Research article

Local bit-plane neighbour dissimilarity pattern in non-subsampled shearlet transform domain for bio-medical image retrieval


  • Received: 10 September 2021 Accepted: 01 December 2021 Published: 13 December 2021
  • This paper introduces a novel descriptor non-subsampled shearlet transform (NSST) local bit-plane neighbour dissimilarity pattern (NSST-LBNDP) for biomedical image retrieval based on NSST, bit-plane slicing and local pattern based features. In NSST-LBNDP, the input image is first decomposed by NSST, followed by introduction of non-linearity on the NSST coefficients by computing local energy features. The local energy features are next normalized into 8-bit values. The multiscale NSST is used to provide translational invariance and has flexible directional sensitivity to catch more anisotropic information of an image. The normalised NSST subband features are next decomposed into bit-plane slices in order to capture very fine to coarse subband details. Then each bit-plane slices of all the subbands are encoded by exploiting the dissimilarity relationship between each neighbouring pixel and its adjacent neighbours. Experiments on two computed tomography (CT) and one magnetic resonance imaging (MRI) image datasets confirms the superior results of NSST-LBNDP when compared to many recent well known relevant descriptors both in terms of average retrieval precision (ARP) and average retrieval recall (ARR).

    Citation: Hilly Gohain Baruah, Vijay Kumar Nath, Deepika Hazarika, Rakcinpha Hatibaruah. Local bit-plane neighbour dissimilarity pattern in non-subsampled shearlet transform domain for bio-medical image retrieval[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1609-1632. doi: 10.3934/mbe.2022075

    Related Papers:

  • This paper introduces a novel descriptor non-subsampled shearlet transform (NSST) local bit-plane neighbour dissimilarity pattern (NSST-LBNDP) for biomedical image retrieval based on NSST, bit-plane slicing and local pattern based features. In NSST-LBNDP, the input image is first decomposed by NSST, followed by introduction of non-linearity on the NSST coefficients by computing local energy features. The local energy features are next normalized into 8-bit values. The multiscale NSST is used to provide translational invariance and has flexible directional sensitivity to catch more anisotropic information of an image. The normalised NSST subband features are next decomposed into bit-plane slices in order to capture very fine to coarse subband details. Then each bit-plane slices of all the subbands are encoded by exploiting the dissimilarity relationship between each neighbouring pixel and its adjacent neighbours. Experiments on two computed tomography (CT) and one magnetic resonance imaging (MRI) image datasets confirms the superior results of NSST-LBNDP when compared to many recent well known relevant descriptors both in terms of average retrieval precision (ARP) and average retrieval recall (ARR).



    加载中


    [1] T. Ojala, P. Matti, H. David, A comparative study of texture measures with classification based on featured distributions, Pattern Recognit., 29 (1996), 51–59. doi: 10.1016/0031-3203(95)00067-4. doi: 10.1016/0031-3203(95)00067-4
    [2] S. Lauge, B. S. Saher, D. B. Marleen, Quantitative analysis of pulmonary emphysema using local binary patterns, IEEE Trans. Med. Imaging, 29 (2010), 559–569. doi: 10.1109/TMI.2009.2038575. doi: 10.1109/TMI.2009.2038575
    [3] S. Murala, Q. J. Wu, Local ternary co-occurrence patterns: a new feature descriptor for mri and ct image retrieval, Neurocomputing, 119 (2013), 399–412. doi: 10.1016/j.neucom.2013.03.018. doi: 10.1016/j.neucom.2013.03.018
    [4] S. Murala, Q. J. Wu, Spherical symmetric 3d local ternary patterns for natural, texture and biomedical image indexing and retrieval, Neurocomputing, 149 (2015), 1502–1514. doi: 10.1016/j.neucom.2013.03.018. doi: 10.1016/j.neucom.2013.03.018
    [5] S. R. Dubey, S. K. Singh, R. K. Singh, Local diagonal extrema pattern: a new and efficient feature descriptor for ct image retrieval, IEEE Signal Process. Lett., 22 (2015), 1215–1219. doi: 10.1109/LSP.2015.2392623. doi: 10.1109/LSP.2015.2392623
    [6] M. Verma, R. P. Balasubramanian, Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval, J. Vis. Commun. Image Represent., 32 (2015), 224–236. doi: 10.1016/j.jvcir.2015.08.015. doi: 10.1016/j.jvcir.2015.08.015
    [7] M. H. Marko, P. Matti, S. Cordelia, Description of interest regions with center-symmetric local binary patterns, in Computer Vision, Graphics and Image Processing, Springer, (2006), 58–69. doi: 10.1007/11949619-6.
    [8] S. R. Dubey, S. K. Singh, R. K. Singh, Novel local bit-plane dissimilarity pattern for computed tomography image retrieval, Electron. Lett., 52 (2016), 1290–1292. doi: 10.1049/el.2016.1206. doi: 10.1049/el.2016.1206
    [9] S. R. Dubey, S. K. Singh, R. K. Singh, Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval, IEEE J. Biomed. Health Inform., 20 (2015), 1139–1147. doi: 10.1109/JBHI.2015.2437396. doi: 10.1109/JBHI.2015.2437396
    [10] R. Hatibaruah, V. K. Nath, D. Hazarika, Computed tomography image retrieval via combination of two local bit plane-based dissimilarities using an adder, Int. J. Wavelets Multiresolut. Inf. Process., 19 (2020), 1–18. doi: 10.1142/S0219691320500587. doi: 10.1142/S0219691320500587
    [11] R. Hatibaruah, V. K. Nath, D. Hazarika, Local bit plane adjacent neighborhood dissimilarity pattern for medical ct image retrieval, Procedia Comput. Sci., 165 (2019), 83–89. doi: 10.1016/j.procs.2020.01.073. doi: 10.1016/j.procs.2020.01.073
    [12] P. M. Hong, C. S. Tong, S. K. Choy, H. Zhang, A fast and effective model for wavelet subband histograms and its application in texture image retrieval, IEEE Trans. Image Process., 15 (2006), 3078–3088. doi: 10.1109/TIP.2006.877509. doi: 10.1109/TIP.2006.877509
    [13] A. A. Shinde, A. D. Rahulkar, C. Y. Patil, Fast discrete curvelet transform-based anisotropic feature extraction for biomedical image indexing and retrieval, Int. J. Multimed. Inf. Retr., 6 (2017), 281–288. doi: 10.1007/s13735-017-0132-0. doi: 10.1007/s13735-017-0132-0
    [14] Y. Dong, J. Ma, Wavelet-based image texture classification using local energy histograms, IEEE Signal Process. Lett., 18 (2011), 247–250. doi: 10.1109/LSP.2011.2111369. doi: 10.1109/LSP.2011.2111369
    [15] Y. Dong, D. Tao, X. Li, J. Ma, J. Pu, Texture classification and retrieval using shearlets and linear regression, IEEE Trans. Cybern., 45 (2015), 358–369. doi:10.1109/TCYB.2014.2326059. doi: 10.1109/TCYB.2014.2326059
    [16] A. Sadiq, L. Jochen, Texture features in the shearlet domain for histopathological image classification, BMC Med. Inform. Decis. Mak., 20 (2020), 1–19. doi:10.1186/s12911-020-01327-3. doi: 10.1186/s12911-020-01327-3
    [17] S. Selvan, S. Ramakrishnan, Svd-based modeling for image texture classification using wavelet transformation, IEEE Trans. Image Process., 16 (2007), 2688–2696. doi: 10.1109/TIP.2007.908082. doi: 10.1109/TIP.2007.908082
    [18] S. Ramakrishnan, S. Nithya, Two improved extension of local binary pattern descriptors using wavelet transform for texture classification, IET Image Process., 12 (2018), 2002–2010. doi: 10.1049/iet-ipr.2018.5410. doi: 10.1049/iet-ipr.2018.5410
    [19] S. R. Dubey, S. K. Singh, R. K. Singh, Local wavelet pattern: a new feature descriptor for image retrieval in medical ct databases, IEEE Trans. Image Process., 24 (2015), 5892–5903. doi: 10.1109/TIP.2015.2493446. doi: 10.1109/TIP.2015.2493446
    [20] M. Do, M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans. Image Process., 14 (2005), 2091–2106. doi: 10.1109/TIP.2005.859376. doi: 10.1109/TIP.2005.859376
    [21] D. Labate, W. Q. Lim, G. Kutyniok, G. Weiss, Sparse multidimensional representation using shearlets, in Wavelets XI, (2005), 254–262. doi: 10.1117/12.613494.
    [22] P. Srivastava, A. Khare, Content-based image retrieval using local binary curvelet co-occurrence pattern: a multiresolution technique, Comput. J., 61 (2018), 369–385. doi: 10.1093/comjnl/bxx086. doi: 10.1093/comjnl/bxx086
    [23] G. Easley, D. Labate, W. Q. Lim, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmon. Anal., 25 (2008), 25–46. doi: 10.1016/j.acha.2007.09.003. doi: 10.1016/j.acha.2007.09.003
    [24] G. R. Easley, D. Labate, Critically sampled wavelets with composite dilations, IEEE Trans. Image Process., 21 (2012), 550–561. doi: 10.1109/TIP.2011.2164415. doi: 10.1109/TIP.2011.2164415
    [25] K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets, SIAM J. Math. Anal., 39 (2007), 298–318. doi: 10.1137/060649781. doi: 10.1137/060649781
    [26] J. He, H. Ji, X. Yang, Rotation invariant texture descriptor using local shearlet-based energy histograms, IEEE Signal Proc. Lett., 20 (2013), 905–908. doi: 10.1109/LSP.2013.2267730. doi: 10.1109/LSP.2013.2267730
    [27] W. R. Schwartz, R. D. da Silva, L. S. Davis, H. Pedrini, A novel feature descriptor based on the shearlet transform, IEEE Int. Conf. Image Process., 1033–1036. doi: 10.1109/ICIP.2011.6115600.
    [28] E. J. Candès, D. L. Donoho, Curvelets: A surprisingly effective nonadaptive representation for objects with edges, Stanford Univ. Ca. Dept. of Statistics, (2000).
    [29] E. J. Candès, D. L. Donoho, Ridgelets: A key to higher-dimensional intermittency?, Philos Trans A Math Phys Eng Sci., 357 (1999), 2495–2509. doi: 10.1098/rsta.1999.0444. doi: 10.1098/rsta.1999.0444
    [30] J. Saeed, G. Sedigheh, Using two coefficients modeling of nonsubsampled shearlet transform for despeckling, J. Appl. Remote Sens., 10 (2016), 015002. doi: 10.1117/1.JRS.10.015002. doi: 10.1117/1.JRS.10.015002
    [31] W. Kong, Technique for image fusion based on nsst domain inmf, Optik, 125 (2014), 2716–2722. doi:10.1016/j.ijleo.2013.11.025. doi: 10.1016/j.ijleo.2013.11.025
    [32] Nema-ct image database, 2016, Available from: http://medical.nema.org/medical/Dicom/Multifr-ame.
    [33] The cancer imaging archive, 2021, Available from: https://www.cancerimagingarchive.net.
    [34] Cardiac mri dataset-york university, 2021, Available from: http://www.cs.yorku.ca/mridataset.
    [35] A. Andreopoulos, J. K. Tsotsos, Efficient and generalizable statistical models of shape and appearance for analysis of cardiac mri, Med. Image Anal., 12 (2008), 335–357. doi: 10.1016/j.media.2007.12.003. doi: 10.1016/j.media.2007.12.003
    [36] T. G. S. Kumar, V. Nagarajan, Local contourlet tetra pattern for image retrieval, Signal Image Video Process., 12 (2018), 591–598. doi: 10.1007/s11760-017-1197-1. doi: 10.1007/s11760-017-1197-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1832) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog