Citation: Claudia Totzeck, Marie-Therese Wolfram. Consensus-based global optimization with personal best[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 6026-6044. doi: 10.3934/mbe.2020320
[1] | R. C. Eberhart, J. Kennedy, Particle swarm optimization, in Proceedings of ICNN'95-International Conference on Neural Networks IEEE, (1995), 1942-1948. |
[2] | M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in Proceedings of the 1999 Congress on Evolutionary Computation (Cat. No. 99TH8406 Vol. 2), IEEE, (1999), 1470-1477. |
[3] | L. J. Fogel, A. J. Owens, M. J. Wash, Artificial Intelligence through a Simulation Evolution, John Wiley & Sons Inc, New York, 1966. |
[4] | J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Harbor, 1975. |
[5] | R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm. Intell., 1 (2007), 33-57. |
[6] | R. Pinnau, C. Totzeck, O. Tse, S. Martin, A consensus-based model for global optimization and its mean-field limit, Math. Models Methods Appl. Sci., 27 (2017), 183-204. |
[7] | J. A. Carrillo, Y.-P. Choi, C. Totzeck, O. Tse, An analytical framework for consensus-based global optimization method, Math. Models Methods Appl. Sci., 28 (2018), 1037-1066. |
[8] | S. Chatterhee, E. Seneta, Towards consensus: Some convergence theorems on repeated averaging, J Appl. Probab., 14 (1977), 89-91. |
[9] | R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation, JASSS, 5 (2002), 1-33. |
[10] | S. Motsch, E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577- 621. |
[11] | J. A. Carrillo, S. Jin, L. Li, Y. Zhu, A consensus-based global optimization method for high dimensional machine learning problems, arXiv preprint arXiv:1909.09249. |
[12] | M. Fornasier, H. Huang, L. Pareschi, P. Sünnen, Consensus-Based Optimization on the Sphere I: Well-Posedness and Mean-Field Limit, arXiv preprint arXiv:2001.11994. |
[13] | M. Fornasier, H. Huang, L. Pareschi, P. Sünnen, Consensus-based Optimization on the Sphere II: Convergence to Global Minimizers and Machine Learning, arXiv preprint arXiv:2001.11988. |
[14] | S.-Y. Ha, S. Jin, D. Kim, Convergence and error estimates for time-discrete consensus-based optimization algorithms, arXiv preprint arXiv:2003.05086. |
[15] | P. Butta, F. Flandoli, M. Ottobre, B. Zegarlinski, A non-linear model of self-propelled particles with multiple equilibria, Kinet. Relat. Mod., 12 (2019), 791. |
[16] | D. Crisan, C. Jangjigian, T. G. Kurtz, Particle representations for stochastic partial differential equations with boundary conditions, Electron. J. Probab., 23 (2018), 65-94. |
[17] | M. Wiedermann, J. F. Donges, J. Heitzig, J. Kurths, Node-weighted interacting network measures improve the representation of real-world complex systems, Europhys. Lett., 102 (2013), 28007. |
[18] | G. Wergen, Records in stochastic processes-theory and applications, J. Phys. A: Math. Theor., 46 (2013), 223001. |
[19] | S. Gadat, F. Panloup, Long time behaviour and stationary regime of memory gradient diffusions, Ann. Inst. H. Poincaré Probab. Statist., 50 (2014), 564-601. |
[20] | R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001. |
[21] | H. Duong, G. Pavliotis, Mean field limits for non-Markovian interacting particles: convergence to equilibrium, GENERIC formalism, asymptotic limits and phase transitions, Commun. Math. Sci., 16 (2018), 2199-2230. |
[22] | A. Kuntzmann, Convergence in distribution of some self-interacting diffusions, J. Probab. Stat., 2014 (2014), 1-13. |
[23] | E. Pardoux, A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Springer, Cham Heidelberg New York Dordrecht London, 2014. |
[24] | A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer Science & Business Media, 2009. |
[25] | S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, Optimization by Simulated Annealing, Science, 220 (1983), 671-680. |
[26] | M. Jamil, X.-S. Yang, A literature survey of benchmark functions for global optimisation problems, Int. J. Math. Mod. Num. Opt., 4 (2013), 150-194. |
[27] | D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic Publishers, Boston, 1987. |
[28] | L. A. Rastrigin, Systems of extremal control, Nauka, Moscow, 1974. |
[29] | R. Durrett, Stochastic calculus: a practical introduction, CRC press, Boca Raton, Florida, 1996. |