Citation: Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat[J]. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012
[1] | Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135 |
[2] | Jinyu Wei, Bin Liu . Coexistence in a competition-diffusion-advection system with equal amount of total resources. Mathematical Biosciences and Engineering, 2021, 18(4): 3543-3558. doi: 10.3934/mbe.2021178 |
[3] | Jean-Jacques Kengwoung-Keumo . Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation. Mathematical Biosciences and Engineering, 2016, 13(4): 787-812. doi: 10.3934/mbe.2016018 |
[4] | Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539 |
[5] | Yuanshi Wang, Hong Wu . Transition of interaction outcomes in a facilitation-competition system of two species. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1463-1475. doi: 10.3934/mbe.2017076 |
[6] | Hal L. Smith, Horst R. Thieme . Chemostats and epidemics: Competition for nutrients/hosts. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635 |
[7] | Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134 |
[8] | Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024 |
[9] | Robert Stephen Cantrell, Chris Cosner, William F. Fagan . Edge-linked dynamics and the scale-dependence of competitive. Mathematical Biosciences and Engineering, 2005, 2(4): 833-868. doi: 10.3934/mbe.2005.2.833 |
[10] | Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283 |
[1] | J. Theor. Biol., 139 (1989), 311-326. |
[2] | Process Biochem., 14 (1979), 16-25. |
[3] | Ph.D thesis, University of Montpellier 2 and University of Tunis el Manar, 2013. https://tel.archives-ouvertes.fr/tel-01018600. |
[4] | J. Math. Anal. Appl., 397 (2013), 292-306. |
[5] | ARIMA J., 14 (2011), 15-30. |
[6] | AIChE J., 53 (2007), 535-539. |
[7] | J. Biol. Dyn., 2 (2008), 1-13. |
[8] | J. Math. Biol., 18 (1983), 255-280. |
[9] | Ecol. Modell., 200 (2007), 393-402. |
[10] | J. Math. Biol., 9 (1980), 115-132. |
[11] | J. Math. Anal. Appl., 319 (2006), 48-60. |
[12] | C. R. Biol., 329 (2006), 40-46. |
[13] | Electron. J. Diff. Eqns., 125 (2007), 1-10. |
[14] | C. R. Acad. Sci. Paris, Ser. I, 340 (2005), 199-204. |
[15] | C. R. Biol., 329 (2006), 63-70. |
[16] | Math. Biosci. Eng., 5 (2008), 539-547. |
[17] | C. R. Biol., 330 (2007), 845-854. |
[18] | C. R. Acad. Sci. Paris Ser. I, 348 (2010), 747-751. |
[19] | Acta Appl. Math., 123 (2013), 201-219. |
[20] | Math. Biosci. Eng., 8 (2011), 827-840. |
[21] | Cambridge University Press, 1995. |
[22] | AIChE J., 25 (1979), 863-872. |
[23] | SIAM J. Appl. Math., 52 (1992), 222-233. |
[24] | J. Biomath, 13 (1998), 282-291. |
[25] | Differential Integral Equations, 11 (1998), 465-491. |
1. | Miled El Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?, 2018, 11, 1793-5245, 1850111, 10.1142/S1793524518501115 | |
2. | Radhouane Fekih-Salem, Claude Lobry, Tewfik Sari, A density-dependent model of competition for one resource in the chemostat, 2017, 286, 00255564, 104, 10.1016/j.mbs.2017.02.007 | |
3. | 2017, 9781119437215, 217, 10.1002/9781119437215.biblio | |
4. | Mohamed Dellal, Mustapha Lakrib, Tewfik Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, 2018, 302, 00255564, 27, 10.1016/j.mbs.2018.05.004 | |
5. | Tahani Mtar, Radhouane Fekih-Salem, Tewfik Sari, Interspecific density-dependent model of predator–prey relationship in the chemostat, 2021, 14, 1793-5245, 2050086, 10.1142/S1793524520500862 | |
6. | Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari, Mathematical analysis of a three-tiered food-web in the chemostat, 2020, 0, 1553-524X, 0, 10.3934/dcdsb.2020369 | |
7. | Mohamed Dellala, Bachir Bar, Mustapha Lakrib, A competition model in the chemostat with allelopathy and substrate inhibition, 2021, 0, 1553-524X, 0, 10.3934/dcdsb.2021120 | |
8. | Manel Dali-Youcef, Alain Rapaport, Tewfik Sari, Performance Study of Two Serial Interconnected Chemostats with Mortality, 2022, 84, 0092-8240, 10.1007/s11538-022-01068-6 | |
9. | Tahani Mtar, Radhouane Fekih-Salem, Tewfik Sari, Mortality can produce limit cycles in density-dependent models with a predator-prey relationship, 2022, 27, 1531-3492, 7445, 10.3934/dcdsb.2022049 | |
10. | Radhouane Fekih-Salem, Yessmine Daoud, Nahla Abdellatif, Tewfik Sari, A Mathematical Model of Anaerobic Digestion with Syntrophic Relationship, Substrate Inhibition, and Distinct Removal Rates, 2021, 20, 1536-0040, 1621, 10.1137/20M1376480 | |
11. | Huili Wei, Wenhe Li, Dynamical behaviors of a Lotka-Volterra competition system with the Ornstein-Uhlenbeck process, 2023, 20, 1551-0018, 7882, 10.3934/mbe.2023341 | |
12. | Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari, Operating diagrams for a three-tiered microbial food web in the chemostat, 2022, 85, 0303-6812, 10.1007/s00285-022-01812-5 | |
13. | Lin Wang, Jianhua Wu, Dynamics of a competition model with intra- and interspecific interference in the unstirred chemostat, 2023, 0, 1937-1632, 0, 10.3934/dcdss.2023098 | |
14. | Nour El Houda Zitouni, Mohamed Dellal, Mustapha Lakrib, Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy, 2023, 87, 0303-6812, 10.1007/s00285-023-01943-3 | |
15. | Nabil Ben Ali, Nahla Abdellatif, Stability and bifurcations in a model of chemostat with two inter‐connected inhibitions and a negative feedback loop, 2024, 0170-4214, 10.1002/mma.10349 | |
16. | Tewfik Sari, Commensalism and syntrophy in the chemostat: a unifying graphical approach, 2024, 9, 2473-6988, 18625, 10.3934/math.2024907 |