, the features of node i and all 
its neighbor nodes are aggregated and taken as the output features of the node. The formula of multi-
head attention is as follows: 

|| σ( )
i
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         (4) 

where K is the number of attention heads. When calculating the attention coefficient of node i and node 
j, the relationship between them is considered for several times. The number of considerations is the 
head parameter and can be controlled artificially. This multi-attention mechanism is improved the 
correlation between nodes. 

2.5. Graph isomorphism network 

GIN is an improved GCN model proposed by Keyulu et al. [15] in 2019. The formula is as follows: 

( ) ( ) ( ) ( 1) ( 1)MLP ((1 ) )
i

k k k k k
o i u n uh h h  

          (5) 

where multilayer perceptron (MLP) is a multi-layer perceptron, hi is the input feature vector of the k-
layer perceptron, hi is the output vector, hu is the feature vector of adjacent nodes, and ε is the offset, 
which can be set manually. 

2.6. Drug-target affinity prediction model based on mixed graph network 

In this paper, we proposed a mixed graph network model based on GAT and GCN for regression 
prediction of drug-target affinity. The model framework is shown in Figure 1. 

Firstly, SMILES was converted to a molecular graph, then a deep learning algorithm was adopted 
to learn graph representation. The advantages of GCN and GAT model were used to improve the 
accuracy of feature extraction. Protein sequence was encoded and embedded, then several CNN layers 
were used to learn sequence representation. Then two representation features were cascaded and 
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undergo two fully connected layers, and finally the drug-target affinity was output. 

SMILES

Cc1cc(O)cc2oc(=O)c3c(O)cc(O)cc3c12

GAT Layers FC Layer

Protein Sequences

SGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVYC
PRHVICTSEPNYEDLLIRKSNHNFLVQAGNVQLRVIGHSM
QNCVLKLKVDTANPKTFVRIQPGQTFSVLACYNGSPSGV
YQCAMRPNFTIKGSFLNGSCGSVGYDCVSFCYMHHMELP
TGVHAGTDLEGNFYGPFVDRQTAQAAGTDTTILAWLYA
AVINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDI

Embedding Layer

Convolution Layers Max Pooling Y

A1 A3

A2

A5

A4

Molecular Graph

Output

GCN Layers Graph Pooling

 

Figure 1. Framework of drug-target affinity prediction model based on mixed graph network. 

3. Experiments and results 

3.1. Dataset and feature extraction 

To compare with DeepDTA [16] and WideDTA [17], we ran our model on the same dataset used 
in these works. KIBA dataset including 2116 drugs and 229 targets and 118,254 binding affinities. The 
affinity value ranges from 0.0 to 17.2. 98545 binding affinities were used for training and 19709 
binding affinities were used for testing the models. Datasets used in this paper are publicly available 
at http://www.ddccnn.wang/CovidData. GetNumAtoms method was used to obtain the total number 
of atoms in drug molecules, GetBonds method was used to traverse the bonds, and then GetBeginAtom 
method and GetEndAtom method were used respectively to obtain chemical index values of the initial 
atomic and end the index values of the atom, after that the information for undirected graph nodes was 
created. In order to improve the computational performance and reduce the waste of computational 
resources, information such as drug molecular graph, target sequence and drug-target affinity was 
packaged and combined into a data unit. Therefore, the training process can be performed only by 
directly reading the packaged data unit. 

3.2. Evaluation index 

The same evaluation indexes as WideDTA were used in this paper to judge the prediction ability 
of the model, namely MSE and CI [18]. 

MSE is the mean of the sum of squares of the difference between the predicted value and the true 
value. The smaller the calculated result is, the more accurate the predicted value is, which is defined 
as follows: 

2

=1

1
MSE( , )= (y - )

m

i

y f i im
f          (6) 

CI is used to judge the accuracy of the model. The more the calculation result tends to 1, the 
higher the accuracy of the trained model is. It is defined as follows: 
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where, y is the true label of drug-target affinity, f is the predicted value of drug-target affinity, and the 
h(n) is defined as follows: 
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          (8) 

3.3. Experimental environments 

The experimental machine was configured as Intel(R) Core(TM) i7-6800K at 2.30GHz, with 
64GB memory of CPU and NVIDIA Titan XP of GPU. PyTorch was used to implement the model. 
The experimental environments were Python 3.7, CUDA 10.1, Keras 2.2.5, Numpy 1.19.5, and 
PyTorch 1.2.0. Adaptive moment estimation (ADAM) optimizer was applied to train the model, with 
a default learning rate of 0.0005 and a training batch size of 512. The mixed model integrates the 
advantages of the GAT and GCN models in series to obtain better model performance. The output 
channel of the GAT layer is 78, the number of attention nodes is 10. And the output channel of the 
GCN layer is 780. The results were mapped to a 128D feature vectors in the output layer. 

3.4. Results analysis 

3.4.1. Prediction results of drug-target affinity 

To verify the performance of the proposed model, DeepDTA, WideDTA, GCN, GAT and GIN 
models were compared with the proposed model under the same dataset and conditions. The 
comparison results are shown in Table 1. 

Table 1. Evaluation index table of model prediction results. 

Model MSE CI 

DeepDTA 0.194 0.863  

WideDTA 0.179 0.875 

GCN 0.140 0.888 

GAT 0.185 0.861 

GIN 0.152 0.881 

GAT_GCN_mix 0.139 0.891 

By comparing with DeepDTA, WideDTA, GAT, GCN and GIN models, it is proved that MSE of 
the proposed model is decreased by 0.055, 0.04, 0.001, 0.046, 0.013, and CI is increased by 0.028, 
0.016, 0.003, 0.03, 0.01, respectively. It can be seen that the performance of the mixed network model 
is better than that of previous model, indicating that in the process of graph feature extraction, the 
mixed network model combines the advantages of the GCN and the GAT to obtain a certain effect. 

In the KIBA dataset, the GCN model overall is slightly better than the GAT model, indicating that 
convolution is a good choice to solve the problem of graphs. If the graph attention network is 
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introduced before the GCN model, the prediction effect will be better than that of pure convolution 
network. Therefore, continuous attempts and innovation are conducive to finding better solutions. 

3.4.2. Visualization of prediction results of drug-target interaction network 

The drug-target interaction network was drawn using Cytoscape software to realize the 
visualization of the prediction results of the model. There were 10555 interaction relationships in the 
KIBA dataset for five targets of SARS-CoV-2, and the first 87 interaction relationships were screened 
under the binding affinity > 13.5 condition to construct drug-target interaction network. As shown in 
Figure 2, red circles represent drugs and green diamonds represent targets. The degree of correlation 
between the drug and the target is represented by the color and size of the drug. The lighter the color 
and the smaller the shape, the worse the correlation; the darker the color and the larger the shape, the 
stronger the correlation. Through the diagram, the interaction relationships between drugs and targets 
can be understood more intuitively. 

The drugs in Tables 2–6 are intersected to obtain 7 drugs targeting 5 ion channel target 
proteins of SARS-CoV-2, which are CHEMBL483525, CHEMBL291126, CHEMBL519982, 
CHEMBL495727, CHEMBL83790, CHEMBL520144 and CHEMBL483526, and their 
corresponding drug molecules are alternariol 5-O-sulfate, SCH-47112, alternariol, AT-9283, LPA1 
antagonist 1, dehydroaltenusin, butin. The affinities and average values of the 7 drugs screened by 
the model established in this paper for 5 target proteins of SARS-CoV-2 are shown in Table 7, and 
the Venn diagram of the targets and the drugs is shown in Figure 3. 

 

Figure 2. Drug-target interaction network. 
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3.4.3. Drug repositioning of COVID-19 based on ion channel targets 

The prediction results for 5 ion channel targets of SARS-CoV-2 are shown in Tables 2–6 
respectively, including ChemBL ID, small molecule drugs, SMILES code, and drug-target affinity 
(The name of some small drug molecules have not found). 

Table 2. Prediction results of drug-target interaction of 3C-like proteinase (YP_009725301.1). 

CHEMBL ID Small 

molecules 

SMILES Affinity 

CHEMBL162621 Undefined N#CC1=C(c2c(c3cc4ccccc4s3)n(CCCSC(=N)N)c3ccccc23)C(=O)

NC1=O 

14.227 

CHEMBL520144 Dehydroatenu

sin 

COc1cc(O)c2c(=O)oc3c(O)c(O)cc(C)c3c2c1 14.207 

CHEMBL291126 SCH-47112 O=C1NC(=O)c2c1c1c3ccccc3n3c1c1c2c2ccccc2n1C1OC3CC1CO 14.164 

CHEMBL483525 Altenariol 

5-O-Sulfate 

Cc1cc(O)cc2oc(=O)c3c(O)cc(OS(=O)(=O)O)cc3c12 14.086 

CHEMBL519982 Altenariol Cc1cc(O)cc2oc(=O)c3c(O)cc(O)cc3c12 13.957 

CHEMBL483526 Butin COc1cc(O)c2c(=O)oc3cc(O)cc(C)c3c2c1 13.891 

CHEMBL512054 Altersolanol A COc1cc(O)c2c(c1)C(=O)C1=C(C2=O)C(O)C(O)C(C)(O)C1O 13.880 

CHEMBL554993 Alterporriol 

G/H 

COc1cc2c(c(O)c1c1c(OC)cc(O)c3c1C(=O)C1=C(C3=O)C(O)C(O)

C(C)(O)C1O)C(=O)c1cc(O)c(C)cc1C2=O 

13.815 

CHEMBL83790 LPA1 

antagonist 1 

CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6cc(O)ccc6n2c5c31

)C(=O)NC4 

13.801 

CHEMBL162903 Undefined N#CC1=C(c2c(c3cc4ccccc4s3)n(CCCN)c3ccccc23)C(=O)NC1=O 13.717 

CHEMBL483532 Desmethylalte

nusin 

Cc1cc(O)c(O)cc1-c1cc(O)cc(O)c1C(=O)O 13.702 

CHEMBL556684 6-O-

methylalaterni

n 

COc1cc(O)c2c(c1)C(=O)c1cc(C)c(O)c(O)c1C2=O 13.678 

CHEMBL521470 Altertoxi I O=C1CC(O)C2c3c(ccc(O)c31)c1ccc(O)c3c1C2(O)CCC3=O 13.648 

CHEMBL483531 Altenusin COc1cc(O)c(C(=O)O)c(c2cc(O)c(O)cc2C)c1 13.613 

CHEMBL6291 Bisindolylmal

eimide IX 

Cn1cc(C2=C(c3cn(CCCSC(=N)N)c4ccccc3) 

C(=O)NC2=O)c2ccccc21 

13.570 

CHEMBL127039

9 

Undefined Cc1cn2c(c3cn[nH]c3)cnc2c(Nc2cc(C(C)N3CC(C)OC(C)C3)ns2)n1 13.567 

CHEMBL60254 Balanol O=C(NC1CNCCCC1OC(=O)c1cc(O)c(C(=O)c2c(O)cccc2C(=O)O

)c(O)c1)c1ccc(O)cc1 

13.563 

CHEMBL519395 Alterna 

rienonic Acid 

COc1cc(O)c(C(=O)O)c(C2=C(C)CC(O)C2=O)c1 13.561 

CHEMBL523586 Undefined NCC(Cc1cccc(F)c1)NC(=O)c1cc(Br)c(c2ccnc3[nH]ccc23)s1 13.559 

CHEMBL329274 QD-325 O=C1NC(=O)C(n2ccc3ccccc32)=C1n1ccc2ccccc21 13.543 

CHEMBL495727 AT-9283 O=C(NC1=CNNC1=C1N=c2ccc(CN3CCOCC3)cc2=N1)NC1CC1 13.534 

  



3277 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 3269–3284. 

Table 3. Prediction results of drug-target interaction of 2'-O-ribose methyltransferase 
(YP_009725311.1). 

CHEMBL ID Small 

molecules 

SMILES Affinity 

CHEMBL162621 Undefined N#CC1=C(c2c(-c3cc4ccccc4s3)n 

(CCCSC(=N)N)c3ccccc23)C(=O)NC1=O 

13.960  

CHEMBL520144 Dehydroalte

nusin 

COc1cc(O)c2c(=O)oc3c(O)c(O)cc(C)c3c2c1 13.927  

CHEMBL291126 SCH-47112 O=C1NC(=O)c2c1c1c3ccccc3n3c1c1c2c2ccccc2n1C1OC3CC1CO 13.903  

CHEMBL519982 Alternariol Cc1cc(O)cc2oc(=O)c3c(O)cc(O)cc3c12 13.856  

CHEMBL83790 LPA1  

antagonist 1 

CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6cc(O)ccc6n2c5c31

)C(=O)NC4 

13.831  

CHEMBL483525 Alternariol 

5-O-Sulfate 

Cc1cc(O)cc2oc(=O)c3c(O)cc(OS(=O)(=O)O)cc3c12 13.825  

CHEMBL483526 Butin COc1cc(O)c2c(=O)oc3cc(O)cc(C)c3c2c1 13.729  

CHEMBL554993 Alterporriol 

G/H 

COc1cc2c(c(O)c1-c1c(OC)cc(O)c3c1C(=O) 

C1=C(C3=O)C(O)C(O)C(C)(O)C1O)C(=O)c1cc(O)c(C)cc1C2=O 

13.573  

CHEMBL1980995 Staurosporin

e 

CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(

=O)NC4 

13.532  

CHEMBL483532 Desmethylal

tenusin 

Cc1cc(O)c(O)cc1-c1cc(O)cc(O)c1C(=O)O 13.522  

CHEMBL495727 AT-9283 O=C(NC1=CNNC1=C1N=c2ccc(CN3CCOCC3)cc2=N1)NC1CC1 13.519  

Table 4. Prediction results of drug-target interaction of RNA-dependent RNA polymerase 
(YP_009725307). 

CHEMBL ID Small molecules SMILES Affinity 

CHEMBL213618 N-[(1S)-2-AMINO-

1-(2,4-

DICHLOROBENZ

YL)ETHYL]-5-[2-

(METHYLAMINO

)PYRIMIDIN-4-

YL]THIOPHENE-

2-

CARBOXAMIDE 

CNc1nccc(c2ccc(C(=O)NC(CN)Cc3ccc(Cl)cc3Cl)s2)n1 14.524 

CHEMBL523586 N-[(1S)-2-amino-1-

phenylethyl]-5-(1H-

pyrrolo[2,3-

b]pyridin-4-

yl)thiophene-2-

carboxamide 

NCC(Cc1cccc(F)c1)NC(=O)c1cc(Br)c(c2ccnc3[nH]ccc23)s1 14.501 

Continued on next page
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CHEMBL ID Small molecules SMILES Affinity 

CHEMBL199812

1 

N-(5-{[(2S)-4-

amino-2-(3-

chlorophenyl)butan

oyl]amino}-1H-

indazol-3-

yl)benzamide 

NCCC(C(=O)Nc1ccc2[nH]ncc2c1)c1ccc(Cl)c(Cl)c1 14.167 

CHEMBL291126 SCH-47112 O=C1NC(=O)c2c1c1c3ccccc3n3c1c1c2c2ccccc2n1C1OC3C

C1CO 

13.974  

CHEMBL83790 LPA1 antagonist 1 CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6cc(O)ccc6n2c

5c31)C(=O)NC4 

13.822  

CHEMBL200175

1 

EGFR-IN-9 NC(COc1cncc(-

c2ccc3c(c2)C(=Cc2ccco2)C(=O)N3)c1)Cc1c[nH]c2ccccc12 

13.806  

CHEMBL495727 AT-9283 O=C(NC1=CNNC1=C1N=c2ccc(CN3CCOCC3)cc2=N1)NC1

CC1 

13.796  

CHEMBL198099

5 

Staurosporine CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c

31)C(=O)NC4 

13.702  

CHEMBL520144 Dehydr 

oaltenusin 

COc1cc(O)c2c(=O)oc3c(O)c(O)cc(C)c3c2c1 13.695  

CHEMBL197233

9 

Undefined Cc1[nH]nc2ccc(-c3nnn(Cc4ccccc4)c3-c3ccc(F)cc3)cc12 13.694  

CHEMBL483525 Altenariol 5-O-

Sulfate 

Cc1cc(O)cc2oc(=O)c3c(O)cc(OS(=O)(=O)O)cc3c12 13.686  

CHEMBL127039

9 

Undefined Cc1cn2c(c3cn[nH]c3)cnc2c(Nc2cc(C(C)N3CC(C)OC(C)C3)n

s2)n1 

13.653  

CHEMBL519982 Altenariol Cc1cc(O)cc2oc(=O)c3c(O)cc(O)cc3c12 13.607  

CHEMBL504075 PKI-166 

hydrochloride 

Cc1cccc(C(=O)Nc2cccc(C(C)Nc3cncc(Cl)n3)c2)c1 13.570  

CHEMBL60254 Balanol O=C(NC1CNCCCC1OC(=O)c1cc(O)c(C(=O)c2c(O)cccc2C(

=O)O)c(O)c1)c1ccc(O)cc1 

13.546  

CHEMBL483526 Butin COc1cc(O)c2c(=O)oc3cc(O)cc(C)c3c2c1 13.512  

CHEMBL337026 Staurosporine CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c

31)C(=O)NC4=O 

13.504  

Table 5. Prediction results of drug-target interaction of helicase (YP_009725308.1). 

CHEMBL ID Small molecules SMILES Affinity 

CHEMBL520144 Dehydro- 

altenusin 

COc1cc(O)c2c(=O)oc3c(O)c(O)cc(C)c3c2c1 14.244  

CHEMBL483525 Altenariol  

5-O-Sulfate 

Cc1cc(O)cc2oc(=O)c3c(O)cc(OS(=O)(=O)O)cc3c12 14.185  

CHEMBL519982 Altenariol Cc1cc(O)cc2oc(=O)c3c(O)cc(O)cc3c12 14.166  

Continued on next page
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CHEMBL ID Small molecules SMILES Affinity 

CHEMBL291126 SCH-47112 O=C1NC(=O)c2c1c1c3ccccc3n3c1c1c2c2ccccc2n1C1O

C3CC1CO 

14.079  

CHEMBL162621 Undefined N#CC1=C(c2c(c3cc4ccccc4s3)n(CCCSC(=N)N)c3ccccc

23)C(=O)NC1=O 

14.047  

CHEMBL483526 Butin COc1cc(O)c2c(=O)oc3cc(O)cc(C)c3c2c1 14.039  

CHEMBL83790 LPA1  

antagonist 1 

CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6cc(O)cc

c6n2c5c31)C(=O)NC4 

13.980  

CHEMBL554993 Alterporriol G/H COc1cc2c(c(O)c1c1c(OC)cc(O)c3c1C(=O)C1=C(C3=O)

C(O)C(O)C(C)(O)C1O)C(=O)c1cc(O)c(C)cc1C2=O 

13.924  

CHEMBL512054 Altersolanol A COc1cc(O)c2c(c1)C(=O)C1=C(C2=O)C(O)C(O)C(C)(O

)C1O 

13.861  

CHEMBL483532 Desmethylaltenusin Cc1cc(O)c(O)cc1-c1cc(O)cc(O)c1C(=O)O 13.826  

CHEMBL521470 Altertoxin I O=C1CC(O)C2c3c(ccc(O)c31)c1ccc(O)c3c1C2(O)CCC

3=O 

13.796  

CHEMBL556684 6-O-methylalaternin COc1cc(O)c2c(c1)C(=O)c1cc(C)c(O)c(O)c1C2=O 13.754  

CHEMBL519395 Alternarienonic Acid COc1cc(O)c(C(=O)O)c(C2=C(C)CC(O)C2=O)c1 13.729  

CHEMBL198099

5 

Staurosporine CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n

2c5c31)C(=O)NC4 

13.708  

CHEMBL483531 Altenusin COc1cc(O)c(C(=O)O)c(c2cc(O)c(O)cc2C)c1 13.674  

CHEMBL199466

9 

Undefined Cn1cc(Nc2ncc(Br)c(Nc3ccccc3C(N)=O)n2)cn1 13.634  

CHEMBL538718 Ro-32-0557 CN1CC2Cc3c(C4=C(c5cn(C)c6ccccc56)C(=O)NC4=O)c

4ccccc4n3CC2C1 

13.632  

CHEMBL495727 AT-9283 O=C(NC1=CNNC1=C1N=c2ccc(CN3CCOCC3)cc2=N1

)NC1CC1 

13.616  

CHEMBL463054 Macrosporin COc1cc(O)c2c(c1)C(=O)c1cc(C)c(O)cc1C2=O 13.519  

CHEMBL408995 Talaroflvone  COc1cc(O)c2c(c1)C1(OC2=O)C(C)=CC(=O)C1O 13.518  

Table 6. Prediction results of drug-target interaction of the 3'-to-5' exonuclease 
(YP_009725309.1). 

CHEMBL ID Small molcules SMILES Affinity 

CHEMBL83790 LPA1  

antagonist 1 

CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6cc(O)cc

c6n2c5c31)C(=O)NC4 

14.441  

CHEMBL483525 Altenariol  

5-O-Sulfate 

Cc1cc(O)cc2oc(=O)c3c(O)cc(OS(=O)(=O)O)cc3c12 14.138  

CHEMBL291126 SCH-47112 O=C1NC(=O)c2c1c1c3ccccc3n3c1c1c2c2ccccc2n1C1O

C3CC1CO 

14.129  

CHEMBL520144 Dehydroal 

tenusin 

COc1cc(O)c2c(=O)oc3c(O)c(O)cc(C)c3c2c1 14.009  

CHEMBL495727 AT-9283 O=C(NC1=CNNC1=C1N=c2ccc(CN3CCOCC3)cc2=N1

)NC1CC1 

13.999  

Continued on next page
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CHEMBL ID Small molcules SMILES Affinity 

CHEMBL519982 Altenariol Cc1cc(O)cc2oc(=O)c3c(O)cc(O)cc3c12 13.971  

CHEMBL337026 Undefined CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n

2c5c31)C(=O)NC4=O 

13.883  

CHEMBL483526 Butin COc1cc(O)c2c(=O)oc3cc(O)cc(C)c3c2c1 13.812  

CHEMBL1684800 Undefined COc1ccc(Cn2ncc(NC(=O)c3cc(NC(=O)Nc4ccc(Cl)c(C(

F)(F)F)c4)ccc3C)c2N)cc1 

13.752  

CHEMBL162621 Undefined N#CC1=C(c2c(-c3cc4ccccc4s3) 

n(CCCSC(=N)N)c3ccccc23)C(=O)NC1=O 

13.743  

CHEMBL554993 Alterporriol G/H COc1cc2c(c(O)c1-c1c(OC)cc(O)c3c1C(=O) 

C1=C(C3=O)C(O)C(O)C(C)(O)C1O)C(=O)c1cc(O)c(C)

cc1C2=O 

13.716  

CHEMBL512054 Altersolanol A COc1cc(O)c2c(c1)C(=O)C1=C(C2=O)C(O)C(O)C(C)(O

)C1O 

13.640  

CHEMBL521470 Altertoxin I O=C1CC(O)C2c3c(ccc(O)c31)c1ccc 

(O)c3c1C2(O)CCC3=O 

13.604  

CHEMBL1270399 Undefined Cc1cn2c(-c3cn[nH]c3)cnc2c 

(Nc2cc(C(C)N3CC(C)OC(C)C3)ns2)n1 

13.604  

CHEMBL1980995 Staurosporine CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n

2c5c31)C(=O)NC4 

13.585  

CHEMBL2151321 Undefined CC(C)Oc1cc(-n2cnc3ccc(NC(C) 

c4ccc(F)cn4)nc32)[nH]n1 

13.564  

CHEMBL483532 Desmethy 

laltenusin 

Cc1cc(O)c(O)cc1-c1cc(O)cc(O)c1C(=O)O 13.538  

CHEMBL556684 6-O-

methylalaternin 

COc1cc(O)c2c(c1)C(=O)c1cc(C)c(O)c(O)c1C2=O 13.534  

Table 7. Affinity and average values of 7 drugs targeting 5 target proteins of SARS-CoV-2. 

CHEMBL ID Small 

molecules

YP_0097253

01.1 

YP_009725

307 

YP_0097253

08.1 

YP_0097253

09.1 

YP_0097253

11.1 

Average 

CHEMBL291126 SCH-

47112 

14.164 13.974 14.079  14.129  13.903  14.050  

CHEMBL520144 Dehdroal-

tenusin 

14.207 13.695 14.244  14.009  13.927  14.016  

CHEMBL483525 Alternariol 

5-O-

Sulfate 

14.086 13.686 14.185  14.138  13.825  13.984  

CHEMBL83790 LPA1  

antagonist 

1 

13.801 13.822 13.980  14.441  13.831  13.975  

CHEMBL519982 Alternariol 13.957 13.607 14.166  13.971  13.856  13.911  

CHEMBL483526 Butin 13.891 13.512 14.039  13.812  13.729  13.797  

CHEMBL495727 AT-9283 13.534 13.796 13.616  13.999  13.519  13.693  
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Figure 3. Drug-target Venn diagram. 

SCH-47112 is a derivative of Staurosporine. Reynolds N J et al. verified that SCH-47112 had an 
inhibitory effect on skin inflammation and epidermal hypertrophy induced by tPA (12-O-
tetradecanoylphorbol-13-acetate) in hairless mice [19]. According to the prediction results of this 
model, SCH-47112 should have the best effect on COVID-19. Staurosporine, a potent ATP-
competitive kinase inhibitor, can effectively inhibit PKC activity. The biological activity of 
Staurosporine in antifungal and antihypertensive treatment makes it have great potential in anti-cancer 
treatment. The main functions of Staurosporine are inducing G2/M phase blocking of cancer cells, 
adjusting G1 phase blocking and cell apoptosis [20]. It may be possible to study whether Staurosporine 
is effective in the treatment of COVID-19. Dehydroaltenusin, less effective than SCH 47112 as shown 
in the results, is a small molecule selective inhibitor of DNA polymerase α, an antibiotic produced by 
fungus. It blocks the cancer cell cycle and triggers apoptosis in the S phase and has antitumor activity 
against human adenocarcinoma tumors in vivo [21]. LPA1 antagonist 1 is a highly selective, 
lysophosphatidic acid receptor antagonist, LPA interacts with GPCRs to modulate signal response. 
Alternariol is a mycotoxin produced by Alternaria that inhibits the catalytic activity of topoisomerase 
I and topoisomerase II. Alternariol has biological activities such as anti-HIV, anti-cancer and anti-
microbial properties [22]. Butin and AT-9283 were found to be less effective in treating COVID-19. 
Butin is a kind of bioactive flavonoids isolated from the heartwood of sandalwood, which has strong 
antioxidant, anti-platelet and anti-inflammatory activities. It can significantly reduce myocardial 
infarction, improve cardiac function and prevent oxidative damage of the heart caused by diabetes 
[23].AT-9283 is A multi-target kinase inhibitor that effectively inhibits Aurora A/B, Jak2/3 and Flt3.It 
can inhibit the growth and survival of multiple solid tumors in vitro and in vivo [24]. Based on the 
predicted results of the proposed model, these drugs act on 5 target proteins of SARS-CoV-2 and can 
be retargeted to investigate their potential to treat COVID-19. 

4. Conclusions 

Aiming at the urgent needs of COVID-19 treatment, a mixed graph network model based on graph 
attention network and graph convolutional network was proposed for prediction of drug-target affinity. 
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Compared with DeepDTA, WideDTA, GAT, GCN and GIN models, it was proved that MSE of the 
proposed model was decreased by 0.055, 0.04, 0.001, 0.046, 0.013, and CI was increased by 0.028, 
0.016, 0.003, 0.03 and 0.01, respectively. According to the prediction results of drug-target affinity of 
SARS-CoV-2 ion channel targets, 7 kinds of small molecule drugs acting on 5 ion channel targets were 
obtained, namely SCH-47112, dehydroaltenusin, alternariol 5-o-sulfate, LPA1 antagonist 1, alter-
nariol, butin, and AT-9283. However, the research results in this paper only provide a certain reference 
basis for drug repositioning and precise treatment of COVID-19, and the actual therapeutic effect still 
needs to be verified by a large number of clinical trials. In the future, we will further modify our model, 
such as extracting protein sequence features using location specific score matrix (PSSM) and other 
deep learning methods [25–28], to achieve higher model prediction performance. 
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