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Abstract: In this paper, a new consumer-resource competition model with a state-dependent maturity
delay is developed, which incorporates one resource species and two stage-structured consumer
species. The main innovation is that the model directly manifests the relationship between resources
and maturity time of consumers through a correction term, 1− τ′(x(t))x′(t). Firstly, the well-posedness
of the solution is studied. At the same time, the existence and uniqueness of all equilibria are discussed.
Then, the linearized stabilities of the equilibria are achieved. Finally, some sufficient conditions which
ensure the global attractivity of the coexistence equilibrium are obtained.
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1. Introduction

In the evolutionary history of natural communities, ecological competition has justifiably been a
significant force, which consists of exploitation and interference [1–3]. In consequence, there has
been increasing studies for consumer-resource competitive models by dynamical systems theory [4–7].
Mathematically, Gopalsamy [8] developed the following resource-based competition model.

dx
dt

= x(t)[b − ax(t) − a1z1(t) − a2z2(t)],

dz1

dt
= z1(t)[b1x(t) − β1z1(t) − µ1z2(t)],

dz2

dt
= z2(t)[b2x(t) − β2z2(t) − µ2z1(t)],

(1.1)

where x(t) represents the density of a logistically self-renewing resource at time t, z1(t) and z2(t)
represent the densities at time t of two species which feed on this resource alone.
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For a population individual, its whole life history generally includes two or more stages, particularly,
mammals show two different stages of immaturity and maturity [9–11]. Moreover, it takes some time
from birth to adulthood which is considered as the maturity time delay. Thus, the competition models
and stage structure population models with constant maturity delays have been studied. For example,
the two-species competition model and stage-structured single population model established in [12,13]
respectively have a constant maturity delay.

Later, people noticed the biological fact about the maturity time of Antarctic whales and seals
around the Second World War. Subsequent to the introduction of factory ships and with it a depletion
of the large whale population, there has been a substantial increase in krill for seals and whales. It was
then noted that seals took 3 to 4 years to mature and small whales only took 5 years [14]. Hence, their
maturation time varies with the number of krill available, which implies that the maturity time delay is
state-dependent, not a constant.

Due to this, Aiello and Freedman [15] formulated the following stage-structured state-dependent
delay model, in which the delay τ(z(t)) is a bounded increasing function of the total population z(t) =

x(t) + y(t). 
dx(t)

dt
= αy(t) − γx(t) − αy(t − τ(z(t)))e−γτ(z(t)),

dy(t)
dt

= αy(t − τ(z(t)))e−γτ(z(t)) − βy2(t).

Subsequently, the stage-structured and competitive models with state-dependent delays were developed
[16–26]. In 2017, Lv and Yuan [27] proposed the competitive model with state-dependent delays:

dz1

dt
= b1z1(t − τ(z1))e−γ1τ(z1) − β1z2

1(t) − µ1z1(t)z2(t),

dz2

dt
= b2z2(t − τ(z2))e−γ2τ(z2) − β2z2

2(t) − µ2z1(t)z2(t),

where the delays τ(zi(t)) are bounded increasing functions of the populations zi(t), i = 1, 2, respectively.
It is obvious that the above-mentioned models with state-dependent delays straight change the

constant delays into the state-dependent delays, which is not appropriate to population modeling.
Therefore, Wang, Liu and Wei [28] proposed the following new single population model with a
state-dependent delay and a correction factor.

dx(t)
dt

= αy(t) − γx(t) − α[1 − τ′(z(t))ż(t)]y(t − τ(z(t)))e−γτ(z(t)),

dy(t)
dt

= α[1 − τ′(z(t))ż(t)]y(t − τ(z(t)))e−γτ(z(t)) − βy2(t),

where the delay τ(z(t)) is a function of the total population z(t) = x(t) + y(t).
However, the aforementioned state-dependent delays are functions of populations, not resources.

A worthwhile thought is how to reflect the direct relationship between the resources and maturity
time? In view of the biological background above, the time varies with the resources available, that
is, the species must spend enough time in the immature stage to accumulate a certain amount of food
to reach maturity. To address the question raised above, we consider a stage-structured consumer-
resource competition model with a state-dependent maturity time delay, in which the delay involves a
correction term, 1 − τ′(x)x′(t), related to resource changes.
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The paper is organized as follows. In section 2, we formulate a resource-based competition model
with a state-dependent maturity delay. In section 3, we study the well-posedness properties for the
model and prove the existence and uniqueness of all equilibria. In section 4, we analyze the local
stabilities of equilibria. In section 5, we discuss the global behaviors of the coexistence equilibrium.
Finally, section 6 gives the conclusions of the paper.

2. Model formulation

Based on model (1.1), we will formulate the competition model with a state-dependent maturity
delay. For each i = 1, 2, let yi(t) and zi(t) be the densities at time t of the immature and mature
consumer species, respectively. Let x(t) be the density at time t of a logistically self-renewing resource
which is necessary for two consumer species. Motivated by [28–31], we introduce a threshold age
τ(x(t)) to distinguish the immature and mature individuals, which depends on the density of the same
resource. Suppose that ρi(t, a) is the population density of age a at time t, then the densities of yi(t) and
zi(t), respectively, are given by

yi(t) =

∫ τ(x(t))

0
ρi(t, a)da and zi(t) =

∫ ∞

τ(x(t))
ρi(t, a)da.

By virtue of [32, 33], we have the following age structure partial differential equations to represent the
development of the consumer species.

∂ρ1(t, a)
∂t

+
∂ρ1(t, a)
∂a

= − γ1ρ1(t, a), if a ≤ τ(x(t)),

∂ρ1(t, a)
∂t

+
∂ρ1(t, a)
∂a

= − (β1z1(t) + µ1z2(t))ρ1(t, a), if a > τ(x(t)),

∂ρ2(t, a)
∂t

+
∂ρ2(t, a)
∂a

= − γ2ρ2(t, a), if a ≤ τ(x(t)), (2.1)

∂ρ2(t, a)
∂t

+
∂ρ2(t, a)
∂a

= − (β2z2(t) + µ2z1(t))ρ2(t, a), if a > τ(x(t)).

We suppose that y1(t) and y2(t) die at the constant rate γi (i = 1, 2). The parameters βi (i = 1, 2)
represent the mature natural death and overcrowding rate for zi(t), respectively. The parameters µi

(i = 1, 2) represent interspecific competition for zi(t), respectively.
Taking the derivatives of yi(t) and zi(t), respectively, and combining system (2.1), it then follows

that
dy1(t)

dt
=ρ1(t, 0) − γ1y1(t) − [1 − τ′(x)x′(t)]ρ1(t, τ(x(t))),

dz1(t)
dt

=[1 − τ′(x)x′(t)]ρ1(t, τ(x(t))) − ρ1(t,∞) − β1z2
1(t) − µ1z1(t)z2(t),

dy2(t)
dt

=ρ2(t, 0) − γ2y2(t) − [1 − τ′(x)x′(t)]ρ2(t, τ(x(t))),

dz2(t)
dt

=[1 − τ′(x)x′(t)]ρ2(t, τ(x(t))) − ρ2(t,∞) − β2z2
2(t) − µ2z1(t)z2(t).

Note that the two primes refer to differentiation with respect to x and time t, respectively, namely,
τ̇(x(t)) = dτ(x(t))/dt = τ′(x)x′(t).

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6064–6084.



6067

Because of the finitude of individual life span, ρi(t,∞) is considered as zero. Assume that the
immature consumers’ functional response is Holling type I, that is, bix(t), then the term
ρi(t, 0) = bix(t)zi(t) represents the number of immature individuals born at time t. Therefore, for
t ≥ τ̃ = max{τ(x(t))}, we have

ρi(t, τ(x(t))) = ρi(t − τ(x(t)), 0) = bix(t − τ(x(t)))zi(t − τ(x(t)))e−γiτ(x(t)), i = 1, 2.

Consequently, we obtain the following stage-structured consumer-resource competition model with
a state-dependent delay.

dx
dt

= rx(t)
(
1 −

x(t)
K

)
− a1x(t)z1(t) − a2x(t)z2(t),

dy1

dt
= b1x(t)z1(t) − b1[1 − τ′(x)x′(t)]x(t − τ(x))z1(t − τ(x))e−γ1τ(x) − γ1y1(t),

dz1

dt
= b1[1 − τ′(x)x′(t)]x(t − τ(x))z1(t − τ(x))e−γ1τ(x) − β1z2

1(t) − µ1z1(t)z2(t),

dy2

dt
= b2x(t)z2(t) − b2[1 − τ′(x)x′(t)]x(t − τ(x))z2(t − τ(x))e−γ2τ(x) − γ2y2(t),

dz2

dt
= b2[1 − τ′(x)x′(t)]x(t − τ(x))z2(t − τ(x))e−γ2τ(x) − β2z2

2(t) − µ2z1(t)z2(t),

(2.2)

where r and K represent the growth rate of the resource and its carrying capacity, respectively. The
parameters a1 and a2 represent the capture rate of z1 and z2, respectively. By [28], the inequality,
1 − τ′(x)x′(t) > 0, holds true, which implies that t − τ(x(t))) is a strictly increasing function in t. This
shows that mature individuals become immature only by birth.

For system (2.2), there are the following basic hypotheses:
(A1) The constant parameters r, K, a1, a2, b1, b2, γ1, γ2, β1, β2, µ1, µ2 are all positive;
(A2) The state-dependent time delay τ(x) is a decreasing differentiable bounded function of the
resource x, where τ′(x) ≤ 0, and 0 ≤ τm ≤ τ(x) ≤ τM with τ(+∞) = τm, τ(0) = τM.

To simplify system (2.2), we can readily scale off r and K by proper rescaling of t and x.
Accordingly, system (2.2) becomes

dx
dt

= x(t)(1 − x(t) − a1z1(t) − a2z2(t)),

dy1

dt
= b1x(t)z1(t) − b1[1 − τ′(x)x′(t)]x(t − τ(x))z1(t − τ(x))e−γ1τ(x) − γ1y1(t),

dz1

dt
= b1[1 − τ′(x)x′(t)]x(t − τ(x))z1(t − τ(x))e−γ1τ(x) − β1z2

1(t) − µ1z1(t)z2(t),

dy2

dt
= b2x(t)z2(t) − b2[1 − τ′(x)x′(t)]x(t − τ(x))z2(t − τ(x))e−γ2τ(x) − γ2y2(t),

dz2

dt
= b2[1 − τ′(x)x′(t)]x(t − τ(x))z2(t − τ(x))e−γ2τ(x) − β2z2

2(t) − µ2z1(t)z2(t).

(2.3)

In this paper, we will study the dynamics of system (2.3). The initial data for system (2.3) are

x(s) = Υ(s) ≥ 0,
z1(s) = Φ1(s) ≥ 0, y1(s) = Ψ1(s) ≥ 0 for all s ∈ [−τM, 0],
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z2(s) = Φ2(s) ≥ 0, y2(s) = Ψ2(s) ≥ 0 for all s ∈ [−τM, 0],

with

Ψ1(0) =

∫ 0

−τ(x(0))
b1x(s)z1(s)eγ1 sds and Ψ2(0) =

∫ 0

−τ(x(0))
b2x(s)z2(s)eγ2 sds,

which represent the number of immature consumers who survived to time t = 0.

3. Preliminary results

In this section, we first study the well-posedness properties of the solution for system (2.3) and then
prove the existence and uniqueness of all equilibria.

Theorem 3.1. Let Υ(t) ≥ 0, Φ1(t) ≥ 0 and Φ2(t) ≥ 0 for −τM ≤ t ≤ 0, then the solution
(x(t), y1(t), z1(t), y2(t), z2(t)) of system (2.3) is nonnegative and uniformly ultimate bounded for all
t ≥ 0.

Proof. Consider the first equation in system (2.3).

dx
dt

= x(t)(1 − x(t) − a1z1(t) − a2z2(t)),

with x(0) = Υ(0) ≥ 0. Then

x(t) = x(0) exp
∫ t

0
[1 − x(s) − a1z1(s) − a2z2(s)]ds ≥ 0, t ≥ 0.

Suppose that there exists t > 0 such that z1(t) = 0. Let t∗ = inf{t : t > 0, z1(t) = 0}, then

z′1(t∗) = b1[1 − τ′(x(t∗))x′(t∗)]x(t − τ(x(t∗)))z1(t∗ − τ(x(t∗)))e−γ1τ(x(t∗)).

Since τ(x) > 0, 1 − τ′(x(t∗))x′(t∗) > 0, t∗ − τ(x(t∗)) < t∗, it follows from the definition of t∗ that
z1(t∗−τ(x(t∗))) > 0, which implies that z′1(t∗) > 0 and is a contradiction. Therefore, there does not exist
t∗ and z1(t) > 0 for all t > 0.

Integrating the second equation of system (2.3), we have the following integral expression for y1(t).

y1(t) = e−γ1t

(
Φ1(0) +

∫ t

0
b1x(s)z1(s)eγ1 sds −

∫ t−τ(x(t))

−τ(x(0))
b1x(s)z1(s)eγ1 sds

)
=

∫ t

t−τ(x(t))
b1x(s)z1(s)e−γ1(t−s)ds.

It is easy to see that y1(t) ≥ 0 by the nonnegativity x(t), z1(t) and τ(x). In a similar way, we can prove
the nonnegativity of z2(t) and y2(t). Hence, the solution (x(t), y1(t), z1(t), y2(t), z2(t)) of system (2.3) is
nonnegative. Especially, when Υ(0) > 0,Ψ1(0) > 0,Φ1(0) > 0, the solution of system (2.3) is positive.

Now we prove uniform ultimate boundedness of the solution. Define the following Lyapunov
functional.

V =

(
b1

a1
+

b2

a2

)
x(t) + z1(t) + z2(t) +

∫ t

t−τ(x(t))
b1x(s)z1(s)e−γ1(t−s)ds
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+

∫ t

t−τ(x(t))
b2x(s)z2(s)e−γ2(t−s)ds.

Calculating the time derivative of V(t) along the solutions of system (2.3), we have

V ′(t) =

(
b1

a1
+

b2

a2

)
x(t)[1 − x(t) − a1z1(t) − a2z2(t)] + b1x(t)z1(t) + b2x(t)z2(t)

− γ1

∫ t

t−τ(x(t))
b1x(s)z1(s)e−γ1(t−s)ds − β1z2

1(t) − µ1z1(t)z2(t)

− γ2

∫ t

t−τ(x(t))
b2x(s)z2(s)e−γ2(t−s)ds − β2z2

2(t) − µ2z1(t)z2(t)

< − γV +

(
b1

a1
+

b2

a2

)
[(1 + γ)x(t) − x2(t)] + γz1(t) − β1z2

1(t) + γz2(t) − β2z2
2(t)

≤ − γV + M1 + M2 + M3,

where γ = min{γ1, γ2}, M1, M2 and M3 are the maximum values of quadratic function
(b1/a1 + b2/a2)[(1 + γ)x(t) − x2(t)], γz1(t) − β1z2

1(t) and γz2(t) − β2z2
2(t), respectively. Obviously, M1,

M2 and M3 are positive. Thus, lim supt→∞ V(t) ≤ (M1 + M2 + M3)/γ and the solution of system (3.1)
is uniformly ultimate bounded. It then follows that the solution of system (2.3) is uniformly ultimate
bounded. �

Since variables y1(t) and y2(t) of system (2.3) are decoupled from the other equations, we study the
following reduced system:

dx
dt

= x(t)(1 − x(t)) − a1x(t)z1(t) − a2x(t)z2(t),

dz1

dt
= b1[1 − τ′(x)x′(t)]x(t − τ(x))z1(t − τ(x))e−γ1τ(x) − β1z2

1(t) − µ1z1(t)z2(t),

dz2

dt
= b2[1 − τ′(x)x′(t)]x(t − τ(x))z2(t − τ(x))e−γ2τ(x) − β2z2

2(t) − µ2z1(t)z2(t).

(3.1)

In the rest of this section, we will discuss the existence and patterns of equilibria (x, z1, z2) of
system (3.1). The equilibria satisfy the following equations:

x(1 − x − a1z1 − a2z2) =0,
b1xz1e−γ1τ(x) − β1z2

1 − µ1z1z2 =0,
b2xz2e−γ2τ(x) − β2z2

2 − µ2z1z2 =0.
(3.2)

It is easy to see that system (3.1) has one trivial equilibrium E0 = (0, 0, 0) and one semitrivial
equilibrium E1 = (1, 0, 0). And we obtain the following result for nontrivial equilibria.

Theorem 3.2. System (3.1) has exactly two semitrivial equilibria E2 = (x̂, ẑ1, 0) and E3 = (x̃, 0, z̃2).
Assume that

min
{
β1

µ2
,
µ1

β2

}
<

b1e−γ1τM

b2e−γ2τm
<

b1e−γ1τm

b2e−γ2τM
< max

{
β1

µ2
,
µ1

β2

}
;
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min
{
β1

µ1
,
µ2

β2

}
<

a1

a2
< max

{
β1

µ1
,
µ2

β2

}
. (3.3)

Then there exists unique coexistence equilibrium E∗ = (x∗, z∗1, z
∗
2).

Proof. There are three cases to prove the existence of nontrivial equilibria.
Case 1 If z2 = 0, then Eq (3.2) reduces to x(1 − x − a1z1) =0,

b1xz1e−γ1τ(x) − β1z2
1 =0.

The inequality, z1 < b1/(a1b1 + β1), is valid to make sure x = 1 − a1z1 > 0, y1 = γ−1
1 z1(b1 − a1b1z1 −

β1z1) > 0. Thus, we will investigate the existence and uniqueness of nontrivial equilibrium in Λ =

{z1 ∈ R | 0 < z1 < b1/(a1b1 + β1)} ⊂ R. Define f : Λ→ R be a continuous mapping by

f (z1) = b1(1 − a1z1)e−γ1τ(1−a1z1) − β1z1.

Clearly, f (0) = b1xe−γ1τ(1) > 0, f (b1/(a1b1 + β1)) = b1β1/(a1b1 + β1)[e−γ1τ(β1/(a1b1+β1)) − 1] < 0, which
implies that f (z1) has at least one positive zero point ẑ1.

Note that f ′(ẑ1) = −a1b1e−γ1τ(1−a1 ẑ1) +a1b1γ1(1−a1ẑ1)e−γ1τ(1−a1 ẑ1)τ′(1−a1ẑ1)−β1 < 0, it then follows
that f (z1) has a unique positive root in the interval (0, b1/(a1b1 +β1)). Hence, system (3.1) has a unique
boundary equilibrium E2 = (x̂, ẑ1, 0).

Case 2 If z1 = 0, then system (3.1) has a unique boundary equilibrium E3 = (x̃, 0, z̃2) by similar
arguments in the case 1.

Case 3 If z1 , 0 and z2 , 0, then the coexistence equilibrium E∗ = (x∗, z∗1, z
∗
2) satisfies the following

equations: 
1 − x − a1z1 − a2z2 =0,

b1xe−γ1τ(x) − β1z1 − µ1z2 =0,
b2xe−γ2τ(x) − β2z2 − µ2z1 =0.

(3.4)

Solving Eq (3.4), we obtain that

x∗ =
1

1 + a1Γ1 + a2Γ2
;

z∗1 =x∗Γ1, Γ1 =
β2b1e−γ1τ(x∗) − µ1b2e−γ2τ(x∗)

β1β2 − µ1µ2
;

z∗2 =x∗Γ2, Γ2 =
β1b2e−γ2τ(x∗) − µ2b1e−γ1τ(x∗)

β1β2 − µ1µ2
.

(3.5)

In order to make sure the positivity of x∗, z∗1 and z∗2, we get

min
{
β1

µ2
,
µ1

β2

}
<

b1e−γ1τM

b2e−γ2τm
<

b1e−γ1τ(x∗)

b2e−γ2τ(x∗) <
b1e−γ1τm

b2e−γ2τM
< max

{
β1

µ2
,
µ1

β2

}
.

Now we prove the uniqueness of E∗. Suppose that f (x) = 1 − x − a1z1 − a2z2, combining Eq (3.5),
we have

f (x) = 1 − x − a1z1 − a2z2
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= 1 − x − xb1e−γ1τ(x) a1β2 − a2µ2

β1β2 − µ1µ2
− xb2e−γ2τ(x) a2β1 − a1µ1

β1β2 − µ1µ2

= 1 − x − x f1(x) − x f2(x),

where f1(x) = b1e−γ1τ(x)(a1β2 − a2µ2)/(β1β2 − µ1µ2), f2(x) = b2e−γ2τ(x)(a2β1 − a1µ1)/(β1β2 − µ1µ2).
Obviously, f (0) = 1 > 0 and

f (1) =
−a1

(
β2b1e−γ1τ(1) − µ1b2e−γ2τ(1)) − a2

(
β1b2e−γ2τ(1) − µ2b1e−γ1τ(1))

β1β2 − µ1µ2
< 0,

which implies that f (x) has at least one positive zero point x∗.
It follows from f1(x∗) + f2(x∗) = 1/x∗ − 1 that

f ′(x∗) = − 1 − [ f1(x∗) + f2(x∗)] − x∗[ f ′1(x∗) + f ′2(x∗)]

= −
1
x∗
− x∗[ f ′1(x∗) + f ′2(x∗)].

If min {β1/µ1, µ2/β2} < a1/a2 < max {β1/µ1, µ2/β2}, then f ′(x∗) < 0. Thus, f (x) has a unique positive
root x∗ in the interval (0, 1), and system (3.1) has a unique coexistence equilibrium E∗ = (x∗, z∗1, z

∗
2).

This completes the proof. �

4. Linearized stability of equilibria

In this section, the linearized stability of equilibria will be studied. We utilize the method proposed
by Cooke [34] to linearize system (3.1).

Let Ẽ = (x̃, z̃1, z̃2) be an arbitrary equilibrium. Then the linearization of system (3.1) is
x′(t) = Ax(t) − a1 x̃z1(t) − a2 x̃z2(t),
z′1(t) = A1x + b1e−γ1τ(x̃)z̃1x(t − τ(x̃)) + b1e−γ1τ(x̃) x̃z1(t − τ(x̃)) + B1z1 + C1z2,

z′2(t) = A2x + b2e−γ2τ(x̃)z̃2x(t − τ(x̃)) + b2e−γ2τ(x̃) x̃z2(t − τ(x̃)) + B2z1 + C2z2,

(4.1)

where

A = 1 − 2x̃ − a1z̃1 − a2z̃2,

A1 = −b1 x̃z̃1τ
′(x̃)e−γ1τ(x̃)(γ1 − A),

A2 = −b2 x̃z̃2τ
′(x̃)e−γ2τ(x̃)(γ2 − A),

B1 = a1b1(x̃)2z̃1τ
′(x̃)e−γ1τ(x̃) − 2β1z̃1 − µ1z̃2,

B2 = a1b2(x̃)2z̃2τ
′(x̃)e−γ2τ(x̃) − µ2z̃2,

C1 = a2b1(x̃)2z̃2τ
′(x̃)e−γ1τ(x̃) − µ1z̃1,

C2 = a2b2(x̃)2z̃2τ
′(x̃)e−γ2τ(x̃) − 2β2z̃2 − µ2z̃1.

The corresponding characteristic equation of system (4.1) is as follows:∣∣∣∣∣∣∣∣∣
λ − A a1 x̃ a2 x̃

−A1 − b1z̃1e−(γ1+λ)τ(x̃) λ − B1 − b1 x̃e−(γ1+λ)τ(x̃) −C1

−A2 − b2z̃2e−(γ2+λ)τ(x̃) −B2 λ −C2 − b2 x̃e−(γ2+λ)τ(x̃)

∣∣∣∣∣∣∣∣∣ = 0.
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For the extinction equilibrium E0 = (0, 0, 0), it follows that A = 1, A1 = 0, B1 = 0, C1 = 0, A2 = 0,
B2 = 0, C2 = 0, then (λ − 1)λ2 = 0, and λ = 1 > 0 is one of these eigenvalues. Thus, we have the
following result.

Theorem 4.1. The extinction equilibrium E0 = (0, 0, 0) is unstable.

For the trivial equilibrium E1 = (1, 0, 0), the characteristic equation is as follows.

(λ + 1)
(
λ − b1e−(γ1+λ)τ(1)

) (
λ − b2e−(γ2+λ)τ(1)

)
= 0.

Obviously, λ = −1 < 0 is one of these eigenvalues. All the other eigenvalues λ satisfy the equations
λeτ(1)(γ1+λ) = b1 > 0 and λeτ(1)(γ2+λ) = b2 > 0, which always have real, positive solutions. Hence, the
conclusion about the linearized stability of E1 is as follows.

Theorem 4.2. The trivial equilibrium E1 = (1, 0, 0) is a saddle point and unstable.

In order to obtain the linearized stability of E2 and E3, we first give the results on the real positive
roots of a quartic equation. Suppose that

v4 + K1v3 + K2v2 + K3v + K4 = 0. (4.2)

Let

M =
1
2

K2 −
3

16
K2

1 , N =
1

32
K3

1 −
1
8

K1K2 + K3,

∆ =

(N
2

)3

+

(M
2

)3

, σ =
−1 +

√
3i

2
,

y1 =
3

√
−

N
2

+
√

∆ +
3

√
−

N
2
−
√

∆, y2 = σ
3

√
−

N
2

+
√

∆ + σ2 3

√
−

N
2
−
√

∆,

y3 = σ2 3

√
−

N
2

+
√

∆ + σ
3

√
−

N
2
−
√

∆, zi = yi −
3K1

4
, i = 1, 2, 3.

By virtue of [35], we have the following lemma.

Lemma 4.3. The following statements hold true for Eq (4.2):
(i) If K4 < 0, then Eq (4.2) has at least one positive root;
(ii) If K4 ≥ 0 and ∆ ≥ 0, then Eq (4.2) has positive roots if and only if z1 > 0 and h(z1) < 0;
(iii) If K4 ≥ 0 and ∆ < 0, then Eq (4.2) has positive roots if and only if there exists at least one

z∗ ∈ {z1, z2, z3} such that z∗ > 0 and Q(z∗) ≤ 0, where Q(z) = z4 + K1z3 + K2z2 + K3z + K4.

We are now in a position to prove the linearized stability of E2.

Theorem 4.4. If ẑ1 < 3/(4a1) and b1µ2e−γ1τ(x̂) > b2β1e−γ2τ(x̂), then the boundary equilibrium E2 =

(x̂, ẑ1, 0) is locally asymptotically stable.

Proof. The characteristic equation for the boundary equilibrium E2 is as follows:(
λ −C2 − b2 x̂e−(γ2+λ)τ(x̂)

)[
(λ − A)

(
λ − B1 − b1 x̂e−(γ1+λ)τ(x̂)

)
+a1 x̂

(
A1 + b1ẑ1e−(γ1+λ)τ(x̂)

)]
= 0. (4.3)
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It is easy to see that some of the eigenvalues satisfy the following equation:

λ + µ2ẑ1 − b2 x̂e−(γ2+λ)τ(x̂) = 0. (4.4)

Claim. If b1µ2e−γ1τ(x̂) > b2β1e−γ2τ(x̂), that is, ẑ1 > µ−1
2 b2 x̂e−γ2τ(x̂), then all eigenvalues of Eq (4.4) have

negative real parts.
Obviously, if τ(x̂) = 0, then Eq (4.4) has a unique negative real root λ = b2 x̂ − µ2ẑ1 < 0. In order to

study whether any roots cross the imaginary axis, let λ = iω with ω > 0 and substitute it into Eq (4.4),
it follows from ẑ1 > µ

−1
2 b2 x̂e−γ2τ(x̂) that

ω2 =
(
b2 x̂e−γ2τ(x̂)

)2
−

(
µ2ẑ1

)2
< 0.

Therefore, Eq (4.4) has no purely imaginary roots and each root has a negative real part.
Other roots are given by equation:

G(λ) = (λ − A)
(
λ − B1 − b1 x̂e−(γ1+λ)τ(x̂)

)
+ a1 x̂

(
A1 + b1ẑ1e−(γ1+λ)τ(x̂)

)
= λ2 + H1λ + H2 + (N1λ + N2)e−λτ(x̂)

= 0, (4.5)

where H1 = −A − B1, H2 = AB1 + a1A1 x̂, N1 = −β1ẑ1, N2 = Aβ1ẑ1 + a1β1ẑ1
2.

Since τ′(x) ≤ 0, we have G(0) = β1 x̂ẑ1 − a1β1γ1 x̂(ẑ1)2τ′(x̂) + a1β1(ẑ1)2 > 0, and thus Eq (4.5) has no
zero roots.

Next, we prove that Eq (4.5) has no purely imaginary roots.
Assume, by contradiction, that Eq (4.5) has a purely imaginary root λ = iv, where v > 0.

Substituting it into Eq (4.5) and separating the real and imaginary parts, we have v2 − H2 = N1v sin(τ(x̂)v) + N2 cos(τ(x̂)v),
−H1v = N1v cos(τ(x̂)v) − N2 sin(τ(x̂)v).

Considering sin(τ(x̂)v)2 + cos(τ(x̂)v)2 = 1, it follows that

v4 + D1v2 + D2 = 0, (4.6)

where D1 = H2
1 − 2H2 − N2

1 , D2 = H2
2 − N2

2 .

In view of τ′(x̂) ≤ 0, there are the following two cases.
Case (1). If τ′(x̂) = 0, then τ(x̂) ≥ 0, since x̂ > 0, it follows from the hypothesis (A2) that τ(x̂) , 0

and τ(x̂) > 0. Therefore, D1 = A2+3β2
1ẑ1

2 > 0, D2 = β2
1ẑ1

2(4x̂−1) = β2
1ẑ1

2(3−4a1ẑ1) > 0, which implies
that Eq (4.5) has no purely imaginary roots and each root of characteristic equation has a negative real
part.

Case (2). If τ′(x̂) < 0, according to Lemma 4.3, we have K1 = 0,K2 = D1,K3 = 0,K4 = D2 =

β2
1ẑ1

2(3 − 4a1ẑ1) − 4a1β
2
1γ1 x̂2ẑ1

3τ′(x̂) + (a1β1γ1 x̂ẑ1
2τ′(x̂))2 > 0 providing ẑ1 < 3/(4a1). Hence, Eq (4.6)

has positive roots if the equation satisfies the case (i) or (ii) in Lemma 4.3. However, Zi = Yi−3K1/4 =

Yi = 0, i = 1, 2, 3. Then neither case (i) nor case (ii) in Lemma 4.3 holds true, Eq (4.6) has no positive
roots, that is, Eq (4.5) has no purely imaginary roots. Therefore, all eigenvalues of Eq (4.3) have
negative real parts, and E2 is locally asymptotically stable. This completes the proof. �

Similarly, we have the following observation about the boundary equilibrium E3.

Theorem 4.5. If z̃2 < 3/(4a2) and b2µ1e−γ2τ(x̃) > b1β2e−γ1τ(x̃), then the boundary equilibrium E3 =

(x̃, 0, z̃2) is locally asymptotically stable.
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5. The global attractivity of E∗.

In this section, we investigate the global attractivity of the coexistence equilibrium E∗ by a method
of asymptotic estimates.

Theorem 5.1. Let condition (3.3) hold, and assume that:

1 > a1
b1

β1
e−γ1τ(1) + a2

b2

β2
e−γ2τ(1); (5.1)

b1

(
1 − a1

b1

β1
e−γ1τ(1) − a2

b2

β2
e−γ2τ(1)

)
e−γ1τ(0) > µ1

b2

β2
e−γ2τ(1); (5.2)

b2

(
1 − a1

b1

β1
e−γ1τ(1) − a2

b2

β2
e−γ2τ(1)

)
e−γ2τ(0) > µ2

b1

β1
e−γ1τ(1); (5.3)

(a1b1β2 + a2b1µ2)e−γ1τ(0) + (a1b2µ1 + a2b2β1)e−γ2τ(0) > β1β2 − µ1µ2. (5.4)

Then the coexistence equilibrium E∗ is globally attractive.

Proof. Since e−γτ(x) is increase with respect to x, then e−γτ(1) > e−γτ(0). It follows from inequality (5.2)
that

b1e−γ1τ(1) > b1e−γ1τ(0) > b1

(
1 − a1

b1

β1
e−γ1τ(1) − a2

b2

β2
e−γ2τ(1)

)
e−γ1τ(0) > µ1

b2

β2
e−γ2τ(1).

Similarly, we have

b2e−γ2τ(1) > b2e−γ2τ(0) > b2

(
1 − a1

b1

β1
e−γ1τ(1) − a2

b2

β2
e−γ2τ(1)

)
e−γ2τ(0) > µ2

b1

β1
e−γ1τ(1).

Namely,

µ1

β2
<

b1e−γ1τM

b2e−γ2τm
<

b1e−γ1τ(1)

b2e−γ2τ(1) <
b1e−γ1τm

b2e−γ2τM
<
β1

µ2
,

which implies that both the boundary equilibria E2 and E3 are unstable.
For the system

dm1

dt
= m1(t)(1 − m1(t)),

dm(1)
1

dt
= b1[1 − τ′(m1)m′1(t)]m1(t − τ(m1))m(1)

1 (t − τ(m1))e−γ1τ(m1) − β1

(
m(1)

1 (t)
)2
,

dm(2)
1

dt
= b2[1 − τ′(m1)m′1(t)]m1(t − τ(m1))m(2)

1 (t − τ(m1))e−γ2τ(m1) − β2

(
m(2)

1 (t)
)2
,

we have the unique positive equilibrium m∗ = (1, b1/β1e−γ1τ(1), b2/β2e−γ2τ(1)).
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Clearly, for system (3.1), we obtain that

dx
dt

< x(t)(1 − x(t)),

dz1

dt
< b1[1 − τ′(x)x′(t)]x(t − τ(x(t)))z1(t − τ(x(t)))e−γ1τ(x(t)) − β1z2

1(t),

dz2

dt
< b2[1 − τ′(x)x′(t)]x(t − τ(x(t)))z2(t − τ(x(t)))e−γ2τ(x(t)) − β2z2

2(t).

(5.5)

By Theorem 3.1, for any ε1 > 0, we can prove that there exists a t1 > 0 such that the following
inequalities hold true for all t ≥ t1.

x(t) < M1 = 1 + ε1,

z1(t) < M(1)
1 =

b1

β1
e−γ1τ(M1) +

ε1

2
,

z2(t) < M(2)
1 =

b2

β2
e−γ2τ(M1) +

ε1

2
.

(5.6)

We first select ε1 > 0 and the corresponding t1 > 0 such that
1 − a1M(1)

1 − a2M(2)
1 > 0,

b1

(
1 − a1M(1)

1 − a2M(2)
1

)
e−γ1τ(M1) > µ1M(2)

1 ,

b2

(
1 − a1M(1)

1 − a2M(2)
1

)
e−γ2τ(M1) > µ2M(1)

1 .

(5.7)

Conditions (5.1)-(5.3) can guarantee the existence of ε1 to satisfy conditions (5.6) and (5.7). Based on
ε1 > 0, t1 > 0, we choose sufficiently small ε2 > 0 to make that ε2 < min{1/2, ε1}, and

1 − a1M(1)
1 − a2M(2)

1 − ε2 > 0,[
b1

(
1 − a1M(1)

1 − a2M(2)
1

)
e−γ1τ(M1) − µ1M(2)

1

] 1
β1
−
ε2

2
> 0,[

b2

(
1 − a1M(1)

1 − a2M(2)
1

)
e−γ2τ(M1) − µ2M(1)

1

] 1
β1
−
ε2

2
> 0.

(5.8)

In view of inequality (5.7), it is possible to choose positive number ε2 satisfying inequality (5.8).
Combining with inequalities (5.6) and (5.8), we obtain that

dx
dt

> x(t)
[(

1 − a1M(1)
1 − a2M(2)

1

)
− x(t)

]
,

dz1

dt
> b1[1 − τ′(x)x′(t)]x(t − τ(x(t)))z1(t − τ(x(t)))e−γ1τ(x(t)) − β1z2

1(t) − µ1M(2)
1 z1(t),

dz2

dt
> b2[1 − τ′(x)x′(t)]x(t − τ(x(t)))z2(t − τ(x(t)))e−γ2τ(x(t)) − β2z2

2(t) − µ2M(1)
1 z2(t).

It follows that there exists a t2 > t1 to make that

x(t) > N1 = 1 − a1M(1)
1 − a2M(2)

1 − ε2,

z1(t) > N(1)
1 =

(
b1N1e−γ1τ(N1) − µ1M(2)

1

) 1
β1
−
ε2

2
,

z2(t) > N(2)
1 =

(
b2N1e−γ2τ(N1) − µ2M(1)

1

) 1
β2
−
ε2

2
.

(5.9)
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By system (3.1) and inequality (5.9), we have for t > t2,

dx
dt

< x(t)
[(

1 − a1N(1)
1 − a2N(2)

1

)
− x(t)

]
,

dz1

dt
< b1[1 − τ′(x)x′(t)]x(t − τ(x))z1(t − τ(x))e−γ1τ(x) − β1z2

1(t) − µ1N(2)
1 z1(t),

dz2

dt
< b2[1 − τ′(x)x′(t)]x(t − τ(x))z2(t − τ(x))e−γ2τ(x) − β2z2

2(t) − µ2N(1)
1 z2(t).

(5.10)

With the first inequality of (5.7), we see that

1 − a1N(1)
1 − a2N(2)

1 =1 − a1

[(
b1N1e−γ1τ(N1) − µ1M(2)

1

) 1
β1
−
ε2

2

]
− a2

[(
b2N1e−γ2τ(N1) − µ2M(1)

1

) 1
β2
−
ε2

2

]
>1 − a1

b1

β1
N1e−γ1τ(N1) − a2

b2

β2
N1e−γ2τ(N1)

>1 − a1
b1

β1
M1e−γ1τ(M1) − a2

b2

β2
M1e−γ2τ(M1)

>0. (5.11)

Then from inequalities (5.10) and (5.11), there exists a t3 > t2 and 0 < ε3 < min{1/3, ε2} such that, for
t > t3, 

x(t) < M2 = 1 − a1N(1)
1 − a2N(2)

1 + ε3,

z1(t) < M(1)
2 =

(
b1M2e−γ1τ(M2) − µ1N(2)

1

) 1
β1

+
ε3

2
,

z2(t) < M(2)
2 =

(
b2M2e−γ2τ(M2) − µ2N(1)

1

) 1
β2

+
ε3

2
.

(5.12)

We next prove that the estimates M(1)
2 and M(2)

2 are positive.

b1M2e−γ1τ(M2) − µ1N(2)
1 =b1

(
1 − a1N(1)

1 − a2N(2)
1 + ε3

)
e−γ1τ(M2)

− µ1

[(
b2N1e−γ2τ(N1) − µ2M(1)

1

) 1
β2
−
ε2

2

]
>b1

(
1 − a1N(1)

1 − a2N(2)
1

)
e−γ1τ(M2) − µ1

b2

β2
N1e−γ2τ(N1)

>b1

(
1 − a1M(1)

1 − a2M(2)
1

)
e−γ1τ(0) − µ1

b2

β2
M1e−γ2τ(M1)

>0, (5.13)

and

b2M2e−γ2τ(M2) − µ2N(1)
1 =b2

(
1 − a1N(1)

1 − a2N(2)
1 + ε3

)
e−γ2τ(M2)

− µ2

[(
b1N1e−γ1τ(N1) − µ1M(2)

1

) 1
β1
−
ε2

2

]
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>b2

(
1 − a1N(1)

1 − a2N(2)
1

)
e−γ2τ(M2) − µ2

b1

β1
N1e−γ1τ(N1)

>b2

(
1 − a1M(1)

1 − a2M(2)
1

)
e−γ2τ(0) − µ2

b1

β1
M1e−γ1τ(M1)

>0. (5.14)

In view of the upper estimates in equality (5.12), we will get a lower set of estimates. Since ε3 < ε1,
inequalities (5.13) and (5.14), the following result is valid.

1 − a1M(1)
2 − a2M(2)

2 =1 − a1

[(
b1M2e−γ1τ(M2) − µ1N(2)

1

) 1
β1

+
ε3

2

]
− a2

[(
b2M2e−γ2τ(M2) − µ2N(1)

1

) 1
β2

+
ε3

2

]
>1 − a1

(
b1

β1
M2e−γ1τ(M2) +

ε3

2

)
− a2

(
b2

β2
M2e−γ2τ(M2) +

ε3

2

)
>1 − a1

(
b1

β1
M1e−γ1τ(M1) +

ε3

2

)
− a2

(
b2

β2
M1e−γ2τ(M1) +

ε3

2

)
>0. (5.15)

Denote n2, n(1)
2 , n(2)

2 as follows: 
n2 = 1 − a1M(1)

2 − a2M(2)
2 ,

n(1)
2 = b1n2e−γ1τ(n2) − µ1M(2)

2 ,

n(2)
2 = b2n2e−γ2τ(n2) − µ2M(1)

2 .

(5.16)

By inequalities (5.2) and (5.15) and the second inequality of (5.7), we get that

n(1)
2 = b1

(
1 − a1M(1)

2 − a2M(2)
2

)
e−γ1τ(n2) − µ1M(2)

2

> b1

(
1 − a1M(1)

2 − a2M(2)
2

)
e−γ1τ(0) − µ1M(2)

1

> 0. (5.17)

It follows from inequalities (5.3) and (5.15) and the third inequality of (5.7) that

n(2)
2 = b2

(
1 − a1M(1)

2 − a2M(2)
2

)
e−γ2τ(n2) − µ2M(1)

2

> b2

(
1 − a1M(1)

2 − a2M(2)
2

)
e−γ2τ(0) − µ2M(1)

1

> 0. (5.18)

Combining with inequalities (5.15)–(5.18), there exists a 0 < ε4 < min{1/4, ε3} satisfying

n2 − ε4 > 0,(
b1n2e−γ1τ(n2) − µ1M(2)

2

) 1
β1
−
ε4

2
> 0,(

b2n2e−γ2τ(n2) − µ2M(1)
2

) 1
β2
−
ε4

2
> 0.

(5.19)
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With the upper estimates in inequality (5.12), we obtain the following comparative system for all t > t3.

dx
dt

> x(t)
[(

1 − a1M(1)
2 − a2M(2)

2

)
− x(t)

]
,

dz1

dt
> b1[1 − τ′(x)x′(t)]x(t − τ(x))z1(t − τ(x))e−γ1τ(x) − β1z2

1(t) − µ1M(2)
2 z1(t),

dz2

dt
> b2[1 − τ′(x)x′(t)]x(t − τ(x))z2(t − τ(x))e−γ2τ(x) − β2z2

2(t) − µ2M(1)
2 z2(t).

Using inequality (5.19), there exists a t4 > t3 such that

x(t) > N2 = 1 − a1M(1)
2 − a2M(2)

2 − ε4,

z1(t) > N(1)
2 =

(
b1N2e−γ1τ(N2) − µ1M(2)

2

) 1
β1
−
ε4

2
,

z2(t) > N(2)
2 =

(
b2N2e−γ2τ(N2) − µ2M(1)

2

) 1
β2
−
ε4

2
.

The estimates N2, N(1)
2 and N(2)

2 are all positive by inequality (5.19). Therefore, we obtain that, for
t > t2,

N1 < x(t) < M1, N(1)
1 < z1(t) < M(1)

1 , N(2)
1 < z2(t) < M(2)

1 ,

and for t > t4,

N2 < x(t) < M2, N(1)
2 < z1(t) < M(1)

2 , N(2)
2 < z2(t) < M(2)

2 .

Now we compare the obtained estimates, respectively:

M2 − M1 = 1 − a1N(1)
1 − a2N(2)

1 + ε3 − (1 − ε1)
< ε3 − ε1 < 0,

M(1)
2 − M(1)

1 =
(
b1M2e−γ1τ(M2) − µ1N(2)

1

) 1
β1

+
ε3

2
−

b1

β1
e−γ1τ(M1) −

ε1

2

<
b1

β1
M2e−γ1τ(M2) −

b1

β1
M1e−γ1τ(M1) +

1
2

(ε3 − ε1)

<
b1

β1
e−γ1τ(M1)(M2 − M1) +

1
2

(ε3 − ε1)

< 0.

Similarly, M(2)
2 − M(2)

1 < 0.
Moreover,

N2 − N1 = 1 − a1M(1)
2 − a2M(2)

2 − ε4 −
(
1 − a1M(1)

1 − a2M(2)
1

)
+ ε2

= −a1

(
M(1)

2 − M(1)
1

)
− a2

(
M(2)

2 − M(2)
1

)
+ (ε2 − ε4)

> 0,
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and

N(1)
2 − N(1)

1 =
(
b1N2e−γ1τ(N2) − µ1M(2)

2

) 1
β1
−
ε4

2
−

(
b1N1e−γ1τ(N1) − µ1M(2)

1

) 1
β1

+
ε2

2

>
b1

β1
e−γ1τ(N1)(N2 − N1) −

µ1

β1

(
M(2)

2 − M(2)
1

)
+

1
2

(ε2 − ε4)

> 0.

Similarly, N(2)
2 − N(2)

1 > 0.
Hence, from the above arguments, we have for t > t4

N1 < N2 < x(t) < M2 < M1,

N(1)
1 < N(1)

2 < z1(t) < M(1)
2 < M(1)

1 ,

N(2)
1 < N(2)

2 < z2(t) < M(2)
2 < M(2)

1 .

By extending the above step, it then follows that

N1 < N2 < N3 < · · · < Nn < x(t) < Mn < · · · < M3 < M2 < M1,

N(1)
1 < N(1)

2 < N(1)
3 < · · · < N(1)

n < z1(t) < M(1)
n < · · · < M(1)

3 < M(1)
2 < M(1)

1 ,

N(2)
1 < N(2)

2 < N(2)
3 < · · · < N(2)

n < z2(t) < M(2)
n < · · · < M(2)

3 < M(2)
2 < M(2)

1 ,

where

Mn = 1 − a1N(1)
n−1 − a2N(2)

n−1 + ε2n−1,

M(1)
n =

(
b1Mne−γ1τ(Mn) − µ1N(2)

n−1

) 1
β1

+
ε2n−1

2
,

M(2)
n =

(
b2Mne−γ2τ(Mn) − µ2N(2)

n−1

) 1
β2

+
ε2n−1

2
, (5.20)

with n = 2, 3, 4, · · · , and

Nn = 1 − a1M(1)
n − a2M(2)

n − ε2n,

N(1)
n =

(
b1Nne−γ1τ(Nn) − µ1M(2)

n

) 1
β1
−
ε2n

2
,

N(2)
n =

(
b2Nne−γ2τ(Nn) − µ2M(2)

n

) 1
β2
−
ε2n−1

2
, (5.21)

with n = 1, 2, 3, · · · .
Since εn < 1/n, we have εn → 0 as n → ∞. And the monotone sequences Nn, N(1)

n , N(2)
n , Mn, M(1)

n ,
and M(2)

n converge to positive limits as n→ ∞. Let

M∗ = lim
n→∞

Mn and N∗ = lim
n→∞

Nn,

M(1)
∗ = lim

n→∞
M(1)

n and N(1)
∗ = lim

n→∞
N(1)

n , (5.22)

M(2)
∗ = lim

n→∞
M(2)

n and N(2)
∗ = lim

n→∞
N(2)

n .
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By virtue of Eqs (5.20)–(5.22) and limn→∞ εn = 0, it follows that

M∗ = 1 − a1N(1)
∗ − a2N(2)

∗ ,

N∗ = 1 − a1M(1)
∗ − a2M(2)

∗ , (5.23)

and

β1M(1)
∗ = b1M∗e−γ1τ(M∗) − µ1N(2)

∗ , β1N(1)
∗ = b1N∗e−γ1τ(N∗) − µ1M(2)

∗ ,

β2M(2)
∗ = b2M∗e−γ2τ(M∗) − µ2N(1)

∗ , β2N(2)
∗ = b2N∗e−γ2τ(N∗) − µ2M(1)

∗ . (5.24)

From Eq (5.24), we have

M(1)
∗ − N(1)

∗ =
b1β2B1 + b2µ1B2

β1β2 − µ1µ2
, M(2)

∗ − N(2)
∗ =

b1µ2B1 + b2β1B2

β1β2 − µ1µ2
, (5.25)

where B1 =
(
M∗e−γ1τ(M∗) − N∗e−γ1τ(N∗)

)
, B2 =

(
M∗e−γ2τ(M∗) − N∗e−γ2τ(N∗)

)
.

Combining Eqs (5.23) and (5.25), we see that

M∗ − N∗ = a1

(
M(1)
∗ − N(1)

∗

)
− a2

(
M(2)
∗ − N(2)

∗

)
=

(a1b1β2 + a2b1µ2)B1 + (a1b2µ1 + a2b2β1)B2

β1β2 − µ1µ2
.

Let Q1 = (a1b1β2 + a2b1µ2)/(β1β2 − µ1µ2), Q2 = (a1b2µ1 + a2b2β1)/(β1β2 − µ1µ2), then

M∗
(
1 − Q1e−γ1τ(M∗) − Q2e−γ2τ(M∗)

)
= N∗

(
1 − Q1e−γ1τ(N∗) − Q2e−γ2τ(N∗)

)
. (5.26)

Denote h(x) = x
(
1 − Q1e−γ1τ(x) − Q2e−γ2τ(x)), for all x ≥ 0. From (5.4) and τ′(x) ≤ 0, we have

h′(x) = 1 − Q1e−γ1τ(x) − Q2e−γ2τ(x) + x
[
Q1γ1τ

′(x)e−γ1τ(x) + Q2γ2τ
′(x)e−γ2τ(x)

]
< 1 − Q1e−γ1τ(x) − Q2e−γ2τ(x)

< 1 − Q1e−γ1τ(0) − Q2e−γ2τ(0) < 0,

and thus, h(x) is a monotone decrease function with respect to x. It then follows from Eq (5.26) that
M∗ = N∗. Therefore, M(1)

∗ = N(1)
∗ and M(2)

∗ = N(2)
∗ . Further, the relations in Eqs (5.23) and (5.24) are

also true for E∗ = (x∗, z∗1, z
∗
2). Then by the uniqueness of the coexistence equilibrium of system (3.1),

we know that
(
M∗,M

(1)
∗ ,M

(2)
∗

)
and

(
N∗,N

(1)
∗ ,N

(2)
∗

)
are the coexistence equilibrium of system (3.1), and

hence M∗ = N∗ = x∗, M(1)
∗ = M(1)

∗ = z∗1, M(2)
∗ = M(2)

∗ = z∗2. Accordingly, x∗ = limt→∞ x(t), z∗1 =

limt→∞ z1(t) and z∗2 = limt→∞ z2(t). The proof is complete. �

Next we deduce the global attractivity for the other variables y1 and y2 in system (2.3). By using the
integral form for y1 and y2, we obtain that

y∗i = lim
t→∞

yi(t) =

∫ t

t−τ(x∗)
bix∗z∗i e−γi(t−s)ds, i = 1, 2.

Therefore, we have the following result.
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Theorem 5.2. Let condition (3.3) hold. Assume that conditions (5.1)-(5.4) hold true, then the
coexistence equilibrium E∗ = (x∗, y∗1, z

∗
1, y
∗
2, z
∗
2) is globally attractive for system (2.3).

At the end of this section, we give the dynamical results of two boundary equilibria and coexistence
equilibrium for the original system (2.2). The reduced system of model (2.2) is as follows.

dx
dt

= rx(t)
(
1 −

x(t)
K

)
− a1x(t)z1(t) − a2x(t)z2(t),

dz1

dt
= b1[1 − τ′(x)x′(t)]x(t − τ(x))z1(t − τ(x))e−γ1τ(x) − β1z2

1(t) − µ1z1(t)z2(t),

dz2

dt
= b2[1 − τ′(x)x′(t)]x(t − τ(x))z2(t − τ(x))e−γ2τ(x) − β2z2

2(t) − µ2z1(t)z2(t).

(5.27)

Obviously, system (5.27) has exactly one trivial equilibrium E0 = (0, 0, 0), one semitrivial
equilibrium E1 = (K, 0, 0), two boundary equilibria E2 = (x̂, ẑ1, 0) and E3 = (x̃, 0, z̃2). And
condition (3.3) holds true, then there exists a unique coexistence equilibrium E∗ = (x∗, z∗1, z

∗
2).

Theorem 5.3. If ẑ1 < 3r/(4a1) and b1µ2e−γ1τ(x̂) > b2β1e−γ2τ(x̂), then the boundary equilibrium E2 =

(x̂, ẑ1, 0) of system (5.27) is locally asymptotically stable.

Theorem 5.4. If z̃2 < 3r/(4a2) and b2µ1e−γ2τ(x̃) > b1β2e−γ1τ(x̃), then the boundary equilibrium E3 =

(x̃, 0, z̃2) of system (5.27) is locally asymptotically stable.

Theorem 5.5. Let condition (3.3) hold, and assume that:

r > a1
b1

β1
Ke−γ1τ(K) + a2

b2

β2
Ke−γ2τ(K); (5.28)

b1

(
r − a1K

b1

β1
e−γ1τ(K) − a2K

b2

β2
e−γ2τ(K)

)
e−γ1τ(0) 1

r
> µ1

b2

β2
e−γ2τ(K); (5.29)

b2

(
r − a1K

b1

β1
e−γ1τ(K) − a2K

b2

β2
e−γ2τ(K)

)
e−γ2τ(0) 1

r
> µ2

b1

β1
e−γ1τ(K); (5.30)

K
r

[
(a1b1β2 + a2b1µ2)e−γ1τ(0) + (a1b2µ1 + a2b2β1)e−γ2τ(0)

]
> β1β2 − µ1µ2. (5.31)

Then the coexistence equilibrium E∗ of system (5.27) is globally attractive.

6. Conclusions and discussions

In this paper, given that the maturity time of Antarctic whales and seals varies with the number of
krill available around the Second World War, we formulated a consumer-resource competition model
that, for the first time, incorporates a state-dependent maturity time delay associated with resource
changes and structured consumer species. The main difference from the state-dependent delay
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equations previously studied is that model (2.3) directly manifests the relationship between resources
and maturity time of consumers through the correction term, 1 − τ′(x(t))x′(t).

Besides, the state-dependent delay τ(x(t)) reflects exploitation and interference competition effects
of two consumer species. On one hand, the exploitative ability of the mature individual is stronger,
the juvenile will get more resources, which leads to a shorter maturation time. On the other hand,
because of the limited resource, the consumer species spend more time and energy to obtain resource
for keeping themselves alive. Unfortunately, what often happens is that there is not enough food for
their children and so they take longer time to mature. Further, it is clear that the greater the ability of
an adult to intervene is, the shorter the maturity time is.

From mathematical point of view, firstly, we study the well-posedness of the solution for model (2.3)
and the existence and uniqueness of all equilibria. We then show the linear stability of equilibria. The
trivial equilibria E0 = (0, 0, 0) and E1 = (1, 0, 0) are always unstable, which can be explained by
the fact that since the resource is self-renewing with a logistic growth and two competitive species
depend entirely on it, the resource are not used up or maximized. For the linear stability of boundary
equilibrium E2 = (x̂, ẑ1, 0), according to Theorem 4.4, the first sufficient condition ẑ1 < 3/(4a1) is
equivalent to x̂ > 1/4, which means the resource must be the specific level to make sure that one of
the consumer species survives. For the original system (2.2), in Theorem 5.3, the condition is changed
to ẑ1 < 3r/(4a1), which is equivalent to x̂ > K − 3K/(4r) and implies that the resource must be
above a certain value of the interaction between the growth rate of resource and its carrying capacity.
And another sufficient condition b1µ2e−γ1τ(x̂) > b2β1e−γ2τ(x̂) implies (b1 x̂e−γ1 x̂)/β1 > (b2 x̂e−γ2 x̂)/µ2, on
the basis of the threshold resource x̂, when the maximum growth of the first species is large than the
interspecific competitive effect on the second species, the second species has a negative growth effect,
which illustrates the first species will win the competition. There is a similar biological explanation for
the linear stability of E3 = (x̃, 0, z̃2). Finally, we discuss the global properties of E∗. Theorem 5.1 shows
the sufficient conditions for E∗ to be globally attractive. The condition (5.1) implies that the number
of the two consumers are at their potential maximum, and the maximum self-updating value of the
resource is large than the exploitation effects; conditions (5.2) and (5.3) imply that when the resource
is at its minimum, the number of the consumers who were born at time t − τ(x(t)) and still alive now
are enough to make up for the possible interspecific competition effects; condition (5.4) is a technical
assumption and has no practical biological significance. For the global properties of E∗ in original
system (2.2), the condition (5.28) implies that when the maximum carrying capacity K of the resource
is reached, the two consumers are at their potential maximum, and the growth rate r of the resource is
larger than the exploitation effect. Conditions (5.29) and (5.30) have biological explanations similar to
conditions (5.2) and (5.3).

This paper only considers the case of one resource. And since the fitting of state-dependent delay
τ(x(t)) is very challenging, we are unable to validate theoretical results by numerical simulations. We
would like to leave this problem and propose a competition model with state-dependent delay between
two species for two resources in the further research.
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