Citation: Qingyun Zhang, Xinhua Zhao, Liang Liu, Tengda Dai. Dynamics analysis of spatial parallel robot with rigid and flexible links[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7101-7129. doi: 10.3934/mbe.2020365
[1] | S. K. Dwivedy, P. Eberhard, Dynamic analysis of flexible manipulators, a literature review, Mech. Mach. Theory, 41 (2006), 749-777. |
[2] | S. Yang, Y. Li, Classification and analysis of constraint singularities for parallel mechanisms using differential manifolds, Appl. Math. Model, 77 (2020), 469-477. doi: 10.1016/j.apm.2019.07.040 |
[3] | B. Lian, T. Sun, Y. Song, Y. Jin, M. Price, Stiffness analysis and experiment of a novel 5-DoF parallel kinematic machine considering gravitational effects, Int. J. Mach. Tools Manuf., 95 (2015), 82-96. doi: 10.1016/j.ijmachtools.2015.04.012 |
[4] | T. Sun, B. Lian, Y. Song, L. Feng, Elasto-dynamic Optimization of A 5-DoF Parallel Kinematic Machine Considering Parameter Uncertainty, IEEE ASME Trans. Mechatron., 24 (2019), 315-325. doi: 10.1109/TMECH.2019.2891355 |
[5] | T. Sun, S. Yang, B. Lian. Finite and Instantaneous Screw Theory in Robotic Mechanism, Singapore: Springer, 2020. |
[6] | S. Lu, Y. Li, B. Ding, Kinematics and dynamics analysis of the 3PUS-PRU parallel mechanism module designed for a novel 6-DOF gantry hybrid machine tool, J. Mech. Sci. Technol., 34 (2020), 345-357. doi: 10.1007/s12206-019-1234-9 |
[7] | T. Sun, B. Lian, Stiffness and mass optimization of parallel kinematic machine, Mech. Mach. Theory, 120 (2018), 73-88. doi: 10.1016/j.mechmachtheory.2017.09.014 |
[8] | T. Sun, S. Yang, An Approach to Formulate the Hessian Matrix for Dynamic Control of Parallel Robots, IEEE ASME Trans. Mechatron., 24 (2019), 271-281. doi: 10.1109/TMECH.2019.2891297 |
[9] | T. Sun, B. Lian, S. Yang, Y. Song, Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw Theory, IEEE Trans. Robot., 36 (2020), 816-834. doi: 10.1109/TRO.2020.2969028 |
[10] | A. A. Shabana, Finite element incremental approach and exact rigid body inertia, J. Mech. Des., 118 (1996), 171-178. doi: 10.1115/1.2826866 |
[11] | A. A. Shabana, Definition of the slopes and the finite element absolute nodal coordinate formulation, Multibody Syst. Dyn., 1 (1997), 339-348. doi: 10.1023/A:1009740800463 |
[12] | A. A. Shabana, H. A. Hussien, J. L. Escalona, Application of the absolute nodal coordinate formulation to large rotation and large deformation problems, J. Mech. Des., 120 (1998), 185-195. |
[13] | A. A. Shabana, R. Y. Yakoub, Three dimensional absolute nodal coordinate formulation for beam elements: theory, J. Mech. Des., 123 (2001), 606-613. doi: 10.1115/1.1410100 |
[14] | A. A. Shabana, G. Wang, Durability analysis and implementation of the floating frame of reference formulation, Proc. Inst. Mech. Eng. Pt. K J. Multi-Body Dyn., 232 (2018), 295-313. |
[15] | A. A. Shabana, Dynamics of multibody systems, 4th ed. New York: Cambridge University Press, 2013. |
[16] | M. Dibold, J. Gerstmayr, H. Irschik, A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems, J. Comput. Nonlinear Dyn., 4 (2009), 021006. |
[17] | A. A. Shabana, R. Schwertassek, Equivalence of the floating frame of reference approach and finite element formulations, Int. J. Non Linear Mech., 33 (1998), 417-432. doi: 10.1016/S0020-7462(97)00024-3 |
[18] | A. A. Shabana, G. Wang, S. Kulkarni, Further investigation on the coupling between the reference and elastic displacements in flexible body dynamics, J. Sound Vib., 427 (2018), 159-177. doi: 10.1016/j.jsv.2018.02.054 |
[19] | U. Lugrís, M. A. Naya, A. Luaces, J. Cuadrado, Efficient calculation of the inertia terms in floating frame of reference formulations for flexible multibody dynamics, Proc. Inst. Mech. Eng. Pt. K J. Multi-Body Dyn., 223 (2009), 147-157. |
[20] | G. Orzechowski, M. K. Matikainen, A. M. Mikkola, Inertia forces and shape integrals in the floating frame of reference formulation, Nonlinear Dyn., 88 (2017), 1953-1968. doi: 10.1007/s11071-017-3355-y |
[21] | M. Berzeri, M. Campanelli, A. A. Shabana, Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation, Multibody Syst. Dyn., 5 (2001), 21-54. doi: 10.1023/A:1026465001946 |
[22] | H. Luo, J. Fu, L. Jiao, N. Chen, T. Wu, Rigid-flexible coupled dynamics analysis of 3-revolute-prismatic-spherical parallel robot based on multi-software platform, Adv. Mech. Eng., 11 (2019), 1-12. |
[23] | Z. Liu, J. Liu, Experimental validation of rigid-flexible coupling dynamic formulation for hub-beam system, Multibody Syst. Dyn., 40 (2017), 303-326. doi: 10.1007/s11044-016-9539-2 |
[24] | P. Long, W. Khalil, P. Martinet, Dynamic modeling of parallel robots with flexible platforms, Mech. Mach. Theory, 81 (2014), 21-35. doi: 10.1016/j.mechmachtheory.2014.06.009 |
[25] | Q. Zhang, X. Zhang, J. Liang, Dynamic analysis of planar 3-RRR flexible parallel robot, IEEE International Conference on Robotics and Biomimetics, 2012,154-159. |
[26] | L. Sheng, W. Li, Y. Wang, X. Yang, M. Fan, Rigid-flexible coupling dynamic model of a flexible planar parallel robot for modal characteristics research, Adv. Mech. Eng., 11 (2019), 1-10. |
[27] | J. Liu, K. Pan, Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system, Aerosp. Sci. Technol., 52 (2016), 102-114. doi: 10.1016/j.ast.2016.02.025 |
[28] | S. Z. Liu, J. S. Dai, G. Shen, A. M. Li, G. H. Cao, S. Z. Feng, et al., Dynamic analysis of spatial parallel manipulator with rigid and flexible couplings, J. Cent. South Univ., 24 (2017), 840-853. |
[29] | L. Han, Y. Liu, B. Yang, Y. Q. Zhang, Dynamic modeling and simulation of flexible beam finite rotation with ANCF method and FFR method, Mechanics, 24 (2018), 715-724. |
[30] | D. Liang, Y. Song, T. Sun, X. Jin, Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes, J. Sound Vib., 403 (2017), 129-151. doi: 10.1016/j.jsv.2017.05.022 |
[31] | J. Hu, X. Zhang, D. Zhu, Q. Chen, Dynamic modeling of flexible parallel robot, Trans. Chin. Soc. Agric. Mach., 11 (2011), 208-213. |
[32] | W. Bao, Q. Bai, H. Lu, Vibration Mechanics Foundation and Application of MATLAB, Beijing: Tsinghua University Press, 2015,157-170. |