Competition for a single resource and coexistence of several species in the chemostat

  • Received: 01 April 2015 Accepted: 29 June 2018 Published: 01 May 2016
  • MSC : 92D25, 34D20, 34D43.

  • We study a model of the chemostat with several species in competition for a single resource.We take into account the intra-specific interactions between individuals of the same population of micro-organisms andwe assume that the growth rates are increasing and the dilution rates are distinct.Using the concept of steady-state characteristics, we present a geometric characterization of the existence and stability of all equilibria.Moreover, we provide necessary and sufficient conditions on the control parameters of the system to have a positive equilibrium.Using a Lyapunov function, we give a global asymptotic stability result for the competition model of several species.The operating diagram describes the asymptotic behavior of this model with respect to control parametersand illustrates the effect of the intra-specific competition on the coexistence region of the species.

    Citation: Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat[J]. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012

    Related Papers:

    [1] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [2] Jinyu Wei, Bin Liu . Coexistence in a competition-diffusion-advection system with equal amount of total resources. Mathematical Biosciences and Engineering, 2021, 18(4): 3543-3558. doi: 10.3934/mbe.2021178
    [3] Jean-Jacques Kengwoung-Keumo . Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation. Mathematical Biosciences and Engineering, 2016, 13(4): 787-812. doi: 10.3934/mbe.2016018
    [4] Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539
    [5] Yuanshi Wang, Hong Wu . Transition of interaction outcomes in a facilitation-competition system of two species. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1463-1475. doi: 10.3934/mbe.2017076
    [6] Hal L. Smith, Horst R. Thieme . Chemostats and epidemics: Competition for nutrients/hosts. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635
    [7] Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134
    [8] Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024
    [9] Robert Stephen Cantrell, Chris Cosner, William F. Fagan . Edge-linked dynamics and the scale-dependence of competitive. Mathematical Biosciences and Engineering, 2005, 2(4): 833-868. doi: 10.3934/mbe.2005.2.833
    [10] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
  • We study a model of the chemostat with several species in competition for a single resource.We take into account the intra-specific interactions between individuals of the same population of micro-organisms andwe assume that the growth rates are increasing and the dilution rates are distinct.Using the concept of steady-state characteristics, we present a geometric characterization of the existence and stability of all equilibria.Moreover, we provide necessary and sufficient conditions on the control parameters of the system to have a positive equilibrium.Using a Lyapunov function, we give a global asymptotic stability result for the competition model of several species.The operating diagram describes the asymptotic behavior of this model with respect to control parametersand illustrates the effect of the intra-specific competition on the coexistence region of the species.


    [1] J. Theor. Biol., 139 (1989), 311-326.
    [2] Process Biochem., 14 (1979), 16-25.
    [3] Ph.D thesis, University of Montpellier 2 and University of Tunis el Manar, 2013. https://tel.archives-ouvertes.fr/tel-01018600.
    [4] J. Math. Anal. Appl., 397 (2013), 292-306.
    [5] ARIMA J., 14 (2011), 15-30.
    [6] AIChE J., 53 (2007), 535-539.
    [7] J. Biol. Dyn., 2 (2008), 1-13.
    [8] J. Math. Biol., 18 (1983), 255-280.
    [9] Ecol. Modell., 200 (2007), 393-402.
    [10] J. Math. Biol., 9 (1980), 115-132.
    [11] J. Math. Anal. Appl., 319 (2006), 48-60.
    [12] C. R. Biol., 329 (2006), 40-46.
    [13] Electron. J. Diff. Eqns., 125 (2007), 1-10.
    [14] C. R. Acad. Sci. Paris, Ser. I, 340 (2005), 199-204.
    [15] C. R. Biol., 329 (2006), 63-70.
    [16] Math. Biosci. Eng., 5 (2008), 539-547.
    [17] C. R. Biol., 330 (2007), 845-854.
    [18] C. R. Acad. Sci. Paris Ser. I, 348 (2010), 747-751.
    [19] Acta Appl. Math., 123 (2013), 201-219.
    [20] Math. Biosci. Eng., 8 (2011), 827-840.
    [21] Cambridge University Press, 1995.
    [22] AIChE J., 25 (1979), 863-872.
    [23] SIAM J. Appl. Math., 52 (1992), 222-233.
    [24] J. Biomath, 13 (1998), 282-291.
    [25] Differential Integral Equations, 11 (1998), 465-491.
  • This article has been cited by:

    1. Miled El Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?, 2018, 11, 1793-5245, 1850111, 10.1142/S1793524518501115
    2. Radhouane Fekih-Salem, Claude Lobry, Tewfik Sari, A density-dependent model of competition for one resource in the chemostat, 2017, 286, 00255564, 104, 10.1016/j.mbs.2017.02.007
    3. 2017, 9781119437215, 217, 10.1002/9781119437215.biblio
    4. Mohamed Dellal, Mustapha Lakrib, Tewfik Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, 2018, 302, 00255564, 27, 10.1016/j.mbs.2018.05.004
    5. Tahani Mtar, Radhouane Fekih-Salem, Tewfik Sari, Interspecific density-dependent model of predator–prey relationship in the chemostat, 2021, 14, 1793-5245, 2050086, 10.1142/S1793524520500862
    6. Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari, Mathematical analysis of a three-tiered food-web in the chemostat, 2020, 0, 1553-524X, 0, 10.3934/dcdsb.2020369
    7. Mohamed Dellala, Bachir Bar, Mustapha Lakrib, A competition model in the chemostat with allelopathy and substrate inhibition, 2021, 0, 1553-524X, 0, 10.3934/dcdsb.2021120
    8. Manel Dali-Youcef, Alain Rapaport, Tewfik Sari, Performance Study of Two Serial Interconnected Chemostats with Mortality, 2022, 84, 0092-8240, 10.1007/s11538-022-01068-6
    9. Tahani Mtar, Radhouane Fekih-Salem, Tewfik Sari, Mortality can produce limit cycles in density-dependent models with a predator-prey relationship, 2022, 27, 1531-3492, 7445, 10.3934/dcdsb.2022049
    10. Radhouane Fekih-Salem, Yessmine Daoud, Nahla Abdellatif, Tewfik Sari, A Mathematical Model of Anaerobic Digestion with Syntrophic Relationship, Substrate Inhibition, and Distinct Removal Rates, 2021, 20, 1536-0040, 1621, 10.1137/20M1376480
    11. Huili Wei, Wenhe Li, Dynamical behaviors of a Lotka-Volterra competition system with the Ornstein-Uhlenbeck process, 2023, 20, 1551-0018, 7882, 10.3934/mbe.2023341
    12. Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari, Operating diagrams for a three-tiered microbial food web in the chemostat, 2022, 85, 0303-6812, 10.1007/s00285-022-01812-5
    13. Lin Wang, Jianhua Wu, Dynamics of a competition model with intra- and interspecific interference in the unstirred chemostat, 2023, 0, 1937-1632, 0, 10.3934/dcdss.2023098
    14. Nour El Houda Zitouni, Mohamed Dellal, Mustapha Lakrib, Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy, 2023, 87, 0303-6812, 10.1007/s00285-023-01943-3
    15. Nabil Ben Ali, Nahla Abdellatif, Stability and bifurcations in a model of chemostat with two inter‐connected inhibitions and a negative feedback loop, 2024, 0170-4214, 10.1002/mma.10349
    16. Tewfik Sari, Commensalism and syntrophy in the chemostat: a unifying graphical approach, 2024, 9, 2473-6988, 18625, 10.3934/math.2024907
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2207) PDF downloads(517) Cited by(16)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog