Research article

Construction of the gene expression subgroups of patients with coronary artery disease through bioinformatics approach


  • Received: 09 August 2021 Accepted: 16 September 2021 Published: 09 October 2021
  • Coronary artery disease (CAD) is a heterogeneous disease that has placed a heavy burden on public health due to its considerable morbidity, mortality and high costs. Better understanding of the genetic drivers and gene expression clustering behind CAD will be helpful for the development of genetic diagnosis of CAD patients. The transcriptome of 352 CAD patients and 263 normal controls were obtained from the Gene Expression Omnibus (GEO) database. We performed a modified unsupervised machine learning algorithm to group CAD patients. The relationship between gene modules obtained through weighted gene co-expression network analysis (WGCNA) and clinical features was identified by the Pearson correlation analysis. The annotation of gene modules and subgroups was done by the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Three gene expression subgroups with the clustering score of greater than 0.75 were constructed. Subgroup I may experience coronary artery disease of an in-creased severity, while subgroup III is milder. Subgroup I was found to be closely related to the upregulation of the mitochondrial autophagy pathway, whereas the genes of subgroup II were shown to be related to the upregulation of the ribosome pathway. The high expression of APOE, NOS1 and NOS3 in the subgroup I suggested that the patients had more severe coronary artery disease. The construction of genetic subgroups of CAD patients has enabled clinicians to improve their understanding of CAD pathogenesis and provides potential tools for disease diagnosis, classification and assessment of prognosis.

    Citation: Bin Zhang, Kuan Zeng, Rongzhen Li, Huiqi Jiang, Minnan Gao, Lu Zhang, Jianfen Li, Ruicong Guan, Yuqiang Liu, Yongjia Qiang, Yanqi Yang. Construction of the gene expression subgroups of patients with coronary artery disease through bioinformatics approach[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 8622-8640. doi: 10.3934/mbe.2021427

    Related Papers:

  • Coronary artery disease (CAD) is a heterogeneous disease that has placed a heavy burden on public health due to its considerable morbidity, mortality and high costs. Better understanding of the genetic drivers and gene expression clustering behind CAD will be helpful for the development of genetic diagnosis of CAD patients. The transcriptome of 352 CAD patients and 263 normal controls were obtained from the Gene Expression Omnibus (GEO) database. We performed a modified unsupervised machine learning algorithm to group CAD patients. The relationship between gene modules obtained through weighted gene co-expression network analysis (WGCNA) and clinical features was identified by the Pearson correlation analysis. The annotation of gene modules and subgroups was done by the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Three gene expression subgroups with the clustering score of greater than 0.75 were constructed. Subgroup I may experience coronary artery disease of an in-creased severity, while subgroup III is milder. Subgroup I was found to be closely related to the upregulation of the mitochondrial autophagy pathway, whereas the genes of subgroup II were shown to be related to the upregulation of the ribosome pathway. The high expression of APOE, NOS1 and NOS3 in the subgroup I suggested that the patients had more severe coronary artery disease. The construction of genetic subgroups of CAD patients has enabled clinicians to improve their understanding of CAD pathogenesis and provides potential tools for disease diagnosis, classification and assessment of prognosis.



    加载中


    [1] J. Knuuti, W. Wijns, A. Saraste, D. Capodanno, E. Barbato, C. Funck-Brentano, et al., 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes, Eur. Heart J., 41 (2020), 407-477.
    [2] C. Weber, H. Noels, Atherosclerosis: current pathogenesis and therapeutic options, Nat. Med., 17 (2011), 1410-1422. doi: 10.1038/nm.2538
    [3] S. S. Virani, A. Alonso, E. J. Benjamin, M. S. Bittencourt, C. W. Callaway, A. P. Carson, et al., Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association, Circulation, 141 (2020), e139-e596.
    [4] S. A. Sherif, O. O. Tok, Ö. Taşköylü, O. Goktekin, I. D. Kilic, Coronary Artery Aneurysms: A Review of the Epidemiology, Pathophysiology, Diagnosis, and Treatment, Front. Cardiovasc. Med., 4 (2017), 24.
    [5] A. Davies, K. Fox, A. R. Galassi, S. Banai, S. Ylä-Herttuala, T. F. Lüscher, Management of refractory angina: an update, Eur. Heart J., 42 (2021), 269-283. doi: 10.1093/eurheartj/ehaa820
    [6] A. V. Khera, S. Kathiresan, Genetics of coronary artery disease: discovery, biology and clinical translation, Nat. Rev. Genet., 18 (2017), 331-344.
    [7] S. Kang, Y. Ye, G. Xia, H. B. Liu, Coronary artery disease: differential expression of ceRNAs and interaction analyses, Ann. Transl. Med., 9 (2021), 229.
    [8] Y. Y. Li, H. Wang, X. X. Yang, H. Y. Geng, G. Gong, X. Z. Lu, PCSK9 Gene E670G Polymorphism and Coronary Artery Disease: An Updated Meta-Analysis of 5,484 Subjects, Front. Cardiovasc. Med., 7 (2020), 582865.
    [9] K. Musunuru, S. Kathiresan, Genetics of Common, Complex Coronary Artery Disease, Cell, 177 (2019), 132-145.
    [10] M. Franchini, Genetics of the acute coronary syndrome, Ann. Transl. Med., 4 (2016), 192.
    [11] P. R. Sinnaeve, M. P. Donahue, P. Grass, D. Seo, J. Vonderscher, S. D. Chibout, et al., Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease, PLoS One, 4 (2009), e7037.
    [12] H. Han, R. Du, P. Cheng, J. Zhang, Y. Chen, G. Li, Comprehensive Analysis of the Immune Infiltrates and Aberrant Pathways Activation in Atherosclerotic Plaque, Front. Cardiovasc. Med., 7 (2020), 602345.
    [13] M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47.
    [14] J. T. Leek, J. D. Storey, Capturing heterogeneity in gene expression studies by surrogate variable analysis, PLoS Genet., 3 (2007), 1724-1735.
    [15] D. B. Mark, C. L. Nelson, R. M. Califf, F. E. Harrell, K. L. Lee, R. H. Jones, et al., Continuing evolution of therapy for coronary artery disease. Initial results from the era of coronary angioplasty, Circulation, 89 (1994), 2015-2025.
    [16] G. M. Felker, L. K. Shaw, C. M. O'Connor, A standardized definition of ischemic cardiomyopathy for use in clinical research, J. Am. Coll Cardiol., 39 (2002), 210-218.
    [17] M. D. Wilkerson, D. N. Hayes, ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking, Bioinformatics, 26 (2010), 1572-1573. doi: 10.1093/bioinformatics/btq170
    [18] P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, 9 (2008), 559.
    [19] B. Zhang, S. Horvath, A general framework for weighted gene co-expression network analysis, Stat. Appl. Genet. Mol. Biol., 4 (2005), 17.
    [20] G. M. Li, C. L. Zhang, R. P. Rui, B. Sun, W. Guo, Bioinformatics analysis of common differential genes of coronary artery disease and ischemic cardiomyopathy, Eur. Rev. Med. Pharmacol. Sci., 22 (2018), 3553-3569.
    [21] G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, Omics, 16 (2012), 284-287. doi: 10.1089/omi.2011.0118
    [22] G. Yu, Gene Ontology Semantic Similarity Analysis Using GOSemSim, Methods Mol. Biol., 2117 (2020), 207-215. doi: 10.1007/978-1-0716-0301-7_11
    [23] R. Bauersachs, U. Zeymer, J. B. Brière, C. Marre, K. Bowrin, M. Huelsebeck, Burden of Coronary Artery Disease and Peripheral Artery Disease: A Literature Review, Cardiovasc. Ther., 2019 (2019), 8295054.
    [24] H. Turpeinen, E. Raitoharju, A. Oksanen, N. Oksala, M. Levula, L. P. Lyytikäinen, et al., Proprotein convertases in human atherosclerotic plaques: the overexpression of FURIN and its substrate cytokines BAFF and APRIL, Atherosclerosis, 219 (2011), 799-806.
    [25] Y. Li, D. W. Wang, Y. Chen, C. Chen, J. Guo, S. Zhang, et al., Genome-Wide Association and Functional Studies Identify SCML4 and THSD7A as Novel Susceptibility Genes for Coronary Artery Disease, Arterioscl. Thromb. Vasc. Biol., 38 (2018), 964-975.
    [26] A. Busch, S. M. Eken, L. Maegdefessel, Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease, Ann. Transl. Med., 4 (2016), 236.
    [27] X. Y. Peng, Y. Wang, H. Hu, X. J. Zhang, Q. Li, Identification of the molecular subgroups in coronary artery disease by gene expression profiles, J. Cell Physiol., 2019.
    [28] J. M. B. Pedro, G. Kroemer, L. Galluzzi, Autophagy and Mitophagy in Cardiovascular Disease, Circ. Res., 120 (2017), 1812-1824. doi: 10.1161/CIRCRESAHA.117.311082
    [29] G. Salazar, A. Cullen, J. Huang, Y. Zhao, A. Serino, L. Hilenski, et al., SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence, Autophagy, 16 (2020), 1092-1110.
    [30] J. D. Murdoch, C. M. Rostosky, S. Gowrisankaran, A. S. Arora, S. F. Soukup, R. Vidal, et al., Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System, Cell Rep., 17 (2016), 1071-1086.
    [31] Y. Chen, Y. Zhao, W. Chen, L. Xie, Z. A. Zhao, J. Yang, et al., MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction, Stem. Cell Res. Ther., 8 (2017), 268.
    [32] W. Xu, T. Barrientos, L. Mao, H. A. Rockman, A. A. Sauve, N. C. Andrews, Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart, Cell Rep., 13 (2015), 533-545. doi: 10.1016/j.celrep.2015.09.023
    [33] T. Zaglia, G. Milan, A. Ruhs, M. Franzoso, E. Bertaggia, N. Pianca, et al., Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy, J. Clin. Invest., 124 (2014), 2410-2424.
    [34] N. R. Sundaresan, P. Vasudevan, L. Zhong, G. Kim, S. Samant, V. Parekh, et al., The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun, Nat. Med., 18 (2012), 1643-1650.
    [35] R. R. Bartz, H. B. Suliman, C. A. Piantadosi, Redox mechanisms of cardiomyocyte mitochondrial protection, Front. Physiol., 6 (2015), 291.
    [36] J. Wang, J. Cheng, C. Zhang, X. Li, Cardioprotection Effects of Sevoflurane by Regulating the Pathway of Neuroactive Ligand-Receptor Interaction in Patients Undergoing Coronary Artery Bypass Graft Surgery, Comput. Math. Methods Med., 2017 (2017), 3618213.
    [37] C. J. Willer, S. Sanna, A. U. Jackson, A. Scuteri, L. L. Bonnycastle, R. Clarke, et al., Newly identified loci that influence lipid concentrations and risk of coronary artery disease, Nat. Genet., 40 (2008), 161-169.
    [38] H. Tada, M. A. Kawashiri, A. Nomura, R. Teramoto, K. Hosomichi, A. Nohara, et al., Oligogenic familial hypercholesterolemia, LDL cholesterol, and coronary artery disease, J. Clin. Lipidol., 12 (2018), 1436-1444.
    [39] J. P. Karjalainen, N. Mononen, N. Hutri-Kähönen, M. Lehtimäki, M. Hilvo, D. Kauhanen, et al., New evidence from plasma ceramides links apoE polymorphism to greater risk of coronary artery disease in Finnish adults, J. Lipid Res., 60 (2019), 1622-1629.
    [40] Y. Long, X. T. Zhao, C. Liu, Y. Y. Sun, Y. T. Ma, X. Y. Liu, et al., A Case-Control Study of the Association of the Polymorphisms of MTHFR and APOE with Risk Factors and the Severity of Coronary Artery Disease, Cardiology, 142 (2019), 149-157.
    [41] J. Li, S. Lin, P. M. Vanhoutte, C. W. Woo, A. Xu, Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice, Circulation, 133 (2016), 2434-2446. doi: 10.1161/CIRCULATIONAHA.115.019645
    [42] N. Toda, S. Tanabe, S. Nakanishi, Nitric oxide-mediated coronary flow regulation in patients with coronary artery disease: recent advances, Int. J. Angiol., 20 (2011), 121-134. doi: 10.1055/s-0031-1283220
    [43] N. Toda, T. Okamura, The pharmacology of nitric oxide in the peripheral nervous system of blood vessels, Pharmacol. Rev., 55 (2003), 271-324. doi: 10.1124/pr.55.2.3
    [44] J. Qian, D. Fulton, Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium, Front. Physiol., 4 (2013), 347.
    [45] H. S. Ahuja, A. Szanto, L. Nagy, P. J. Davies, The retinoid X receptor and its ligands: versatile regulators of metabolic function, cell differentiation and cell death, J. Biol. Regul. Homeost. Agents, 17 (2003), 29-45.
    [46] L. O. Lima, S. Almeida, M. H. Hutz, M. Fiegenbaum, PPARA, RXRA, NR1I2 and NR1I3 gene polymorphisms and lipid and lipoprotein levels in a Southern Brazilian population, Mol. Biol. Rep., 40 (2013), 1241-1247.
    [47] W. Zhou, C. Fang, L. Zhang, Q. Wang, D. Li, D. Zhu, Thioredoxin domain-containing protein 9 (TXNDC9) contributes to oxaliplatin resistance through regulation of autophagy-apoptosis in colorectal adenocarcinoma, Biochem. Biophys. Res. Commun., 524 (2020), 582-588. doi: 10.1016/j.bbrc.2020.01.092
    [48] T. Feng, R. Zhao, F. Sun, Q. Lu, X. Wang, J. Hu, et al., TXNDC9 regulates oxidative stress-induced androgen receptor signaling to promote prostate cancer progression, Oncogene, 39 (2020), 356-367.
    [49] W. W. Doane, Developmental physiology of the mutant female sterile(2)adipose of Drosophila melanogaster. I. Adult morphology, longevity, egg production, and egg lethality, J. Exp. Zool., 145 (1960), 1-21.
    [50] J. M. Suh, D. Zeve, R. McKay, J. Seo, Z. Salo, R. Li, et al., Adipose is a conserved dosage-sensitive antiobesity gene, Cell Metab., 6 (2007), 195-207.
    [51] C. Q. Lai, L. D. Parnell, D. K. Arnett, B. García-Bailo, M. Y. Tsai, E. K. Kabagambe, et al., WDTC1, the ortholog of Drosophila adipose gene, associates with human obesity, modulated by MUFA intake, Obesity (Silver Spring)., 17 (2009), 593-600.
  • mbe-18-06-427 - Supplementary.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3855) PDF downloads(276) Cited by(4)

Article outline

Figures and Tables

Figures(10)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog