Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Study of the chemostat model with non-monotonic growth under random disturbances on the removal rate

  • We revisit the chemostat model with Haldane growth function, here subject to bounded random disturbances on the input flow rate, as often met in biotechnological or waste-water industry. We prove existence and uniqueness of global positive solution of the random dynamics and existence of absorbing and attracting sets that are independent of the realizations of the noise. We study the long-time behavior of the random dynamics in terms of attracting sets, and provide first conditions under which biomass extinction cannot be avoided. We prove conditions for weak and strong persistence of the microbial species and provide lower bounds for the biomass concentration, as a relevant information for practitioners. The theoretical results are illustrated with numerical simulations.

    Citation: Tomás Caraballo, Renato Colucci, Javier López-de-la-Cruz, Alain Rapaport. Study of the chemostat model with non-monotonic growth under random disturbances on the removal rate[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7480-7501. doi: 10.3934/mbe.2020382

    Related Papers:

    [1] Chun-Min Yu, Kun-Tzu Yu, Kuen-Suan Chen . Entire product capability analysis chart with asymmetric tolerances index Spa. Mathematical Biosciences and Engineering, 2020, 17(6): 7605-7620. doi: 10.3934/mbe.2020387
    [2] Yarong Yu, Liang Wang, Sanku Dey, Jia Liu . Estimation of stress-strength reliability from unit-Burr Ⅲ distribution under records data. Mathematical Biosciences and Engineering, 2023, 20(7): 12360-12379. doi: 10.3934/mbe.2023550
    [3] Lorena Bociu, Giovanna Guidoboni, Riccardo Sacco, Maurizio Verri . On the role of compressibility in poroviscoelastic models. Mathematical Biosciences and Engineering, 2019, 16(5): 6167-6208. doi: 10.3934/mbe.2019308
    [4] Jinzhe Suo, Bo Li . Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(1): 418-441. doi: 10.3934/mbe.2020023
    [5] Yufei Wang, Huidong Cheng, Qingjian Li . Dynamic analysis of wild and sterile mosquito release model with Poincaré map. Mathematical Biosciences and Engineering, 2019, 16(6): 7688-7706. doi: 10.3934/mbe.2019385
    [6] Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay . Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering, 2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877
    [7] Shuixian Yan, Sanling Yuan . Critical value in a SIR network model with heterogeneous infectiousness and susceptibility. Mathematical Biosciences and Engineering, 2020, 17(5): 5802-5811. doi: 10.3934/mbe.2020310
    [8] Xingyou Yao . EWM-based design method for distortional buckling of cold-formed thin-walled lipped channel sections with holes. Mathematical Biosciences and Engineering, 2022, 19(1): 972-996. doi: 10.3934/mbe.2022045
    [9] Xu Lu, Chuan Yang, Yujing Zhang, Shanqiu Huang, Li Li, Haoqun Chen, Long Gao, Yan Ma, Wei Song . Test method for health-related physical fitness of college students in mobile internet environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2189-2201. doi: 10.3934/mbe.2019107
    [10] Zongwei Ma, Hongying Shu . Viral infection dynamics in a spatial heterogeneous environment with cell-free and cell-to-cell transmissions. Mathematical Biosciences and Engineering, 2020, 17(3): 2569-2591. doi: 10.3934/mbe.2020141
  • We revisit the chemostat model with Haldane growth function, here subject to bounded random disturbances on the input flow rate, as often met in biotechnological or waste-water industry. We prove existence and uniqueness of global positive solution of the random dynamics and existence of absorbing and attracting sets that are independent of the realizations of the noise. We study the long-time behavior of the random dynamics in terms of attracting sets, and provide first conditions under which biomass extinction cannot be avoided. We prove conditions for weak and strong persistence of the microbial species and provide lower bounds for the biomass concentration, as a relevant information for practitioners. The theoretical results are illustrated with numerical simulations.


    In the field of reliability engineering, stress-strength model is frequently used to measure the reliability of system which has a random strength Y and is subject to a random stress X. If the stress exceeds the strength, the system will fail. The stress-strength model was introduced by Birnbaum [1] and the estimation of the reliability R=P(Y>X) has been extensively discussed by many authors when the stress variable X and the strength variable Y follow a specified distribution, see Srinivasa et al. [2], Kohansal [3], Bai et al. [4, 5] and Sharma [6].

    With the development of technology, the multicomponent stress-strength system is common in daily life. A typical multicomponent system is s-out-of-k system which appears in industrial and military applications [7]. Such system functions when s (1sk) or more components simultaneously survive. Recently, many authors contributed their work to study the reliability analysis of the multicomponent stress-strength system. Srinivasa et al. [8] studied the estimation of the reliability when X and Y are independent random variables following exponentiated Weibull distribution with different shape parameters, and common shape and scale parameters, respectively. Liu et al. [9] proposed the reliability estimation of a N-M-cold-standby redundancy system when underlying distribution is generalized half-logistic distribution. Kızılaslan [10] discussed the classical and Bayesian estimation of reliability in a multicomponent stress-strength system for proportional reversed hazard rate distribution. Zhang et al. [11] proposed the Bayesian inference of reliability in a multicomponent stress-strength system when X and Y follow Marshall-Olkin bivariate Weibull distribution. Wang et al. [12] discussed the reliability analysis in a multicomponent stress-strength system when the latent strength and stress variables follow Kumaraswamy distributions with common shape parameter. Other related work can be seen in [13, 14, 15, 16, 17] and the references therein.

    The literature aforementioned are all based on the assumption that the strength variable is constructed by one element. However, in some practical situation, it is more realistic to assume that the strength variable is constructed by a pair of dependent elements. For example, in a suspension bridge, the number of vertical cable pairs, which support the bridge deck is considered as dependent strength elements[18, 19]. Therefore, it is meaningful to discuss the case when the strength variable is conducted by dependent elements. Actually, Nadar and Kızılaslan [18], Kızılaslan and Nadar [19] have discussed the estimation of reliability in a multicomponent stress-strength system when the strength elements are dependent, and the dependent relationship is described by a bivariate distribution. Nevertheless, a bivariate distribution needs the marginal distributions are the same type. To overcome this limitation, copula function is used, which is a link function between the joint cumulative distribution and the marginal distribution, and it has no limitation on the type and family of the marginal distributions. In our article, copula function is used to describe the dependent relationship of strength elements and the reliability analysis is discussed.

    The main objective of our study is to discuss the reliability analysis of a s-out-of-k multicomponent stress-strength system when the strength variable is constructed by dependent elements, which is described by a copula function. The rest of the paper is organized as follows. Section 2 introduces some copula theory. In Section 3, the model description is provided and the reliability of s-out-of-k system is derived. Point and interval estimates are presented in Sections 4 and 5, respectively. Section 6 provides simulation studies and a real data analysis. Finally, some concluding remarks are given in Section 7.

    Copula is a very convenient way to model the dependence of the random variables. A probabilistic way to define the copula is provided by Sklar [20]. More details about copulas can be found in [21]. In the following, we introduce some basic theory.

    Let S(x1,x2) be a two-dimensional joint survival function with marginal function R1,R2 and let R11,R12 be quasi-inverses of R1,R2. For u1,u2[0,1], there is a copula C as

    C(u1,u2)=S(R11(u1),R12(u2)),S(x1,x2)=C(R1(x1),R2(x2)). (1)

    Then C() is called a survival copula.

    Let H(x1,x2) be a two-dimensional joint failure function with marginal function F1,F2 and let F11,F12 be quasi-inverses of F1, F2, respectively. For u1,u2[0,1], there is a copula ˜C as

    ˜C(u1,u2)=H(F11(u1),F12(u2)), (2)
    H(x1,x2)=˜C(F1(x1),F2(x2)). (3)

    Then ˜C() is called a failure distribution copula.

    The relationship between the failure copula ˜C and the survival copula C, is

    C(R1(x1),R2(x2))=1F1(x1)F2(x2)+˜C(F1(x1),F2(x2)),˜C(F1(x1),F2(x2))=1R1(x1)R2(x2)+C(R1(x1),R2(x2)). (4)

    Let f(x1,x2) be the joint probability density function (PDF) of X1,X2, then

    f(x1,x2)=2H(x1,x2)x1x2=2˜C(F1(x1),F2(x2))F1(x1)F2(x2)f1(x1)f2(x2), (5)

    where 2˜C(F1(x1),F2(x2))F1(x1)F2(x2) is defined to be the PDF of ˜C(F1(x1),F2(x2)).

    In our study, a 2-dimensional Clayton copula is used to depict the dependence relationship of strength elements, which is a kind of Archimedean copula and widely used because of its nice properties such as its simple form, symmetry and the ability of combining [21]. Its mathematical form is given as

    C(u,v)=(uθ+vθ1)1/θ,θ[1,){0}, (6)

    where the parameter θ measures the dependence. It becomes an independent copula as θ approaches to zero.

    Assume X follows Weibull distribution with shape parameter λ and scale parameter α, denoted by WE(λ,α). Then the PDF and the cumulative distribution function (CDF) of X are, respectively,

    gX(x)=λαxα1eλxα,x>0,λ>0,α>0, (7)

    and

    GX(x)=1eλxα,x>0,λ>0,α>0. (8)

    Let T,Z1,Z2,,Zk be s-independent, G(t) be the CDF of stress variable T, and F(z) be the common CDF of strength variables Z1,Z2,,Zk. For the general case, the reliability of s-out-of-k system in a multicomponent stress-strength model developed by Bhattacharyya and Johnson [22] is given by

    Rs,k=P(atleastsofthe(Z1,Z2,,Zk)exceedT)=ki=s(ki)+(1F(t))i(F(t))kidG(t). (9)

    Suppose that the dependence between X1WE(λ1,α) and X2WE(λ2,α) is represented by a 2-dimensional Clayton copula. According to Eqs (6)–(8), the joint survival function of (X1,X2) is given by

    S(x1,x2)=C(R(x1),R(x2))=(eλ1θxα1+eλ2θxα21)1θ,

    and according to Eqs (4)–(6), the joint PDF of (X1,X2) can be written as

    f(x1,x2)=(eλθxα1+eλ2θxα21)1θ1(eλ1θxα1λ1αxα11+eλ2θxα2λ2αxα12). (10)

    We consider a system which has k statistically independent and identically distributed strength components and each component is constructed by a pair of statistically dependent elements. The system is subjected to a common random stress and it works when s or more components simultaneously survive, and a component is alive only if the weakest elements is operating. Assume that the marginal distribution of strength vectors (X11,X21),(X12,X22),,(X1k,X2k) and the stress variable T are Weibull distribution. Let Zi=min(X1i,X2i),i=1,2,,k. The survival function and the PDF of Z=min(X1,X2) are given by, respectively,

    RZ(t)=P(Z>t)=P(X1>t,X2>t)=S(t,t)=(eλ1tαθ+eλ2tαθ1)1θ,t>0, (11)

    and

    fZ(t)=dS(t,t)dt=(eλ1tαθ+eλ2tαθ1)1θ1(λ1eλ1tαθ+λ2eλ2tαθ)αtα1,t>0. (12)

    Let TWE(λ3,α) be the stress variable. Using Eqs (8) and (9), Rs,k is given as

    Rs,k=ki=s(ki)+0(eλ1tαθ+eλ2tαθ1)iθ(1(eλ1tαθ+eλ2tαθ1)1θ)kiλ3αtα1eλ3tαdt=ki=s(ki)+0(eλ1θu+eλ2θu1)iθ(1(eλ1θu+eλ2θu1)1θ)kiλ3eλ3udu=ki=skij=0CikCjki(1)jλ3+0(eλ1θu+eλ2θu1)i+jθeλ3udu (13)

    where u=tα.

    Suppose that n systems are put on a life experiment. The potential data are (X1i1,X2i1),(X1i2,X2i2),...,(X1ik,X2ik) and Ti,i=1,2,,n, the observed data are Zi1,Zi2,,Zik and Ti, where Zij=min(Xi1j,Xi2j), i=1,2,,n, j=1,2,,k. The likelihood function of these observed samples z={zij,i=1,2,,n,j=1,2,,k} and t=(t1,t2,,tn) is expressed as

    L(λ1,λ2,λ3,α,θ;z,t)=ni=1(kj=1fZ(zij))g(ti)=ni = 1(kj=1(eλ1θzαij+eλ2θzαij1)1θ1(λ1eλ1θzαij+λ2eλ2θzαij)αzα1ij)λ3αtα1ieλ3tiα=αnk+nλn3ni = 1(kj=1(eλ1θzαij+eλ2θzαij1)1θ1(λ1eλ1θzαij+λ2eλ2θzαij)zα1ij)ni=1tα1ieλ3tiα, (14)

    The log-likelihood function ignoring the additive constant is given as

    logL=ni=1kj=1{1+θθlog(eλ1θzαij+eλ2θzαij1)+log(λ1eλ1θzαij+λ2eλ2θzαij)+(α1)logzij}+n(k+1)logα+nlogλ3+(α1)ni=1logtiλ3ni=1tαi. (15)

    Taking derivatives with respect to λ1,λ2,λ3,α,θ and equating them to zero, the likelihood equations are obtained as

    logLλ1=ni=1kj=1{1+θθeλ1θzαijθzαijeλ1θzαij+eλ2θzαij1+eλ1θzαij+λ1eλ1θzαijθzαijλ1eλ1θzαij+λ2eλ2θzαij}=0, (16)
    logLλ2=ni=1kj=1{1+θθeλ2θzαijθzαijeλ1θzαij+eλ2θzαij1+eλ2θzαij+λ2eλ2θzαijθzαijλ1eλ1θzαij+λ2eλ2θzαij}=0, (17)
    logLλ3=nλ3ni=1tαi=0, (18)
    logLα=ni=1kj=1{1+θθ(λ1eλ1θzαij+λ2eλ2θzαij)θzαijlogzijeλ1θzαij+eλ2θzαij1+(λ21eλ1θzαij+λ22eλ2θzαij)θzαijlogzijλ1eλ1θzαij+λ2eλ2θzαij+logzij} + n(k+1)α+ni=1logtiλ3ni=1tαilogti, (19)
    logLθ=ni=1kj=1{1θ2log(eλ1θzαij+eλ2θzαij1)(1θ+1)(λ1eλ1θzαij+λ2eλ2θzαij)zαijeλ1θzαij+eλ2θzαij1+(λ21eλ1θzαij+λ22eλ2θzαij)zαijλ1eλ1θzαij+λ2eλ2θzαij}. (20)

    Due to the complex form, we cannot find the analytical solutions of the likelihood equations. The numerical methods such as Newton-Raphson iteration algorithm and asymptotic methods [23, 24, 25] can be applied to get the MLEs ˆλ1,ˆλ2,ˆλ3,ˆα and ˆθ.

    Hence, using the invariance property of MLE, the MLE of Rs,k is obtained from Eq (13) as

    ˆRs,k=ki=skij=0CikCjki(1)jˆλ3+0(eˆλ1ˆθu+eˆλ2ˆθu1)i+jˆθeˆλ3udu,

    where u=tˆα.

    In this section, we propose two different methods to construct confidence intervals for unknown parameters and stress-strength model reliability Rs,k.

    The asymptotic confidence intervals (ACIs) are developed based on the asymptotic normality of MLE. Let η=(λ1,λ2,λ3,α,θ), the observed Fisher information matrix of parameter η can be written as

    I(η)=(I11(η)I12(η)I15(η)I21(η)I22(η)I25(η)I51(η)I52(η)I55(η))η=(λ1,λ2,λ3,α,θ), (21)

    where Iij(η)=2lnL(η)ηiηj, η1 = λ1,η2 = λ2,η3 = λ3,η4 = α and η5 = θ.

    Therefore, the asymptotic variance-covariance matrix of η can be given by

    ˆV=I1(ˆη)=(I11I12I15I21I22I25I51I52I55)1(η1,η2,η3,η4,η5)=(ˆλ1,ˆλ2,ˆλ3,ˆα,ˆθ)(ˆv11ˆv12ˆv15ˆv21ˆv22ˆv25ˆv51ˆv52ˆv55). (22)

    The asymptotic distribution of the pivotal quantities (ˆηiηi)/ˆvii, i=1,2,,5 can be used to construct confidence intervals for ηi. A two-side 100(1γ)% ACIs for ηi can be constructed by

    (ˆηizγ/2ˆvii,ˆηi+zγ/2ˆvii),i=1,2,,5. (23)

    where zγ/2 is the upper zγ/2-th percentile point of standard normal distribution.

    Furthermore, from Eq (13) we know that Rs,k is a continuous function of λ1,λ2,λ3,α and θ. Let Rs,k=h(λ1,λ2,λ3,α,θ). Then h() is a continuous function of λ1,λ2,λ3,α and θ. Hence, ˆRs,k=h(ˆλ1,ˆλ2,ˆλ3,ˆα,ˆθ) is a consistent estimator of Rs,k. Furthermore, h() has continuous first-order partial derivatives. Thus, using the Delta method, we have

    ˆRs,kRs,kVar(ˆRs,k)N(0,1), (24)

    where Var(ˆRs,k) = σ2Rs,k = 5i=15j=1Rs,kηiRs,kηjI1ij.

    Then, the two-side 100(1γ)% ACI for Rs,k can be written as

    (ˆRs,kzγ/2Var(ˆRs,k),ˆRs,k+zγ/2Var(ˆRs,k)). (25)

    Note that the ACI of Rs,k may not be within the interval (0, 1). Using logarithmic trans-formation and delta method, the asymptotic normality distribution of log(ˆRs,k) can be arrived as

    (log(ˆRs,k)log(ˆRs,k))/Var(log(ˆRs,k))N(0,1). (26)

    Therefore, using the inverse logarithmic transformation, the log-normal 100(1γ)% ACI of the reliability Rs,k becomes

    (ˆRs,kexp(zγ/2Var(ˆRs,k)/ˆRs,k),ˆRs,kexp(zγ/2Var(ˆRs,k)/ˆRs,k)). (27)

    The bootstrap method is used to construct confidence interval for the unknown parameters [26, 27] when the sample size is small. Compared to the ordinary bootstrap confidence interval (BCI), the bias-corrected percentile BCI is considered to perform better. The steps to construct the bias-corrected percentile BCI are as follow.

    Step 1: Based on the observed sample z and t, we compute the MLEs ˆλ1,ˆλ2,ˆλ3,ˆα,ˆθ and ˆRs,k.

    Step 2: Use the Clayton copula function, ˆλ1,ˆλ2,ˆα and ˆθ to generate a dependent bootstrap sample of strength element, and ˆα and ˆλ3 to generate a bootstrap stress sample.

    Step 3: Based on the bootstrap sample in step 2, we get the bootstrap estimate of ˆλ1,ˆλ2,ˆλ3,ˆα,ˆθ, say ˆλ1,ˆλ2,ˆλ3,ˆα,ˆθ*.

    Step 4: Repeat Steps 2–3 N times to obtain ˆϑ(1),ˆϑ(2),...,ˆϑ(N), where ˆϑ(k) = (ˆη(k)1,...,ˆη(k)6) = (ˆλ(k)1ˆλ(k)2ˆλ(k)3ˆα(k)ˆθ(k)ˆR(k)s,k) and

    ˆR(k)s,k=ki=skij=0CikCjki(1)jˆλ(k)3+0(eˆλ1(k)ˆθ(k)u+eˆλ2(k)ˆθ(k)u1)i+jˆθ(k)eˆλ3(k)udu.

    Step 5: For each variable ηi, arrange its bootstrap estimate in an ascending order to obtain ˆη[1]i,ˆη[2]i,...,ˆη[N]i,i=1,2,,6.

    Then, a two-sided 100(1γ)% bias-corrected percentile BCI of ηi is given by

    (ˆηiL,ˆηiU)=(ˆη[Nα1i]i,ˆη[Nα2i]i),

    where α1i=Φ(2z0i+zα/2) and α2i=Φ(2z0i+z1α/2), Φ is the standard normal cumulative distribution function with zα=Φ1(α), and the value of bias correction z0i is z0i=Φ1(number of {ˆηi[j]<ˆηi}N), i=1,2,,6, j=1,2,,N.

    For illustration, a simulation study is performed to compare the performance of the estimates of unknown parameters and reliability Rs,k in a multicomponent stress-strength system, which are obtained for different sample sizes, different model parameters and dependence parameters. The performances of the point estimates are compared by using estimated risks (ERs). We also compare the ACIs and BCIs in terms of the average interval lengths. The ER of δ, when δ is estimated by ˆδi, is given by

    ER(δ)=1nni=1(ˆδiδ)2,

    where n is the sample size.

    We simulate different strength and stress populations corresponding to the parameters (λ1,λ2,λ3,α)={(7,4,4,3),(1,2,3,4,)} and θ=1,2 with different sample sizes n=20 (30) 80. Without loss of generality, the 1-out-of-3 multicomponent system and the 2-out-of-4 multicomponent system are studied, i.e. (s,k)=(1,3) and (2, 4). The true value of R1,3 with the given parameter (λ1,λ2,λ3,θ,α)=(7,4,4,1,3),(7,4,4,2,3),(1,2,4,1,3) and (1,2,4,2,3) are 0.5529, 0.5587, 0.8626 and 0.8792, respectively. The true value of R2,4 with the given parameter (λ1,λ2,λ3,θ,α)=(7,4,4,1,3),(7,4,4,2,3),(1,2,4,1,3) and (1,2,4,2,3) are 0.5639, 0.6420, 0.9727 and 0.9905, respectively. The MLEs, ERs and the 95% ACIs, BCIs, and the lengths of ACI and BCI based on 5000 replications are listed in Tables 14, where ˆRs,k and ˜Rs,k represent the estimated results when the dependence of the strength elements is considered and the dependence of the strength elements is ignored, respectively. The MLEs and ERs of θ for different model parameters are reported in Table 5. All of the computations are performed using R software and run on LAPTOP with 1.80 and 2.30 GHz CPU processor, 12.0 GB RAM memory, and windows 10 operating system. Newton- Raphson procedure is adopted in the calculation process, and the starting values of unknown parameters are randomly chosen around their true values. We have chosen different initial values, and the estimated results are stable.

    Table 1.  MLEs, ERs and 95% CIs for parameters and Rs,k when (λ1,λ2,λ3,α,θ)=(7,4,4,3,1).
    n λ1 λ2 λ3 α θ R1,3 R2,4 ˜R1,3 ˜R2,4
    20 MLE 7.3170 3.8023 4.1631 3.1722 0.8779 0.5313 0.5435 0.3906 0.4055
    ER 0.6994 0.4423 0.4135 0.0639 0.2638 0.0519 0.0329 0.0544 0.0595
    ACI_Lower 6.5132 3.5625 3.7228 2.7825 0.5095 0.4403 0.4301 0.2883 0.3009
    ACI_Upper 7.8855 4.2988 4.4224 3.5217 1.0902 0.6192 0.6241 0.4942 0.5085
    ACI_Length 1.3723 0.7364 0.6996 0.7392 0.5807 0.1789 0.1940 0.2059 0.2076
    BCI_Lower 6.6649 3.4171 3.7933 2.7740 0.5578 0.4477 0.4411 0.1752 0.1749
    BCI_Upper 7.9421 4.1874 4.5329 3.5704 1.1980 0.6323 0.6459 0.6598 0.6517
    BCI_Length 1.2772 0.7703 0.7396 0.7964 0.6402 0.1846 0.2048 0.4845 0.4768
    50 MLE 7.2733 3.8240 4.1305 3.1028 0.9147 0.5344 0.5438 0.3808 0.4296
    ER 0.4590 0.3450 0.3386 0.0492 0.1878 0.0421 0.0637 0.0634 0.0635
    ACI_Lower 6.7840 3.7792 3.5933 2.8160 0.7622 0.4602 0.4491 0.4517 0.3697
    ACI_Upper 7.8365 4.1925 4.4927 3.2982 1.3162 0.6187 0.6385 0.5235 0.7011
    ACI_Length 1.0525 0.4132 0.8994 0.4823 0.5540 0.1585 0.1894 0.0719 0.3314
    BCI_Lower 6.6890 3.4738 3.6804 2.8466 0.6384 0.4516 0.4371 0.2647 0.3879
    BCI_Upper 7.8576 4.1742 4.5806 3.3590 1.1909 0.6173 0.6265 0.5190 0.6226
    BCI_Length 1.1686 0.7004 0.9002 0.5124 0.5525 0.1658 0.1894 0.2543 0.2347
    80 MLE 7.2216 3.8627 3.9569 3.0746 0.9363 0.5410 0.5532 0.3764 0.3271
    ER 0.4451 0.3267 0.3147 0.0364 0.1421 0.0289 0.0459 0.0350 0.0341
    ACI_Lower 6.7946 3.5681 3.6579 2.8912 0.7808 0.4701 0.4637 0.5807 0.5661
    ACI_Upper 7.8106 4.3031 4.5964 3.2230 1.2548 0.6081 0.6426 0.6476 0.8229
    ACI_Length 1.0160 0.7350 0.9385 0.3319 0.4740 0.1380 0.1789 0.0669 0.2567
    BCI_Lower 6.7015 3.5423 3.4737 2.8005 0.6762 0.4558 0.4422 0.2608 0.2791
    BCI_Upper 7.7417 4.1831 4.4401 3.3487 1.1964 0.6263 0.6210 0.5049 0.6340
    BCI_Length 1.0402 0.6408 0.9664 0.5482 0.5202 0.1705 0.1789 0.2441 0.3549

     | Show Table
    DownLoad: CSV
    Table 2.  MLEs, ERs and 95% CIs for parameters and Rs,k when (λ1,λ2,λ3,α,θ)=(7,4,4,3,2).
    n λ1 λ2 λ3 α θ R1,3 R2,4 ˜R1,3 ˜R2,4
    20 MLE 7.5126 4.4792 4.4516 3.1571 1.7615 0.5461 0.5549 0.4195 0.4188
    ER 0.8864 0.8293 0.9219 0.3424 0.4729 0.0348 0.0945 0.0387 0.0460
    ACI_Lower 6.7231 3.7272 3.7538 2.8649 1.4560 0.4230 0.4266 0.1824 0.1678
    ACI_Upper 7.9214 4.9292 4.8672 3.4931 2.3191 0.6212 0.6783 0.7259 0.6698
    ACI_Length 1.1983 1.2020 1.1134 0.6282 0.8631 0.1982 0.2517 0.5435 0.5020
    BCI_Lower 6.8125 3.8535 3.8818 2.8369 1.2013 0.4636 0.4043 0.5344 0.3342
    BCI_Upper 8.2127 5.1049 5.0214 3.4773 2.3217 0.6286 0.6449 0.6848 0.6741
    BCI_Length 1.4002 1.2514 1.1396 0.6404 1.1204 0.1650 0.2406 0.1305 0.3399
    50 MLE 7.3853 4.2408 4.2863 3.1043 1.7820 0.5514 0.5684 0.4078 0.4186
    ER 0.6216 0.7029 0.7903 0.1751 0.4002 0.0211 0.0771 0.0279 0.0421
    ACI_Lower 6.9271 3.8161 3.8278 2.7834 1.3922 0.4812 0.4439 0.2592 0.1976
    ACI_Upper 7.9522 4.8798 4.9973 3.3308 2.3916 0.6387 0.6930 0.5865 0.6396
    ACI_Length 1.0252 1.0638 1.1695 0.5474 0.9994 0.1575 0.2491 0.3273 0.4420
    BCI_Lower 6.8415 3.7187 3.7011 2.8180 1.2808 0.4594 0.4326 0.3538 0.3787
    BCI_Upper 7.9292 4.7629 4.8715 3.3906 2.2832 0.6434 0.6642 0.6187 0.6553
    BCI_Length 1.0877 1.0442 1.1704 0.5726 1.0024 0.1840 0.2316 0.2649 0.2766
    80 MLE 7.2852 3.9432 3.9673 3.0752 1.8959 0.5549 0.6216 0.4076 0.4178
    ER 0.5421 0.6416 0.6117 0.1370 0.3880 0.0175 0.0676 0.0252 0.0405
    ACI_Lower 6.8238 3.5884 3.5435 2.8338 1.5015 0.4621 0.4439 0.2861 0.2148
    ACI_Upper 7.8814 4.5192 4.5687 3.2804 2.3985 0.6186 0.6930 0.5450 0.6208
    ACI_Length 1.0575 0.9308 1.0251 0.4466 0.8970 0.1564 0.2491 0.2589 0.4060
    BCI_Lower 6.7750 3.4496 3.4667 2.8429 1.4090 0.4708 0.4728 0.3976 0.3587
    BCI_Upper 7.7954 4.4368 4.4679 3.3075 2.3828 0.6390 0.6970 0.6191 0.6379
    BCI_Length 1.0204 0.9872 1.0012 0.4646 0.9738 0.1682 0.2242 0.2215 0.2792

     | Show Table
    DownLoad: CSV
    Table 3.  MLEs, ERs and 95% CIs for parameters and Rs,k when (λ1,λ2,λ3,α,θ)=(1,2,4,3,1).
    n λ1 λ2 λ3 α θ R1,3 R2,4 ˜R1,3 ˜R2,4
    20 MLE 0.8704 2.2951 3.8924 3.2294 0.8718 0.7680 0.8270 0.6777 0.7504
    ER 0.1532 0.3900 0.4775 0.1119 0.3649 0.0383 0.1020 0.1341 0.1428
    ACI_Lower 0.5787 1.7522 3.3125 2.7813 0.6052 0.5378 0.6738 0.4756 0.5301
    ACI_Upper 1.2411 2.7380 5.2672 3.8409 1.2156 0.9982 0.9802 0.8798 0.9707
    ACI_Length 0.6624 0.9858 1.9548 1.0596 0.6105 0.4604 0.3064 0.4042 0.4406
    BCI_Lower 0.5246 1.7830 2.8667 2.3394 0.5514 0.4499 0.6738 0.6234 0.6195
    BCI_Upper 1.2162 2.8172 4.9181 3.7183 1.1922 0.9103 0.9802 0.9384 0.9631
    BCI_Length 0.6916 1.0342 2.0514 1.3789 0.6408 0.4604 0.3064 0.3150 0.3436
    50 MLE 0.8843 2.1736 4.1870 3.1676 0.8748 0.7441 0.8827 0.6460 0.7453
    ER 0.1457 0.2458 0.3909 0.0919 0.2339 0.0319 0.0831 0.1486 0.1562
    ACI_Lower 0.6777 1.6930 3.3846 2.8009 0.4330 0.5716 0.6752 0.4459 3.4105
    ACI_Upper 1.2654 2.4176 5.2489 3.7343 1.1634 0.9766 0.9999 0.8461 3.5467
    ACI_Length 0.5878 0.7247 1.8644 0.9334 0.7304 0.4050 0.3247 0.4002 0.1362
    BCI_Lower 0.5821 1.8504 3.2635 2.7118 0.4850 0.5382 0.7523 0.5707 0.6717
    BCI_Upper 1.1865 2.4968 5.1105 3.6234 1.2646 0.9432 0.9940 0.9896 0.9428
    BCI_Length 0.6044 0.6464 1.8470 0.9116 0.7796 0.4050 0.2417 0.4189 0.2711
    80 MLE 0.9149 2.1299 3.9192 3.1293 0.8840 0.8373 0.9733 0.7821 0.8024
    ER 0.1407 0.1667 0.3068 0.0896 0.2191 0.0307 0.0771 0.0765 0.1074
    ACI_Lower 0.7294 1.8963 2.7490 2.7951 0.7467 0.6262 0.8421 0.5985 0.5298
    ACI_Upper 1.2383 2.4338 4.4348 3.6241 1.3511 1.0484 1.0445 0.9657 0.9693
    ACI_Length 0.5090 0.5375 1.6858 0.8290 0.6044 0.4222 0.2024 0.3672 0.4395
    BCI_Lower 0.7023 1.8467 3.0978 2.5967 0.5616 0.6059 0.8121 0.5657 0.7649
    BCI_Upper 1.1275 2.4131 4.7406 3.6619 1.1964 0.9988 0.9877 0.9377 0.9656
    BCI_Length 0.4252 0.5664 1.6428 1.0652 0.6348 0.3929 0.1756 0.3721 0.2007

     | Show Table
    DownLoad: CSV
    Table 4.  MLEs, ERs and 95% CIs for parameters and Rs,k when (λ1,λ2,λ3,α,θ)=(1,2,4,3,2).
    n λ1 λ2 λ3 α θ R1,3 R2,4 ˜R1,3 ˜R2,4
    20 MLE 1.2792 2.3766 4.3199 3.2593 2.3293 0.7946 0.8345 0.5658 0.6629
    ER 0.3905 0.4561 0.7625 0.1128 0.4498 0.1996 0.1702 0.1503 0.1842
    ACI_Lower 0.9152 1.6528 3.7554 2.9289 1.8456 0.5311 0.6518 0.3353 0.3786
    ACI_Upper 1.4212 2.9281 4.9722 3.6493 2.7519 0.9581 0.9627 0.7963 0.9472
    ACI_Length 0.5060 1.2753 1.2168 0.7204 0.9063 0.4270 0.3109 0.4610 0.5686
    BCI_Lower 0.9578 1.7776 3.6985 2.9272 1.8169 0.4311 0.6741 0.3685 0.3139
    BCI_Upper 1.5666 2.9756 4.9413 3.5915 2.8417 0.9581 0.9949 0.9753 0.9707
    BCI_Length 0.6088 1.1979 1.2428 0.6643 1.0248 0.5270 0.3208 0.6068 0.6568
    50 MLE 1.2357 2.2266 4.1305 3.2452 2.2998 0.8174 0.8981 0.7563 0.6126
    ER 0.3602 0.3852 0.3386 0.0741 0.3213 0.1444 0.1370 0.2775 0.2738
    ACI_Lower 0.8732 1.6254 3.6278 2.7983 1.8392 0.5343 0.7523 0.5131 0.3505
    ACI_Upper 1.4121 2.8985 4.8997 3.3308 2.7819 1.1004 0.9824 0.9995 0.8747
    ACI_Length 0.5389 1.2731 1.2719 0.5325 0.9427 0.5661 0.2301 0.4864 0.5242
    BCI_Lower 0.9810 1.5997 3.5251 2.9720 1.8426 0.4522 0.7760 0.3809 0.3733
    BCI_Upper 1.4904 2.8535 4.7359 3.5184 2.7571 0.9882 0.9720 0.9763 0.9832
    BCI_Length 0.5094 1.2537 1.2108 0.5464 0.9144 0.5360 0.1960 0.5953 0.6099
    80 MLE 1.1497 2.2147 3.9586 3.1028 2.1064 0.8668 0.9675 0.7012 0.7589
    ER 0.2870 0.2790 0.2685 0.0292 0.2721 0.0878 0.0948 0.1277 0.1622
    ACI_Lower 0.9224 1.6588 3.4544 2.9134 1.5015 0.7812 0.8143 0.5807 0.5572
    ACI_Upper 1.4814 2.7192 4.5687 3.3128 2.3985 0.9524 1.0799 0.8217 0.9606
    ACI_Length 0.5590 1.0604 1.1143 0.3994 0.8970 0.1712 0.2656 0.2410 0.4034
    BCI_Lower 0.8906 1.5826 3.3977 2.8876 1.0650 0.6299 0.8143 0.8676 0.5779
    BCI_Upper 1.4948 2.8468 4.5194 3.3180 2.5429 1.1037 1.0407 1.3989 0.9162
    BCI_Length 0.6043 1.2642 1.1217 0.4304 1.4779 0.4738 0.2264 0.5312 0.3383

     | Show Table
    DownLoad: CSV
    Table 5.  MLEs, ERs of θ under different parameter when n = 50.
    (λ1,λ2,λ3,α) θ=1 θ=2 θ=4 θ=6 θ=8
    (2, 3, 4, 3) MLE 1.1984 2.0886 3.8748 6.3712 8.2351
    ER 0.2037 0.1356 0.3884 0.3862 0.3765
    (1, 2, 4, 3) MLE 1.2413 2.1189 4.0413 5.6773 7.7763
    ER 0.2173 0.1461 0.1754 0.3780 0. 5906
    (7, 4, 4, 3) MLE 1.2081 1.9498 4.2337 6.1694 7.7575
    ER 0.2028 0.1527 0.3838 0.3957 0.5667

     | Show Table
    DownLoad: CSV

    To study the effect of the dependence between the strength elements on the reliability Rs,k in a multicomponent stress-strength system, we draw graph of ˆRs,k versus the dependency parameter θ for different pairs of (λ1,λ2,λ3, α). Variations in ˆRs,k with respect to θ are displayed in Figure 1 for different model parameters and n=50.

    Figure 1.  Variation in Rs,k with respect to θ for different parameters of (λ1,λ2,λ3,α)={(7,4,4,3),(2,3,4,3)◇, (1,2,4,3)+}.

    From Tables 14, it is observed that the MLEs for unknown parameters and system reliability R1,3, R2,4 are close to the true value in most cases and the ERs are considerably small for all cases. As the sample size increases, the ERs, ACI lengths, BCI lengths for unknown parameters, and system reliability R1,3, R2,4 are decrease as expected. The ACIs are wider than the BCIs in most cases, and all the interval estimates cover the true value of the corresponding parameter. The ERs, ACI lengths and BCI lengths of R1,3 and R2,4 considering the dependence of strength elements perform better than those ignoring dependence of the strength elements. From Table 5, we can observed that the MLEs of θ are close to the true value for θ=2, rationally close for θ=1,4 and move away from the true value for θ=6,8. The ERs for ˆθ are considerably small in Table 5. From Figure 1, it is observed that as the increase of the dependence parameter θ, the stress-strength reliability ˆRs,k is increasing.

    In this section, a real data set is analyzed to investigate scenarios of excessive drought. It can be found in http://cdec.water.ca.gov/cgi-progs/queryMonthly? SHA, and the data has been studied by Wang et al. [12], Kohansal [13], Zhu [16], Kızılaslan and Nadar [18], and kohansal and Shoaee et al. [28]. If the water capacity of a reservoir on December of the previous year is over roughly half of the maximum capacity, and the minimum water level of August and September is more than the amount of water achieved on December at least two years out of the next 5 years, it is claimed that there will be no excessive drought afterward. Let T1,T2,,T6 denote the capacity of December 1980, 1986, 1992, …, 2010, and X1k,Y1k,k=1,,5 be the capacities of August and September in 19801985, respectively. Let X2k and Y2k,k=1,,5 be the capacities of August and September in 19871991, respectively. The data are proceeded up to 2015. We convert each data between 0 and 1 by dividing the total capacity of Shasta reservoir 4, 552, 000 acre-foot and then the transformed data are obtained as:

    X1=(X111X112X115X121X122X125X161X162X165)=(0.55970.81120.82960.72620.42380.46370.36340.46370.37190.29120.75400.53810.74490.72260.56120.75520.66860.52490.60600.71590.71880.74200.46880.34510.42530.79510.61390.46160.29480.3929),
    X2=(X211X212X215X221X222X225X261X262X265)=(0.54490.76590.79460.71180.43450.46310.34840.46050.35970.29430.68140.46170.68900.67860.50710.73100.65580.48320.56200.69410.66670.70410.41280.30410.38970.73400.56930.41870.25420.3520),
    T=(0.70090.65320.45890.71830.5310.7665).

    Let Zik=min(X1ik,X2ik), Z={Zik,i=1,,6,k=1,,5}, T={T1,T2,,T6}, then the observed data (Z,T) can be viewed as the observation from a 2-out-of-5 system.

    Before progressing further, we first check whether Weibull distribution in Eq (8) could be used to analyze these real-life data. For X1, the MLEs of parameters (λ1,α), Kolmogorov-Smirnov (K-S) statistic and the corresponding p-value are (6.2289, 4.0025), 0.1717 and 0.3037, respectively. For X2, the MLEs of parameters (λ2,α), the K-S statistic and the corresponding p-value are (7.5507, 3.9070), 0.1660 and 0.3417, respectively. For T, the MLEs of parameters (λ3,α), the K-S statistic and the corresponding p-value are (17.8408, 7.5439), 0.2047 and 0.9212, respectively. It is observed that Weibull distribution is considered as an appropriate model for X1,X2 and T. Moreover, for further illustration, the empirical cumulative distributions plot and overlay the theoretical Weibull distribution are shown in Figure 2, and the probability-probability (P-P) plots are shown in Figure 3, which also imply that the Weibull distribution could be considered as an appropriate model. To check the correlation, we compute the correlation coefficient of X1 and X2 using the Pearson's method, it is 0.9918 and the p-value is 0.0000, so the data (X1,X2) can be considered to be dependent.

    Figure 2.  Empirical distribution under real data.
    Figure 3.  Fitted Weibull models P-P plots under real data.

    Regard X1 and X2 as the dependent elements of strength variable and T as the stress variable. The probability P (at least s of the (Z1,Z2,,Zk) exceed T) can be viewed as the measure of no excessive drought. Based on the proposed methods, the estimates and 95% confidence intervals of the model parameters and reliability are listed in Table 6.

    Table 6.  Estimates and 95% CIs for data (Z,T).
    λ1 λ2 λ3 α θ R2,5 ˜R2,5
    MLEs 4.0798 5.1597 3.5496 4.0182 4.4405 0.5227 0.5707
    ACI_Lower 3.0553 4.0073 2.6484 3.2071 3.5417 0.4242 0.4799
    ACI_Upper 5.1043 6.3121 4.4508 5.0345 5.3393 0.6212 0.6786
    ACI_Length 2.0490 2.3048 1.8024 1.8274 1.7976 0.1970 0.1987
    BCI_Lower 3.0634 3.9896 2.4534 3.3251 3.4979 0.4294 0.3329
    BCI_Upper 5.0213 6.2142 4.2781 5.1210 5.3015 0.6215 0.6201
    BCI_Length 1.9579 2.2246 1.8247 1.7959 1.8036 0.1921 0.2872

     | Show Table
    DownLoad: CSV

    In this paper, we have studied the reliability analysis of multicomponent stress-strength model for the s-out-of-k system when the strength variable is constructed by a pair of s-dependent elements, which is described by a Clayton copula function. Based on the observed sample and the copula theory, the MLEs, ACIs as well as the BCIs for unknown parameters and Rs,k are obtained using the asymptotic normality property, delta method and the sampling theory. The simulation study indicates that the ERs, ACI lengths and BCI lengths for the unknown parameters and Rs,k are decreasing as the sample size increases. The BCIs are more attractive than the associated ACIs in terms of the average confidence interval lengths, and all the confidence intervals cover the true value of the corresponding parameter. The ERs, ACI lengths and BCI lengths of R1,3 and R2,4 for the case of considering the dependence perform better than those for the case of ignoring the dependence. The MLEs of θ are close to the true value for θ=2, rationally close for θ=1,4 and move away from the true value for θ=6,8. The variables in Rs,k with respect to θ is moderate, and Rs,k increases with respect to θ for different parameters.

    This work was supported by the National Natural Science Foundation of China (11901134, 71901078 and 62162012), the Science and Technology Support Program of Guizhou (QKHZC2021 YB531), the Natural Science Research Project of Department of Education of Guizhou Province (QJJ2022015, QJJ2022047), the Scientific Research Platform Project of Guizhou Minzu University (GZMUSYS [2021]04), and the Natural Science Foundation of the Higher Education Institutions of Anhui Province (KJ2021A0386).

    The authors declare no conflict of interest.

    Nomenclature

    X1i,X2i strength variable
    Zi=min(X1i,X2i) minimum of the strength variables
    T stress variable
    k number of components
    Rs,k reliability of s-out-of-k system
    PDF probability density function
    CDF cumulative distribution function
    F() CDF of strength variable
    G() CDF of stress variable
    fZ() PDF of Z
    f(x1,x2) joint PDF of X1 and X2
    C() survival copula
    ˜C() failure distribution copula
    WE(λ,α) Weibull distribution with shape parameter λ and scale parameter α
    MLE maximum likelihood estimate
    ˆRs,k MLE of Rs,k when the dependence is considered
    ˜Rs,k MLE of Rs,k when the dependence is ignored
    ER estimated risk
    ACI asymptotic confidence interval
    BCI bootstrap confidence interval



    [1] J. Monod, La technique de culture continue: Théorie et applications, Annales de l'Institute Pasteur, 79 (1950), 390-410.
    [2] A. Novick, L. Szilard, Experiments with the chemostat on spontaneous mutations of bacteria, Proc. Natl. Acad. Sci., 36 (1950), 708-719. doi: 10.1073/pnas.36.12.708
    [3] H. W. Jannasch, Steady state and the chemostat in ecology, Limnol. Oceanogr., 19 (1974), 716- 720. doi: 10.4319/lo.1974.19.4.0716
    [4] G. D'Ans, P. Kokotovic, D. Gottlieb, A nonlinear regulator problem for a model of biological waste treatment, IEEE Trans. Autom. Control., 16 (1971), 341-347. doi: 10.1109/TAC.1971.1099745
    [5] J. W. M. La Rivière, Microbial ecology of liquid waste treatment, in Advances in Microbial Ecology, 1 (1977), 215-259, Springer US.
    [6] J. Barlow, F. de Noyelles, B. Peterson, J. Peterson, W. Schaffner, "Continuous flow nutrient bioassays with natural phytoplankton populations". G. Glass (Editor): Bioassay Techniques and Environmental Chemistry, John Wiley & Sons Ltd., 1973.
    [7] I. F. Creed, D. M. McKnight, B. A. Pellerin, M. B. Green, B. A. Bergamaschi, G. R. Aiken, et al., The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum, Can. J. Fish. Aquatic Sci., 72 (2015), 1272-1285. doi: 10.1139/cjfas-2014-0400
    [8] S. Jorgensen, B. Fath, Fundamentals of Ecological Modelling Applications in Environmental Management and Research. Elsevier, 2011.
    [9] J. Kalff, R. Knoechel, Phytoplankton and their dynamics in oligotrophic and eutrophic lakes, Annu. Rev. Ecol. Syst., 9 (1978), 475-495. doi: 10.1146/annurev.es.09.110178.002355
    [10] E. Rurangwa, M. C. J. Verdegem, Microorganisms in recirculating aquaculture systems and their management, Rev. Aquac., 7 (2015), 117-130. doi: 10.1111/raq.12057
    [11] J. Harmand, C. Lobry, A. Rapaport, T. Sari, The Chemostat: Mathematical Theory of Microorganisms Cultures. Wiley, Chemical Engineering Series, John Wiley & Sons, Inc., 2017.
    [12] H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition. Cambridge University Press, 1995.
    [13] T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz, A. Rapaport, Modeling and analysis of random and stochastic input flows in the chemostat model, Discret. Continuous Dyn. Syst. Ser. B, 24 (2018), 3591-3614.
    [14] Y. Asai, P. Kloeden, Numerical schemes for random odes via stochastic differential equations, Commun. Appl. Analysis, 17 (2013), 521-528.
    [15] T. Caraballo, X. Han, P. E. Kloeden, Chemostats with random inputs and wall growth, Math. Methods Appl. Sci., 38 (2015), 3538-3550. doi: 10.1002/mma.3437
    [16] T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz, Some Aspects Concerning the Dynamics of Stochastic Chemostats, vol. 69, ch. 11, pp. 227-246. Springer International Publishing, 2016.
    [17] T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz, Dynamics of some stochastic chemostat models with multiplicative noise, Commun. Pure Appl. Analysis, 16 (2017), 1893-1914. doi: 10.3934/cpaa.2017092
    [18] J. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10 (1968), 707-723. doi: 10.1002/bit.260100602
    [19] G. Bastin, D. Dochain, On-line estimation and adaptive control of bioreactors. Elsevier, 1990.
    [20] A. Rapaport, J. Harmand, Robust regulation of a class of partially observed nonlinear continuous bioreactors, J. Process. Control., 12 (2002), 291-302. doi: 10.1016/S0959-1524(01)00029-4
    [21] B. Satishkumar, M. Chidambaram, Control of unstable bioreactor using fuzzy tuned PI controller, Bioprocess Eng., 20, (1999), 127-132. doi: 10.1007/s004490050570
    [22] A. Schaum, J. Alvarez, T. Lopez-Arenas, Saturated PI control of continuous bioreactors with haldane kinetics, Chem. Eng. Sci., 68 (2012), 520-529. doi: 10.1016/j.ces.2011.10.006
    [23] A. Rapaport, I. Haidar, J. Harmand, Global dynamics of the buffered chemostat for a general class of response functions, J. Math. Biol., 71 (2014), 69-98.
    [24] A. Rapaport, J. Harmand, Biological control of the chemostat with nonmonotonic response and different removal rates, Math. Biosci. Eng., 5 (2008), 539-547. doi: 10.3934/mbe.2008.5.539
    [25] B. Cloez, C. Fritsch, Gaussian approximations for chemostat models in finite and infinite dimensions, J. Math. Biol., 75 (2017), 805-843. doi: 10.1007/s00285-017-1097-6
    [26] P. Collet, S. Martínez, S. Méléard, J. S. Martín, Stochastic models for a chemostat and long-time behavior, Adv. Appl. Probab., 45 (2013), 822-836. doi: 10.1017/S0001867800006595
    [27] C. Fritsch, J. Harmand, F. Campillo, A modeling approach of the chemostat, Ecol. Model., 299 (2015), 1-13. doi: 10.1016/j.ecolmodel.2014.11.021
    [28] J. Grasman, M. D. Gee, O. A. V. Herwaarden, Breakdown of a chemostat exposed to stochastic noise, J. Eng. Math., 53 (2005), 291-300. doi: 10.1007/s10665-005-9004-3
    [29] L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26-53. doi: 10.1016/j.jde.2005.06.017
    [30] G. Stephanopoulos, R. Aris, A. Fredrickson, A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor, Math. Biosci., 45 (1979), 99-135. doi: 10.1016/0025-5564(79)90098-1
    [31] C. Xu, S. Yuan, An analogue of break-even concentration in a simple stochastic chemostat model, Appl. Math. Lett., 48 (2015), 62-68. doi: 10.1016/j.aml.2015.03.012
    [32] D. Zhao, S. Yuan, Critical result on the break-even concentration in a single-species stochastic chemostat model, J. Math. Anal. Appl., 434 (2016), 1336-1345. doi: 10.1016/j.jmaa.2015.09.070
    [33] T. Caraballo, R. Colucci, J. López-de-la-Cruz, A. Rapaport, A way to model stochastic perturba-tions in population dynamics models with bounded realizations, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 239-257. doi: 10.1016/j.cnsns.2019.04.019
    [34] T. Caraballo, X. Han, Applied Nonautonomous and Random Dynamical Systems, Applied Dynamical Systems. Springer International Publishing, 2016.
    [35] L. Arnold, Random Dynamical Systems. Springer Berlin Heidelberg, 1998.
    [36] T. Caraballo, P. E. Kloeden, B. Schmalfuss, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50 (2004), 183-207. doi: 10.1007/s00245-004-0802-1
    [37] H. I. Freedman, P. Moson, Persistence definitions and their connections, Proc. Am. Math. Soc., 109 (1990), 1025-1033. doi: 10.1090/S0002-9939-1990-1012928-6
    [38] W. Walter, Ordinary Differential Equations. Springer New York, 1998.
    [39] H. R. Thieme, Convergence results and a poincare-bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
  • This article has been cited by:

    1. Nooshin Hakamipour, Stress–strength reliability estimation of s -out-of- k multicomponent systems based on copula function for dependent strength elements under progressively censored sample , 2024, 0308-1079, 1, 10.1080/03081079.2024.2405687
    2. Akram Kohansal, Carlos J Pérez-González, Arturo J Fernández, Inference on the stress-strength reliability of multi-component systems based on progressive first failure censored samples, 2024, 238, 1748-006X, 1053, 10.1177/1748006X231188075
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3925) PDF downloads(123) Cited by(13)

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog