Research article Special Issues

Solving nonlinear equation systems via clustering-based adaptive speciation differential evolution


  • Received: 11 May 2021 Accepted: 27 June 2021 Published: 06 July 2021
  • In numerical computation, locating multiple roots of nonlinear equations (NESs) in a single run is a challenging work. In order to solve the problem of population grouping and parameters settings during the evolutionary, a clustering-based adaptive speciation differential evolution, referred to as CASDE, is presented to deal with NESs. CASDE offers three advantages: 1) the clustering with dynamic clustering sizes is used to set clustering sizes for different problems; 2) adaptive parameter control at the niche level is proposed to enhance the search ability and efficiency; 3) re-initialization mechanism motivates the algorithm to search new roots and saves computing resources. To evaluate the performance of CASDE, we select 30 problems with different features as test suite. Experimental results indicate that the speciation clustering with dynamic clustering sizes, niche adaptive parameter control, and re-initialization mechanism when combined together in a synergistic manner can improve the ability to find multiple roots in a single run. Additionally, our method is also compared with other state-of-the-art methods, which is capable of obtaining better results in terms of peak ratio and success rate. Finally, two practical mechanical problems are used to verify the performance of CASDE, and it also demonstrates superior results.

    Citation: Qishuo Pang, Xianyan Mi, Jixuan Sun, Huayong Qin. Solving nonlinear equation systems via clustering-based adaptive speciation differential evolution[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 6034-6065. doi: 10.3934/mbe.2021302

    Related Papers:

  • In numerical computation, locating multiple roots of nonlinear equations (NESs) in a single run is a challenging work. In order to solve the problem of population grouping and parameters settings during the evolutionary, a clustering-based adaptive speciation differential evolution, referred to as CASDE, is presented to deal with NESs. CASDE offers three advantages: 1) the clustering with dynamic clustering sizes is used to set clustering sizes for different problems; 2) adaptive parameter control at the niche level is proposed to enhance the search ability and efficiency; 3) re-initialization mechanism motivates the algorithm to search new roots and saves computing resources. To evaluate the performance of CASDE, we select 30 problems with different features as test suite. Experimental results indicate that the speciation clustering with dynamic clustering sizes, niche adaptive parameter control, and re-initialization mechanism when combined together in a synergistic manner can improve the ability to find multiple roots in a single run. Additionally, our method is also compared with other state-of-the-art methods, which is capable of obtaining better results in terms of peak ratio and success rate. Finally, two practical mechanical problems are used to verify the performance of CASDE, and it also demonstrates superior results.



    加载中


    [1] M. Kastner, Phase transitions and configuration space topology, Rev. Mod. Phys., 80 (2008), 167-187. doi: 10.1103/RevModPhys.80.167
    [2] D. Guo, Z. Nie, L. Yan, The application of noise-tolerant ZD design formula to robots' kinematic control via time-varying nonlinear equations solving, IEEE Trans. Syst., Man, Cybern.: Syst., 48 (2017), 2188-2197.
    [3] H. D. Chiang, T. Wang, Novel homotopy theory for nonlinear networks and systems and its applications to electrical grids, IEEE Trans. Control Network Syst., 5 (2017), 1051-1060.
    [4] F. Facchinei, C. Kanzow, Generalized nash equilibrium problems, Ann. Oper. Res., 175 (2010), 177-211. doi: 10.1007/s10479-009-0653-x
    [5] Z. Sun, J. Wu, J. Pei, Z. Li, Y. Huang, J. Yang, Inclined geosynchronous spaceborne cairborne bistatic sar: Performance analysis and mission design, IEEE Trans. Geosci. Remote Sens., 54 (2015), 343-357.
    [6] Y. Song, L. Xing, M. Wang, Y. Yi, W. Xiang, Z. Zhang, A knowledge-based evolutionary algorithm for relay satellite system mission scheduling problem, Comput. Ind. Eng., 150 (2020), 106830. doi: 10.1016/j.cie.2020.106830
    [7] R. Storn, K. Price, Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, J. Global Opt., 11 (1997), 341-359. doi: 10.1023/A:1008202821328
    [8] A. P. Piotrowski, J. J. Napiorkowski, Step-by-step improvement of jade and shade-based algorithms: Success or failure?, Swarm Evol. Comput., 43 (2018), 88-108. doi: 10.1016/j.swevo.2018.03.007
    [9] J. N. Bharothu, M. Sridhar, R. S. Rao, Modified adaptive differential evolution based optimal operation and security of ac-dc microgrid systems, Int. J. Electr. Power Energy Syst., 103 (2018), 185-202. doi: 10.1016/j.ijepes.2018.05.003
    [10] S. Li, Q. Gu, W. Gong, B. Ning, An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models, Energy Convers. Manage., 205 (2020), 112443. doi: 10.1016/j.enconman.2019.112443
    [11] A. W. Mohamed, A. A. Hadi, K. M. Jambi, Novel mutation strategy for enhancing shade and lshade algorithms for global numerical optimization, Swarm Evol. Comput., 50 (2019), 100455. doi: 10.1016/j.swevo.2018.10.006
    [12] J. Pierezan, R. Z. Freire, L. Weihmann, G. Reynoso-Meza, L. dos Santos Coelho, Static force capability optimization of humanoids robots based on modified self-adaptive differential evolution, Comput. Oper. Res., 84 (2017), 205-215. doi: 10.1016/j.cor.2016.10.011
    [13] L. dos Santos Coelho, H. V. H. Ayala, V. C. Mariani, A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization, Appl. Math. Comput., 234 (2014), 452-459.
    [14] G. Li, Q. Lin, L. Cui, Z. Du, Z. Liang, J. Chen, et al., A novel hybrid differential evolution algorithm with modified code and jade, Appl. Soft Comput., 47 (2016), 577-599. doi: 10.1016/j.asoc.2016.06.011
    [15] P. Civicioglu, E. Besdok, Bezier search differential evolution algorithm for numerical function optimization: A comparative study with crmlsp, mvo, wa, shade and lshade, Expert Syst. Appl., 165 (2021), 113875. doi: 10.1016/j.eswa.2020.113875
    [16] F. Zhao, L. Zhao, L. Wang, H. Song, A collaborative lshade algorithm with comprehensive learning mechanism, Appl. Soft Comput., 96 (2020), 106609. doi: 10.1016/j.asoc.2020.106609
    [17] W. Gong, Z. Liao, X. Mi, L. Wang, Y. Guo, Nonlinear equations solving with intelligent optimization algorithms: A survey, Complex Syst. Model. Simul., 1 (2021), 15-32. doi: 10.23919/CSMS.2021.0002
    [18] E. Pourjafari, H. Mojallali, Solving nonlinear equations systems with a new approach based on invasive weed optimization algorithm and clustering, Swarm Evol. Comput., 4 (2012), 33-43. doi: 10.1016/j.swevo.2011.12.001
    [19] G. C. Ramadas, E. M. Fernandes, A. A. Rocha, Multiple roots of systems of equations by repulsion merit functions, in International Conference on Computational Science and Its Applications, Springer, Cham, (2014), 126-139.
    [20] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: A review, ACM Comput. Surv., 31 (1999), 264-323.
    [21] I. Tsoulos, A. Stavrakoudis, On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods, Nonlinear Anal.: Real World Appl., 11 (2010), 2465-2471. doi: 10.1016/j.nonrwa.2009.08.003
    [22] G. Karafotias, M. Hoogendoorn, A. E. Eiben, Parameter control in evolutionary algorithms: Trends and challenges, IEEE Trans. Evol. Comput., 19 (2015), 167-187. doi: 10.1109/TEVC.2014.2308294
    [23] A. K. Qin, V. L. Huang, P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13 (2009), 398-417. doi: 10.1109/TEVC.2008.927706
    [24] J. Zhang, A. C. Sanderson, JADE: Adaptive differential evolution with optional external archive, IEEE Trans. Evol. Comput., 13 (2009), 945-958. doi: 10.1109/TEVC.2009.2014613
    [25] S. Yang, J. Wang, Y. Ma, Y. Tu, Multi-response online parameter design based on bayesian vector autoregression model, Comput. Ind. Eng., 149 (2020), 106775. doi: 10.1016/j.cie.2020.106775
    [26] W. Gong, Y. Wang, Z. Cai, L. Wang, Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution, IEEE Trans. Syst. Man Cybern. Syst., 50 (2018), 1499-1513.
    [27] Y. Guo, H. Yang, M. Chen, J. Cheng, D. Gong, Ensemble prediction-based dynamic robust multi-objective optimization methods, Swarm Evol. Comput., 48 (2019), 156-171. doi: 10.1016/j.swevo.2019.03.015
    [28] Y. N. Guo, X. Zhang, D. W. Gong, Z. Zhang, J. J. Yang, Novel interactive preference-based multi-objective evolutionary optimization for bolt supporting networks, IEEE Trans. Evol. Comput., 24 (2019), 750-764.
    [29] C. Grosan, A. Abraham, A new approach for solving nonlinear equations systems, IEEE Trans. Syst., Man Cybern., Part A: Syst. Humans, 38 (2008), 698-714. doi: 10.1109/TSMCA.2008.918599
    [30] W. Song, Y. Wang, H. X. Li, Z. Cai, Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization, IEEE Trans. Evol. Comput., 19 (2015), 414-431. doi: 10.1109/TEVC.2014.2336865
    [31] W. Gong, Y. Wang, Z. Cai, S. Yang, A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems, IEEE Trans. Evol. Comput., 21 (2017), 697-713. doi: 10.1109/TEVC.2017.2670779
    [32] Y. R. Naidu, A. K. Ojha, Solving multiobjective optimization problems using hybrid cooperative invasive weed optimization with multiple populations, IEEE Trans. Syst., Man, Cybern.: Syst., 48 (2016), 821-832.
    [33] W. Sacco, N. Henderson, Finding all solutions of nonlinear systems using a hybrid metaheuristic with fuzzy clustering means, Appl. Soft Comput. 11 (2011), 5424-5432.
    [34] L. Freitas, G. Platt, N. Henderson, Novel approach for the calculation of critical points in binary mixtures using global optimization, Fluid Phase Equilib., 225 (2004), 29-37. doi: 10.1016/j.fluid.2004.06.063
    [35] N. Henderson, W. F. Sacco, G. M. Platt, Finding more than one root of nonlinear equations via a polarization technique: An application to double retrograde vaporization, Chem. Eng. Res. Des., 88 (2010), 551-561. doi: 10.1016/j.cherd.2009.11.001
    [36] R. M. A. Silva, M. G. C. Resende, P. M. Pardalos, Finding multiple roots of a box-constrained system of nonlinear equations with a biased random-key genetic algorithm, J. Global Opt., 60 (2014), 289-306. doi: 10.1007/s10898-013-0105-7
    [37] Z. Liao, W. Gong, X. Yan, L. Wang, C. Hu, Solving nonlinear equations system with dynamic repulsion-based evolutionary algorithms, IEEE Trans. Syst., Man, Cybern.: Syst., 50 (2018), 1590-1601.
    [38] A. F. Kuri-Morales, R. H. No, D. México, Solution of simultaneous non-linear equations using genetic algorithms, WSEAS Trans. Syst., 2 (2003), 44-51.
    [39] A. Pourrajabian, R. Ebrahimi, M. Mirzaei, M. Shams, Applying genetic algorithms for solving nonlinear algebraic equations, Appl. Math. Comput., 219 (2013), 11483-11494.
    [40] W. Gao, G. G. Yen, S. Liu, A cluster-based differential evolution with self-adaptive strategy for multimodal optimization, IEEE Trans. Cybern., 44 (2014), 1314-1327. doi: 10.1109/TCYB.2013.2282491
    [41] Q. Yang, W. N. Chen, Y. Li, C. L. Chen, X. M. Xu, J. Zhang, Multimodal estimation of distribution algorithms, IEEE Trans. Cybern., 47 (2016), 636-650.
    [42] C. A. Floudas, Recent advances in global optimization for process synthesis, design and control: Enclosure of all solutions, Comput. Chem. Eng., 23 (1999), S963-S973. doi: 10.1016/S0098-1354(99)80231-2
    [43] C. Wang, R. Luo, K. Wu, B. Han, A new filled function method for an unconstrained nonlinear equation, J. Comput. Appl. Math., 235 (2011), 1689-1699. doi: 10.1016/j.cam.2010.09.010
    [44] I. Z. Emiris, B. Mourrain, Computer algebra methods for studying and computing molecular conformations, Algorithmica, 25 (1999), 372-402. doi: 10.1007/PL00008283
    [45] W. Gong, Y. Wang, Z. Cai, S. Yang, A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems, IEEE Trans. Evol. Comput., 21 (2017), 697-713. doi: 10.1109/TEVC.2017.2670779
    [46] W. He, W. Gong, L. Wang, X. Yan, C. Hu, Fuzzy neighborhood-based differential evolution with orientation for nonlinear equation systems, Knowl.-Based Syst., 182 (2019), 104796. doi: 10.1016/j.knosys.2019.06.004
    [47] R. Cheng, M. Li, K. Li, X. Yao, Evolutionary multiobjective optimization-based multimodal optimization: Fitness landscape approximation and peak detection, IEEE Trans. Evol. Comput., 22 (2018), 692-706. doi: 10.1109/TEVC.2017.2744328
    [48] N. Hansen, S. D. Müller, P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput., 11 (2003), 1-18. doi: 10.1162/106365603321828970
    [49] J. Pierezan, L. Coelho, Coyote optimization algorithm: A new metaheuristic for global optimization problems, in 2018 IEEE Congress on Evolutionary Computation (CEC), 2018.
    [50] C. W. LUO Y, Newton chaos iterative method and its application in electric machine, in Proceedings of the CSU-EPSA, 1 (2006).
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2287) PDF downloads(82) Cited by(1)

Article outline

Figures and Tables

Tables(24)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog