Citation: Yan Wang, Xianning Liu, Yangjiang Wei. A consumer-resource competition model with a state-dependent delay and stage-structured consumer species[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 6064-6084. doi: 10.3934/mbe.2020322
[1] | J. H. Connell, The influence of interspecific competition and other factors on the distribution of the barnacle chthamalus stellatus, Ecology, 42 (1961), 710-723. |
[2] | P. K. Dayton, Competition, disturbance and community organisation; the provision and subsequent utilization of space in a rocky intertidal community, Ecol. Monogr., 41 (1971), 351-389. |
[3] | R. S. Miller, Pattern and process in competition, Adv. Ecol. Res., 4 (1967), 1-74. |
[4] | F. G. Bader, J. S. Meyer, A. G. Fredrickson, H. M. Tsuchiya, Comments on microbial growth rate, Biotechnol. Bioeng., 17 (1975), 279-283. |
[5] | A. M. De Roos, J. A. J. Metz, L. Persson, Ontogenetic symmetry and asymmetry in energetics, J. Math. Biol., 66 (2013), 889-914. |
[6] | L. Persson, A. M. de Roos, Symmetry breaking in ecological systems through different energy efficiencies of juveniles and adults, Ecology, 94 (2013), 1487-1498. |
[7] | D. Tilman, Resource competition and community structure, Monogr. Popul. Biol., 17 (1982), 1-296. |
[8] | K. Gopalsamy, Convergence in a resource-based competition system, Bull. Math. Biol., 48 (1986), 681-699. |
[9] | H. D. Landahl, B. D. Hansen, A three stage population model with cannibalism, Bull. Math. Biol., 37 (1975), 11-17. |
[10] | P. J. Wangersky, W. J. Cunningham, On time lags in equations of growth, Proc. Natl. Acad. Sci. USA, 42 (1956), 699-702. |
[11] | P. J. Wangersky, W. J. Cunningham, Time lag in prey-predator population models, Ecology, 38 (1957), 136-139. |
[12] | W. G. Aiello, H. I. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139-153. |
[13] | K. Gopalsamy, Time lags and global stability in two-species competition, Bull. Math. Biol., 42 (1980), 729-737. |
[14] | R. Gambell, Birds and mammals-antarctic whales, in Antarctica (eds. W. Bonner and D. Walton), Pergamon Press, NewYork, (1985), 223-241. |
[15] | W. G. Aiello, H. I. Freedman, J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855-869. |
[16] | J. F. M. Al-Omari, S. A. Gourley, Stability and traveling fronts in Lotka-Volterra competition models with stage structure, SIAM J. Appl. Math., 63 (2003), 2063-2086. |
[17] | J. F. M. Al-Omari, The effect of state dependent delay and harvesting on a stage-structured predator-prey model, Appl. Math. Comput., 271 (2015), 142-153. |
[18] | T. Cassidy, M. Craig, A. R. Humphries, Equivalences between age structured models and state dependent distributed delay differential equations, Math. Biosci. Eng., 16 (2019), 5419-5450. |
[19] | F. Chen, D. Sun, J. Shi, Periodicity in a food-limited population model with toxicants and state dependent delays, J. Math. Anal. Appl., 288 (2003), 136-146. |
[20] | Q. Hu, X.-Q. Zhao, Global dynamics of a state-dependent delay model with unimodal feedback, J. Math. Anal. Appl., 399 (2013), 133-146. |
[21] | M. Kloosterman, S. A. Campbell, F. J. Poulin, An NPZ model with state-dependent delay due to size-structure in juvenile zooplankton, SIAM J. Appl. Math., 76 (2016), 551-577. |
[22] | Y. Lv, Y. Pei, R. Yuan, Modeling and analysis of a predator-prey model with state-dependent delay, Int. J. Biomath., 11 (2018), 1850026(1-22). |
[23] | F. M. G. Magpantay, N. Kosovalic, An age-structured population model with state-dependent delay: derivation and numerical integration, SIAM J. Numer. Anal., 52 (2014), 735-756. |
[24] | A. Rezounenko, Partial differential equations with discrete and distributed state-dependent delays, J. Math. Anal. Appl., 326 (2007), 1031-1045. |
[25] | L. Zhang, S. Guo, Slowly oscillating periodic solutions for the Nicholson's blowflies equation with state-dependent delay, Math. Methods Appl. Sci., 145 (2017), 4893-4903. |
[26] | Z. Zhou, Z. Yang, Periodic solutions in higher-dimensional Lotka-Volterra neutral competition systems with state-dependent delays, Appl. Math. Comput., 189 (2007), 986-995. |
[27] | Y. Lv, R. Yuan, Y. Pei, T. Li, Global stability of a competitive model with state-dependent delay, J. Dyn. Differ. Equ., 29 (2017), 501-521. |
[28] | Y. Wang, X. Liu, Y. Wei, Dynamics of a stage-structured single population model with state-dependent delay, Adv. Differ. Equ., 2018 (2018), 364. |
[29] | M. V. Barbarossa, K. P. Hadeler, C. Kuttler, State-dependent neutral delay equations from population dynamics, J. Math. Biol., 69 (2014), 1027-1056. |
[30] | Y. Lou, X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573-603. |
[31] | N. Macdonald, Biological Delay Systems: Linear Stability Theory, Cambridge University Press, New York, 1989. |
[32] | J. M. Cushing, An Introduction to Structured Population Dynamics, Society for Industrial and Applied Mathematics, Philadephia, 1998. |
[33] | G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, CRC Press, 1985. |
[34] | K. L. Cooke, W. Z. Huang, On the problem of linearization for state-dependent delay differential equations, Proc. Amer. Math. Soc., 124 (1996), 1417-1426. |
[35] | X. Li, J. Wei, On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays, Chaos Soliton. Fract., 26 (2005), 519-526. |