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Abstract: In this paper we propose a variant of a consensus-based global optimization (CBO) method
that uses personal best information in order to compute the global minimum of a non-convex, locally
Lipschitz continuous function. The proposed approach is motivated by the original particle swarming
algorithms, in which particles adjust their position with respect to the personal best, the current global
best, and some additive noise. The personal best information along an individual trajectory is included
with the help of a weighted mean. This weighted mean can be computed very efficiently due to its ac-
cumulative structure. It enters the dynamics via an additional drift term. We illustrate the performance
with a toy example, analyze the respective memory-dependent stochastic system and compare the per-
formance with the original CBO with component-wise noise for several benchmark problems. The
proposed method has a higher success rate for computational experiments with a small particle number
and where the initial particle distribution is disadvantageous with respect to the global minimum.
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1. Introduction

Interacting particle systems play an important role in many applications in science - on the one hand
as a modeling framework for social and biological systems, on the other as a tool for computational
algorithms used in data science. In the latter case the collective behavior of interacting particle sys-
tems is used to solve high-dimensional problems, often resulting from non-convex optimization tasks
in data science. Well known algorithms include particle swarm optimization (PSO) [1], ant colony
optimization [2] or evolutionary [3] and genetic algorithms [4].
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PSO was first introduced in [1] and has been successfully used in engineering applications [5]. Each
particle in a PSO algorithm adjusts its position due to information of the global best, personal best and a
noise term that allows for exploration of its neighborhood. Consensus-based optimization (CBO) [6,7]
combines the idea of swarm intelligence with consensus formation techniques [8–10] to obtain a global
optimization algorithm for non-convex high-dimensional problems. On the one hand particles explore
the state space via an amplitude modulated random walk. On the other a drift term convects them
towards the weighted global best. The method was first introduced in [6] and analyzed at the mean-
field level in [7]. Recent developments of CBO include component-wise diffusion and utilize random
mini-batch ideas to reduce the computational cost of calculating the weighted average [11]. Other
contributions investigate a CBO dynamic that is restricted to the sphere [12,13]. Also, convergence and
error estimates for time-discrete consensus-based optimization algorithms have been discussed [14].
CBO-type systems are related to large interacting particle systems, in which the dynamics are driven
by weighted average quantities, see [15–17].

The model proposed in the work is based on the component-wise diffusion variant introduced in [11]
and combines it with personal best information. This adjustment is motivated by the original work on
PSO by Eberhart and Kennedy [1], where the particles move towards a (stochastic) linear combination
of their personal best or the common global best position. The new information leads to an additional
drift term in the dynamics. We investigate two types of memory effects - either using a weighted
personal best over time or the personal best value in the past. The latter corresponds to record processes,
see [18] for an overview. The former is used in the presented analysis and approximates the personal
best of each particle. We expect by arguments similar to the Laplace principle that the weighted mean
converges towards the personal best.

The proposed stochastic dynamics with weighted personal best fall into the class of stochastic func-
tional differential equations. These equations are in general non-Markovian and their mean-field limit
has been investigated in special cases only. For example, Gadat and Panloup [19] investigated a non-
Markovian process with memory, which corresponds to the weighted average of the drift all along
the particle’s trajectory. This memory term is of a special form allowing them to rewrite the system
as a 2-dimensional non-homogeneous Markovian dynamical system. Moreover, they exploit this spe-
cial structure to analyze the existence and long time behavior of solutions as well as the mean-field
limit. The strategy of increasing the dimension to get around the non-Markovian nature goes back to
the Mori-Zwanzig formalism, see [20]. This strategy was recently adapted for non-Markovian inter-
acting dynamics by Duong and Pavliotis in [21]. Another interesting work by Kuntzmann, see [22],
investigates the ergodic behavior of self-interacting diffusions depending on the empirical mean of the
process. The proposed generalization of CBO with weighted personal best does not fall into this cate-
gory, hence the derivation and analysis of the respective mean-field dynamics, which often give useful
insights into the dynamics, is to the best of the authors’ knowledge open. This applies as well for
personal best, where the update of the best function value corresponds to a record process. Hence, we
focus on the well-posedness of the stochastic system as well as a detailed computational investigation
of the dynamics.

This paper is organized as follows: we introduce the particle dynamics with (weighted) personal
best in Section 2 and illustrate its dynamics with first toy examples. Section 3 discusses well-posedness
and existence of solutions to the SDE model with weighted personal best. Section 4 presents extensive
computational experiments of various benchmark optimization problems.
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2. Consensus based optimization with personal best

In this section we discuss how personal best information can be included in consensus based opti-
mization algorithms as proposed by Carrillo and co-workers in [6, 7, 11]. We start by introducing the
notation before continuing with the modeling.

2.1. Notation

We refer the euclidean norm by |x| = (x2
1 + · · ·+ x2

d)1/2 for x ∈ Rd and |Y | = (
∑dN

i, j=1 Y2
i j)

1/2 for matrices
Y ∈ RdN×dN . The set of natural numbers without 0 is denoted by N∗ = 1, 2, 3, . . . and the half-line
[0,∞) by R+. A vector valued function or vector x ∈ RdN is assumed to be of the form x = (x1, . . . , xN)
with xi ∈ Rd. When discussing the stochastic systems we follow the notation of [23]: (Ω,F ,P, {Ft}t≥0)
corresponds to the stochastic basis with sample space Ω, filtration F and probability function P. More-
over, S p

d[0,T ] is the space of (equivalence classes of) P -measurable continuous stochastic processes
X : Ω × [0,T ]→ RdN such that

E sup
t∈[0,T ]

|Xt|
p < +∞ if p > 0.

Two processes X,Y are called equivalent if (Xt = Yt∀t ∈ [0,T ]) P-almost surely (P-a.s.). Furthermore,
S p

d is the space of (equivalence classes of) P-measurable continuous stochastic processes X : Ω×R+ →

Rd such that for all T > 0 the restriction X|[0,T ] of X to [0,T ] belongs to S p
d[0,T ]. Analogously, we

define Λ
p
d(0,T ) as the space of (equivalent classes) of P-measurable processes X : [0,T ] → Rd such

that ∫ T

0
|Xt|

2dt < +∞ P-a.s.ω ∈ Ω if p = 0 and E

(∫ T

0
|Xt|

2dt
)p/2

< +∞ if p > 0.

We refer to Λ
p
d as the space of (equivalence classes of) P-measurable continuous stochastic processes

X : Ω × (0,+∞) → Rd for which for all T > 0 the restriction X|[0,T ] of X to [0,T ] belongs to Λ
p
d(0,T ).

Moreover, for any φ ∈ C(R+,R
dN) we define

‖φ‖t := sup
0≤s≤t
|φ(s)| = sup

0≤s≤t

(
φ1(s)2 + · · · + φdN(s)2

)1/2
.

2.2. The model

We wish to approximate the global minimum

min
x∈Rd

f (x), (2.1)

of a given non-negative, continuous objective function f : Rd → R. In doing so we consider N ∈ N
particles and denote the position of the i-th particle at time t by Xi

t := Xi(t) ∈ Rd, i = 1, . . .N. Note
that we use Xt = X(t) = (X1(t), . . . XN(t)) ∈ RdN , when referring to the positions of all particles at
time t. In CBO particles compare their current function value with a weighted mean value based on the
current information of the whole system. A particle moves towards the position of the weighted mean,
if the function value of the weighted mean is lower. Following the ideas of [6, 7], we use the weighted
average

v f (t) = v f [Xt] =

∑N
i=1 Xi(t) exp(−α f (Xi(t)))∑N

i=1 exp(−α f (Xi(t)))
, (2.2)
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with α > 0, to approximate the global best, that is, the particle with the lowest function value. Note
that even though the weighted average uses only information of the current time step, it is assumed
to approximate the global best over time as well, since a particle that is close to the weighed average
experiences only small drift and diffusion. The parameter α scales the influence of local and global
minima in the weighted mean. In fact, for α = 0 the weights are independent of the function values,
and all particles are weighted equally. For α > 0 the particle with the best function value has the largest
weight. Moreover, the Laplace principle from large deviations theory [24] assures that v f (t) converges
to the global best, as α → ∞. For more details on the Laplace principle in the CBO context, we refer
to [6, 7].

In the original version of PSO, see [25], particles compare their current position with the global
best as well as their personal best value up to that time. We propose two different approaches how to
include the personal best pi of the i-th particle. First, we consider the true personal best by setting

Pi
f (t) = arg min

Y∈{Xi(s) : s∈[0,t]}
f (Y). (2.3)

Moreover, the personal best can be approximated similarly to the global best, v f (t), defined in (2.2).
Hereby, we use the entire trajectory in the past and refer to this trajectory by X = (X1, . . . , XN) with
Xi ∈ C(R+,R

d) for all i = 1, . . . ,N. Let Xi
0 denote the initial position of the i-th particle at time t = 0,

the weighted mean over time of the i-th particle is defined by

pi
f (t) =

Xi
0, t = 0,∫ t

0
Xi

s exp(−β f (Xi
s))ds

/ ∫ t

0
exp(−β f (Xi

s))ds, otherwise,
(2.4)

with β > 0. Note that the well-posedness result presented in Section 3 holds for the weighted personal
best (2.4) only. Again, by the Laplace principle, we expect that pi

f (t)→ Pi
f as β→ ∞.

We recall that particles either move towards the global or personal best state. The respective CBO
dynamics for the i-th particle, i = 1, . . .N are then given by the following SDE:

dXi(t) =
[
−λ(t, X)(Xi(t) − v f ) − µ(t, X)(Xi(t) − pi

f )
]

dt +
√

2σdiag(Xi(t) − v f ) dBi
t, (2.5)

where

λ(t, X) = H( f (Xi(t)) − f (v f )) H( f (pi
f ) − f (v f )),

µ(t, X) = H( f (Xi(t)) − f (pi
f )) H( f (v f ) − f (pi

f )).

The function H corresponds to the Heaviside function and σ > 0 denotes the standard deviation.
System (2.5) is supplemented with the initial condition Xi

0 = ξi, i = 1, . . . ,N. The drift and diffusion
are motivated by the following considerations:

1. If the global best v f is better than the current position Xi
t and the personal best pi

f , the particle
moves towards the current global best v f .

2. If the personal best pi
f is better than the current position Xi

t and the global best v f , the particle
moves towards the personal best pi

f .
3. If none of the above holds, the particle still explores the function landscape via Brownian motion

until it reaches the global best v f .
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Note that the drift coefficients depend on the past of each particle, hence system (2.5) is non-Markovian.
The form of the memory does not allow us to use existing results, such as [23] to rewrite the system.
Hence the existence and form of the respective mean-field model is, up to the authors’ knowledge, not
known.

Remark 1. (1) The CBO version proposed in [11] can be recoverd by setting

λ(t, X) ≡ λ, µ(t, X) ≡ 0. (2.6)

(2) Note that the personal best (2.3) and weighted personal best (2.4) can be computed very efficiently
due to their accumulative structure; this does not significantly increase the computational cost.

Throughout this manuscript we will refer to the dynamics defined by (2.5) with (2.6) as CBO, and
to (2.5) with (2.3) or (2.4) as personal best (PB) or weighted personal best (wPB), respectively.

2.3. Toy example: CBO vs. PB dynamics

In the following we will illustrate the differences between CBO and (w)PB using a 1D toy objective
function f and 3 particles. We consider a double well-type f of the form:

f (x) = (x2 − 1)2 + 0.01x + 0.5.

For this function, shown in Figure 1 the global and local minimum, located at x = −1.00125 and
x = 0.998748 respectively, are very close. In the following we perform 1000 Monte Carlo (MC)
simulations with deterministic initial conditions ξ. We count a run as run successful, if the final position
of the particles satisfy |v f (T ) − Xi(T )| < 0.4 for all i = 1, . . . ,N. The final time is set to T = 100, the
time step size dt = 10−3 and β in (2.4) to β = 30. We study the dynamics for the following two initial
conditions:

(IC1) Initialize 2 particles near the local minimizer and 1 particle near the global minimizer.
(IC2) Initialize 1 particle near the local minimizer and 2 particles near the global minimizer.

Figure 1. Corresponding to (IC1) Initial posi-
tions are depicted in gray. Points in different
colors show v f (T ) at T = 100.

Table 1. Success rates

scheme success rate success rate
α = 10 α = 30

CBO 30 % 60,9%
PB 100 % 100 %
wPB 100 % 100 %

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6026–6044.
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The initial positions (IC1) and (IC2) of the particles correspond to the gray dots in Figure 1 and in
Figure 3, respectively. We discuss (IC1) first. In this situation the weighted average, v f (0), is located
near x = 0.9, thus, the Heaviside functions are zero and the system would be in a stationary state for
σ = 0.
For σ > 0, the diffusion term drives the dynamic and the particles are exploring their neighborhood.
Due to the multiplicative factor, the particle on the left is exposed to more diffusion than the particles
on the right. In case of the CBO scheme, the particle on the left has a high probability of jumping
out of the basin of the global minimum. Then, all particles concentrate near the local minimum. For
one run, this behavior is illustrated by the positions of v f (T ) shown in Figure 1 (left). This alone
does not reflect the concentration which becomes apparent in Figure 2. In fact, the orange lines show
fluctuations for small times but stabilize quickly indicating that no diffusion is present and thus that all
particles are concentrated. This behavior changes when personal best information is included. Here,
particles still explore their neighborhood, however at some point their current positions are worse than
their personal best, and hence the drift starts pulling them back towards their personal best. This
behavior is also illustrated by the success rates stated in Table 1. We see that (w)PB outperform CBO
for large and small values of α. The ’pull-back’ effect slows down the convergence of (w)PB - we
observe that the respective energies decrease slower than for CBO in Figure 2. Nevertheless, they find
the global minimum.

Figure 2. (IC1) CBO is not successful while CBO with personal best finds a good approxi-
mation of the global minimizer. The plot on the left shows the mean of the distances of v f (t)
to the global minimizer. The plot on the right shows the mean energy

∑3
i=1 |X

i(t) − x∗|2. The
mean involves 1000 Monte Carlo runs.

Next we consider initial condition (IC2). Again, in the deterministic case σ = 0 the initial configu-
ration is stationary. For σ > 0 the particles on the left are less diffusive than the particle on the right.
Therefore, it is more likely that the particle on the right jumps into the basin of the global minimum.
This is illustrated in Figure 3 and confirmed by the success rates in Table 2. Again, CBO converges
faster than (w)PB, see Figure 4. Nevertheless, the function values at the point of concentration are
smaller for (w)PB which means that the slower algorithms find better approximations. Note that the
scale of the time step-axis is much smaller than in Figure 2.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6026–6044.
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Figure 3. Corresponding to (IC2) The initial
positions are depicted in gray. The points in
different colors show v f (t) at t = 10000.

Table 2. Success rates

scheme success rate success rate
α = 10 α = 30

CBO 91,6 % 98,1 %
PB 100 % 100 %
wPB 100 % 100 %

Figure 4. (IC2) All schemes find reasonable approximations of the minimizer. The results of
the methods with personal best information have a better accuracy. The plot on the left shows
the mean of the distances of v f (t) to the global minimizer. The plot on the right shows the
mean energy

∑3
i=1 |X

i(t) − x∗|2. The mean involves 1000 Monte Carlo runs. As expected the
particles following the CBO scheme are concentrating very fast. The methods with personal
best information need more time for stabilization. The one with weighted personal best is
slightly faster than with one with true personal best values.

3. Well-posedness results

In the following we discuss well-posedness of the wPB model. We begin by considering CBO with
component-wise diffusion, which was proposed in [11].

3.1. Well-posedness of CBO with component-wise diffusion

Theorem 1. Let f be locally Lipschitz and N ∈ N. Then system (2.5) with λ(t, X) ≡ λ, µ(t, X) ≡ 0
admits a unique strong solution for any initial condition ξ = (ξ1, . . . , ξN) satisfying E |ξ|2 < ∞.

A detailed proof can be found in the Appendix. Let us just emphasize that the estimates in the

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6026–6044.
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proof of Theorem 1 are independent of the dimension, d, as was already highlighted in [11] for the
mean-field setting. This is in contrast to [6, 7], where the estimates depend on d.

3.2. Well-posedness in case of weighted personal best

Next, we present an existence and uniqueness result for the proposed SDE model with weighted
personal best and smoothed Heaviside functions. Note that the structure of the weighted personal
best suggests the idea of introducing new variables for the numerator and the denominator. This re-
formulation converts the non-Markovian process into a Markovian system for times t > 0, but violates
the initial condition. We therefore use different proofs for properties of SDEs with local Lipschitz
conditions as well as path-dependent SDEs that can be found in the literature [23]. To the authors’
knowledge none of them covers the case of path-dependent SDEs with local Lipschitz conditions. In
the following we present a proof which combines the two techniques to obtain a well-posedness result.

We assume that the regularized Heaviside function Hε satisfies the following conditions:
(A1) Let 0 ≤ Hε(x) ≤ 1 for all x ∈ R.
(A2) There exists a constant C > 0 such that

|Hε(x) − Hε(y)| ≤
C
ε
|x − y| for all x, y ∈ R. (3.1)

This corresponds to the following regularized problem

dX(t) =
[
−λε(t, X)(X(t) − v f ) − µε(t, X)(X(t) − pi

f )
]

dt +
√

2σdiag(X(t) − v f ) dBt, (3.2a)

with

λε(t, X) = diag
(
Hε( f (Xi(t)) − f (v f )) Hε( f (pi

f ) − f (v f ))
)

i=1,...,N
∈ RdN×dN , (3.2b)

µε(t, X) = diag
(
Hε( f (Xi(t)) − f (pi

f )) Hε( f (v f ) − f (pi
f ))

)
i=1,...,N

∈ RdN×dN . (3.2c)

Moreover, we assume that the objective function f satisfies the following properties:
(A3) Positivity: it holds 0 ≤ f (x) for all x ∈ Rd,

(A4) Quasi-local Lipschitz condition: for any n < ∞ and |x|, |y| ≤ n it holds

| f (x) − f (y)| ≤ L f |x − y|,

with a constant L f > 0 depending on n only.

Remark 2. The well-known regularization of the Heaviside function

Hε(x) =
1
2

+
1
2

tanh
( x
ε

)
satisfies the assumptions (A1) and (A2). Note that in the context of optimization problems, the positivity
assumption on f is not too restrictive. Since f corresponds to a minimization functional it is naturally
bounded from below and can be shifted to satisfy the positivity constraint.
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The following proof is based on a combination of arguments of Theorem 3.17 and Theorem 3.27
in [23] - this yields well-posedness of (3.2). We begin with two lemmata providing necessary estimates.
The first lemma is concerned with properties of the weighed averages. Note that the global best v f

depends on the current state of the process and the personal best p f on the whole trajectory. We
therefore write v f [ϕ(t)] = v f (t) and p f [ϕ] = p f .

Lemma 1. Let f satisfy (A3) and (A4), N ∈ N and ϕ = (ϕ1, . . . ϕN) ∈ C(R+,R
dN). Then

v f [ϕ(t)] ∈ Rd, |v f [ϕ(t)]| ≤ |ϕ(t)| for every t,

p f [ϕ] ∈ C(R+,R
dN), |p f [ϕ](t)| ≤ |ϕ|t.

(3.3)

Moreover, the averages satisfy the local Lipschitz conditions:

|p f [ϕ](t) − p f [ϕ̂](t)|2 =

N∑
i=1

∣∣∣pi
f [ϕ](t) − pi

f [ϕ̂](t)
∣∣∣2 ≤ C1‖ϕ − ϕ̂‖

2
t , (3.4)∣∣∣v f [ϕ(t)] − v f [ϕ̂(t)]

∣∣∣2 ≤ C2|ϕ(t) − ϕ̂(t)|2 (3.5)

for all t ∈ [0,∞) with |ϕ|t, |ϕ̂|t ≤ n with constants

C1 =
(
1 + (1 + 2L f )βneβ( f− f )

)
, and C2 =

1 +
αnL f e−α f

N
+ neα( f− f )

(
1
N

+ αnL f

)2

2N−1. (3.6)

Here L f is the Lipschitz constant of f in Bn = {x : |x| ≤ n} and f , f correspond, respectively, to the
minimal and maximal values of f on Bn.

The proof of Lemma 1 can be found in the Appendix. Using Lemma 1 we show that the drift and
diffusion terms satisfy local Lipschitz and linear growth conditions. These properties allow us to apply
the existence and uniqueness result later on.

Lemma 2. Let (A1)–(A4) hold. Then

b : [0,+∞) × C(R+,R
dN)→ RdN and Σ : [0,+∞) × C(R+,R

dN)→ RdN×dN

given by
b(t, ϕ) = −λε(t, ϕ)(ϕ(t) − v f ) − µε(t, ϕ)(ϕ(t) − p f )

and
Σ(t, ϕ) = diag

(
(ϕi(t) − v f )i=1,...,N

)
∈ RdN×dN

with ϕi = (ϕ(i−1)d+1, . . . , ϕ(i−1)d+d) satisfy the following conditions for all ϕ, ψ ∈ C(R+,R
dN) and all

R > 0 :

(i) |b(t, ϕ) − b(t, ψ)| ≤ LR‖ϕ − ψ‖t,

(ii) |b(t, ϕ)| ≤ aR‖ϕ‖t ,
(iii) |Σ(t, ϕ(t)) − Σ(t, ψ(t))| ≤ `R|ϕ(t) − ψ(t)|,
(iv) |Σ(t, ϕ(t))| ≤ bR|ϕ(t)| ,

where LR, `R, aR, bR ∈ R.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6026–6044.
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Proof. To show (i) we calculate

|bi(t, ϕ) − bi(t, ψ)|2 ≤ 2(I1 + I2 + I3 + I4), (3.7)

where

I1 :=
∣∣∣(λε,i(t, ϕ) − λε,i((t, ψ))(ϕi(t) − v f [ϕ(t)])

∣∣∣2
≤

1
2ε

L f (|ϕi(t)| + |v f [ϕ(t)]|)
(
2|ϕi(t) − ψi(t)|2 + 8|v f [ψ(t)] − v f [ϕ(t)]|2 + 4|pi

f [ϕ](t) − pi
f [ψ](t)|2

)
,

I2 :=
∣∣∣λε,i((t, ψ)(|ϕi(t) − ψi(t)| + |v f [ψ(t)] − v f [ϕ(t)]|)

∣∣∣2 ≤ 2|ϕi(t) − ψi(t)|2 + 2|v f [ψ(t)] − v f [ϕ(t)|2,

I3 :=
∣∣∣(µε,i((t, ϕ) − µε,i((t, ψ))(ϕi(t) − pi

f [ϕ](t))
∣∣∣2

≤
1
2ε

L f (|ϕ(t) − pi
f [ϕ](t)|)

(
2|ϕi(t) − ψi(t)|2 + 4|v f [ψ(t)] − v f [ϕ(t)]|2 + 8|pi

f [ϕ](t) − pi
f [ψ](t)|2

)
,

I4 :=
∣∣∣µε,i((t, ψ)(ϕi(t) − ψi(t) + pi

f [ψ](t) − pi
f [ϕ](t))

∣∣∣2 ≤ 2|ϕi(t) − ψi(t)|2 + 2|pi
f [ϕ](t) − pi

f [ψ](t)|2.

From Lemma 1 we know that |v f [ψ(t)] − v f [ϕ(t)]|2 ≤ C1|ϕ(t) − ψ(t)|2, and |pi
f [ϕ](t) − pi

f [ψ](t)|2 ≤
C2‖ϕ

i − ψi‖2t with constants C1 and C2 given by (3.6) with n = R. This yields (i) since

|b(t, ϕ) − b(t, ψ)| =

 N∑
i=1

|bi(t, ϕ) − bi(t, ψ)|

1/2

≤ LR‖ϕ − ψ‖t.

The Lipschitz bound (iii) follows from similar arguments using the diagonal structure of Σ:

|Σ(t, ϕ(t)) − Σ(t, ψ(t))| =

 N∑
i=1

|Σii(t, ϕ(t)) − Σii(t, ψ(t))|2
1/2

≤

 N∑
i=1

2|ϕi(t) − ψi(t)|2 + 2|v f [ϕ(t)] − v f [ψ(t)]|2
1/2

≤ `R|ϕ(t) − ψ(t)|.

The last two inequalities hold due to

|b(t, ϕ)| =

 N∑
i=1

bi(t, ϕ)2

1/2

≤

 N∑
i=1

8|ϕi(t)|2 + 4|v f [ϕ(t)]|2 + 2|pi
f [ϕ](t)|2

1/2

≤ aR‖ϕ‖t,

|Σ(t, ϕ)| =

 N∑
i=1

Σii(t, ϕ)2

1/2

≤

 N∑
i=1

2ϕi(t)2 + 2|v f [ϕ(t)]|2
1/2

≤ bR|ϕ(t)|.

�

Equipped with this lemma, we have everything at hand to prove the main theorem.

Theorem 2. Let (A1)–(A4) be satisfied and ξ ∈ L0(Ω,F0,P,R
dN) with E|ξ|p < ∞ for each p > 0. Then,

there exists a unique strong global solution to (3.2). Moreover, there exists a constant Cp,T,Lr ,`R such
that

E sup
t∈[0,T ]

|X(t)|p ≤ Cp,T,Lr ,`RE|ξ|
p.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 6026–6044.



6036

The proof combines arguments of Theorem 3.17 (path-dependent SDE) and Theorem 3.27 (SDE
with local Lipschitz coefficients) in [23].

Proof. We start by proving uniqueness. Let X, X̂ ∈ S 0
dN be two solutions to (3.2) corresponding to

initial data ξ, ξ̂ ∈ L0(Ω,F0,P,R
dN), respectively. Then it holds E ξ = E ξ̂. Define the stopping time

τn(ω) = inf{t ≥ 0: |Xt(ω)| + |X̂t(ω)| ≥ n}. Then the two solutions satisfy

Xt∧τn = ξ +

∫ t

0
1[0,τn](s)b(s ∧ τn, X)ds +

∫ t

0
1[0,τn](s)σ(s ∧ τn, Xs∧τn)dBs,

X̂t∧τn = ξ̂ +

∫ t

0
1[0,τn](s)b(s ∧ τn, X̂)ds +

∫ t

0
1[0,τn](s)σ(s ∧ τn, X̂s∧τn)dBs,

and τn → ∞ for n→ ∞.Note that we have global Lipschitz constants for b andσ for all times t ∈ [0, τn]
with n arbitrary but fixed. This allows us to use Theorem 3.8 in [23], see proof of Theorem 3.27 in [23]
for more details, to obtain

E
‖e−VR

(X·∧τn − X̂·∧τn)‖
p
T(

1 + ‖e−VR(X·∧τn − X̂·∧τn)‖
2
T

)p/2 ≤ CpE
|X0 − X̂0|

p(
1 + |X0 − X̂0|

2
)p/2 ,

for some VR depending on the local Lipschitz constants LR, `R, aR, bR and p ≥ 2 arbitrary. Hence, the
uniqueness of the solution on [0, τn]. As τn → ∞ for n → ∞, this allows us to conclude the global
uniqueness of X ∈ S 0

dN .

Next, we show the existence of solutions. Let M ∈ N∗ and 0 = T0 < T1 < · · · < TM = τn with
Ti = iτn

M . It holds

α(
τn

M
) := sup

0<s−t< τn
M

(∫ s

t
LR dr

)p

+

(∫ s

t
`2

R dr
)p/2

−→ 0 as M → ∞.

We employ a fixed point argument for the mapping Γ : S p
dN[0,T1]→ S p

dN[0,T1] given by

Γ(U)t = ξ +

∫ t

0
b(s,U)ds +

∫ t

0
σ(s,Us)dBs,

where we need no stopping times due to t < τn on [0,T1]. Indeed, the mapping Γ is well-defined since
for all ϕ ∈ C(R+,R

dN)
|b(t, ϕ)| ≤ LR‖ϕ‖t, and |σ(t, ϕ)| ≤ `R‖ϕ‖t,

is satisfied. Because of the Lipschitz continuity, both stochastic processes b(·,U) and σ(·,Us) are pro-
gressively measurable for all U ∈ S p

dN[0, τn] and b(·,U) ∈ Lp(Ω, L1(0, τn)) and σ(·,U) ∈ Λ
p
dN×dN(0, τn).

Therefore, ∫ •

0
b(r,U)dr ,

∫ •

0
σ(r,Ur)dBr ∈ S p

dN[0, τn].

We will show that the operator Γ is a strict contraction on the complete metric space S p
dN[0,T1] for suf-

ficiently large M (where S p
dN[0,T1] is equipped with the usual distance dp,M(U,V) = (E‖U−V‖p

T1
)1/p∨1).

Let U,V ∈ S p
dN[0,T1]. By the Burkholder-Davis-Gundy inequality we have

E‖Γ(U) − Γ(V)‖p
T1
≤ (1 ∨ 2p−1)E sup

s∈[T0,T1]
|

∫ s

T0

b(r,U) − b(r,V)dr|p
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+ (1 ∨ 2p−1)E sup
s∈[T0,T1]

|

∫ s

T0

σ(r,Ur)σ(r,Vr)dBr|
p

≤ (1 ∨ 2p−1)

E (∫ T1

T0

LR‖U − V‖rdr
)p

+ E

(∫ T1

T0

`2
R|Ur − Vr|dr

)p/2
≤ (1 ∨ 2p−1)α(

τn

M
)E(‖U − V‖p

T1
).

Let M0 ∈ N
∗ such that (1 ∨ 2p−1)α( τn

M0
) ≤

(
1
2

)1∨p
. Then Γ is a strict contraction in S p

dN[0,T1] and thus
(3.2) has a unique solution X ∈ S p

dN[0,T1]. We extend the solution to the interval [0,T2] by defining a
mapping, again, called Γ : S p

dN[0,T2]→ S p
dN[0,T2]:

Γ(U)t =

Xt, if t ∈ [0,T1],
XT1 +

∫ t

T1
b(s,U)ds +

∫ t

T1
σ(s,Us)ds, if t ∈ (T1,T2].

We repeat the argument M0 times to be valid the whole interval [0, τn]. Since τn → ∞ almost surely,
the uniqueness of the solution implies that

[Xn+1
t (ω) − Xn

t (ω)]1[0,τn(ω)](t)1[0,∞)(τn(ω)) = 0.

Hence, the process X ∈ S 0
d is defined by Xt(ω) = Xn

t (ω) if 0 ≤ t ≤ τn(ω) and τn(ω) > 0 is the unique
solution to the regularized problem (3.2). �

4. Numerical results

The numerical simulations are based on the direct simulation of system (2.5) using the Euler-
Maruyama scheme, in which we do not approximate the Heaviside function H. Note that the smoothing
of H was only needed for analytic considerations. In practise, we want only one of the drift terms to
effect the particles dynamics, which is why we have not pursued this option any further. The final time
is set to T = 15, discretized into 3 × 104 time steps. All presented results are averaged over M = 5000
realizations. The standard deviation is set to σ = 0.5, while the number of agents depends on the
dimension of the function space. In particular, we set the number of agents to 3, 5 or 10 times the space
dimension. The initial positions of particles are drawn from a uniform distribution within a specific
domain for each function. The parameters α and β to compute the global and personal best are set to

α = 10 and β = 10.

A realization is successful if the average mean is close to the function minimum fmin, in particular

| f (v f (T )) − f (xmin)| < 0.1.

We compare the performance of the CBO scheme with µ = 0, PB and wPB for the following benchmark
problems:

1. Alpine [26]: This non-convex differentiable function has a global minimum at xmin = (0, . . . , 0)

f (x) =

d∑
i=1

|xi sin(xi) + 0.1xi|. (4.1)
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2. Ackley [27]: This function is continuous, non-differentiable and non-convex and has its global
minimum at xmin = (0, . . . , 0).

f (x) = −20 exp(0.2

√
1
d
|x|2) − exp(

1
d

d∑
i=1

cos(2πxi)) + 20 + exp(1). (4.2)

3. Rastrigin [28]: The Rastrigin function is continuous, differentiable and convex, has lots of local
minima and a global minimum at xmin = (0, . . . 0).

f (x) = 10d +

d∑
i=1

(x2
i − 10 cos(2πxi)). (4.3)

4. Xinsheyang2: [26] This function is continuous but not differentiable and non-convex with a
global minimum at xmin = (0, . . . 0).

f (x) =

d∑
i=1

|xi| exp(−
d∑

i=1

sin(x2
i )). (4.4)

The choice of these functions is based on the different characteristics they have, see Figure 5 for plots in
2D. Table 3 shows the results for the Alpine function (4.1) and the Ackley function (4.2). We observe
that the success rate increases with the number of particles, and decreases for higher space dimension.
Weighted personal best and personal best give comparable results, which is not surprising since wPB
approximates PB for large values of β. A similar behavior can be seen in the case of the Rastrigin
function (4.3) and the Xinsheyang function (4.4) in Table 4.

Table 3. Success rates of consensus based optimization (CBO), personal best (PB) and
weighted personal best (wPB) scheme for Alpine (4.1) and Ackley (4.2) in space dimension
d for different # of particles.

d # par. CBO PB wPB
1 3 0.8372 0.7184 0.8456
1 5 0.9626 0.8424 0.968
1 10 0.9986 0.9292 0.999
3 9 0.4868 0.4904 0.485
3 15 0.6294 0.6754 0.6458
3 30 0.847 0.8858 0.8404
5 15 0.3246 0.3266 0.3194
5 25 0.4206 0.4352 0.4226
5 50 0.5748 0.6092 0.5778

d # par. CBO PB wPB
1 3 0.8138 0.8164 0.8144
1 5 0.9598 0.9602 0.9598
1 10 0.9986 0.999 0.9986
3 9 0.902 0.917 0.9008
3 15 0.9908 0.9934 0.99
3 30 1 1 1
5 15 0.9886 0.9928 0.9908
5 25 0.9996 1 0.9998
5 50 1 1 1

We conclude by investigating a 2D version of the toy problem considered in Section 2.3:

f (x1, x2) = (x2
1 − 1)2 + 0.01x1 + 0.5 + x2

2.

This function has a global minimum at xmin = (−1.00125, 0) and a local minimum at (0.998748, 0).
We wish to explore the dynamics of this 2D version for different number of particles. In doing so we
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Figure 5. 2D plots of the benchmark functions.

Table 4. Success rates of consensus based optimization (CBO), personal best (PB) and
weighted personal best (wPB) scheme for Rastrigin (4.3) and Xinsheyang2 (4.4) in space
dimension d for different # of particles.

d # par. CBO PB wPB
1 3 0.7924 0.7992 0.8006
1 5 0.9528 0.953 0.9522
1 10 0.9984 0.999 0.9988
3 9 0.4634 0.4726 0.4624
3 15 0.6844 0.7112 0.6914
3 30 0.9138 0.9278 0.9204
5 15 0.5012 0.4944 0.5
5 25 0.7074 0.7296 0.7144
5 50 0.908 0.9172 0.9106

d # par. CBO PB wPB
1 3 0.8732 0.8914 0.8762
1 5 0.9786 0.9892 0.9802
1 10 0.9996 1 0.9998
3 9 0.8538 0.8634 0.8548
3 15 0.9268 0.9412 0.9298
3 30 0.9766 0.984 0.9792
5 15 0.481 0.45 0.4742
5 25 0.4996 0.4724 0.498
5 50 0.5318 0.4918 0.5216
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consider 4, 8 or 16 particles and start the particle schemes with 2, 4 and 8 placed in each of the two
wells with a random perturbation. Furthermore we set α = 10 and β = 20. Table 5 shows the results
as the number of particles increases. We observe that CBO and (w)PB perform equally well for large
numbers of particles, and that (w)PB outperform CBO for few particles. This could be explained by the
fact that the probability of all particles deviating from the global minimum decreases as their number
increases.

Table 5. Success rates of consensus based optimization (CBO), personal best (PB) and
weighted personal best (wPB) scheme for the 2D toy problem in space dimension 2 for
different # of particles.

d # par. CBO PB wPB
2 4 0.6572 0.8212 0.7596
2 8 0.7168 0.78 0.7684
2 16 0.7768 0.7684 0.7736

5. Conclusion

In this paper we introduced a consensus based global optimization scheme, which includes the
personal best information of each particle. The proposed generalization is motivated by the original
works on particle swarm algorithms, in which particles adjust their position as a linear combination of
moving towards the current global best and their personal best value.

We discussed how information about the personal best can be included in consensus based
optimization schemes, leading to a system of functional stochastic differential equations. A well-
posedness result for the respective regularized non-Markovian SDEs was presented. New features of
the algorithm with personal best were illustrated and compared in computational experiments. The
numerical results indicate that information about the personal best leads to higher success rates in
the case of few particles and that the corresponding weighted means are better approximations of the
global function minima.
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Appendix

Proof. [Theorem 1] In the following we denote in abuse of notation by v f [X] the vector (v f , . . . , v f ) ∈
RdN . We rewrite (2.5) with λ(Xi(t), v f , pi

f ) ≡ λ, µ(Xi(t), v f , pi
f ) ≡ 0 as

dX(t) = −λ(X(t) − v f [X(t)])dt +
√

2σdiag(X(t) − v f [X(t)])dBt

with diag(X(t) − v f [X(t)]) ∈ RdN×dN being the diagonal matrix with dk = diag(Xk(t) − v f ) ∈ Rd×d for
k = 1, . . . ,N and dBt a dN-dimensional Brownian motion. The argument follows the lines of the well-
posedness in [7]. In fact, let M[X(t)] = diag(X(t) − v f [X(t)]) and n ∈ N arbitrary. We have to check
that there exists a constant Cn such that

− 2λX(t) · (X(t) − v f [X(t)]) + 2σ2trace(M[X(t)]M[X(t)]T ) ≤ Cn|X(t)|2, (5.1)

for every |X(t)| ≤ n. Note that f (X(t)) is bounded for |X(t)| ≤ n due to its local Lipschitz continuity.
Hence, the estimate for the first term on the left-hand side is identical to the one in [7]. Indeed, we
have

−2λX(t) · (X(t) − v f [X(t)]) ≤ 2λ
√

N|X(t)|2.

For the component-wise drift we obtain

2σ2trace
(
M[X(t)]M[X(t)]T

)
= 2σ2

N∑
j=1

d∑
k=1

[(X j(t) − v f )k]2 ≤ 4σ2(1 + N)|X(t)|2.

Combining the two preceding estimates we obtain Eq (5.1). Now, employing [29, Ch 5.3,Thm 3.2]
yields the desired result. �

[Lemma 1] We start by showing continuity. For p f [ϕ] we need to check continuity as t → 0. In
fact, l’Hospital’s rule yields

lim
t→0

∫ t

0
ϕi(s)e−β f (ϕi(s))ds∫ t

0
e−β f (ϕi(s))ds

= lim
t→0

ϕi(t)e−β f (ϕi(t))

e−β f (ϕi(t))
= lim

t→0
ϕi(t) = ϕi

0.

This directly implies the continuity of the vector p f [ϕ]. Moreover, it is easy to see that

|v f [ϕ(t)]|2 =

∣∣∣∣∣∣
∑N

i=1 ϕ
i(t)e−α f (ϕi(t))∑N

i=1 e−α f (ϕi(t))

∣∣∣∣∣∣
2

≤ |ϕ(t)|2,

|p f [ϕ](t)|2 =

N∑
i=1

|pi
f [ϕ](t)|2 =

N∑
i=1

∣∣∣∣∣∣∣
∫ t

0
ϕi(s)e−β f (ϕi(s))ds∫ t

0
e−β f (ϕi(s))ds

∣∣∣∣∣∣∣
2

≤ ‖ϕ‖2t .

We are left to show the local Lipschitz continuity. Therefore, we estimate

∣∣∣pi
f [ϕ](t) − pi

f [ϕ̂](t)
∣∣∣ ≤ ∣∣∣∣∣∣∣

∫ t

0
(ϕi(s) − ϕ̂i(s))e−β f (ϕi(s))ds∫ t

0
e−β f (ϕi(s))ds

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
∫ t

0
ϕ̂i(s)

(
e−β f (ϕi(s)) − e−β f (ϕ̂i(s))

)
ds∫ t

0
e−β f (ϕi(s))ds

∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣
∫ t

0
ϕ̂i(s)e−β f (ϕ̂i(s))ds

(∫ t

0
ϕ̂i(s)e−β f (ϕ̂i(s))ds −

∫ t

0
ϕi(s)e−β f (ϕi(s))ds

)
∫ t

0
e−β f (ϕi(s))ds

∫ t

0
e−β f (ϕ̂i(s))ds

∣∣∣∣∣∣∣∣
=: I1 + I2 + I3,

to obtain

I1 ≤ ‖ϕ
i − ϕ̂i‖t, I2 ≤ βeβ( f− f )L f n ‖ϕi − ϕ̂i‖t, and I3 ≤ βeβ( f− f )(1 + L f n) ‖ϕ̂i‖t ‖ϕ̂

i − ϕi‖t,

with L f being the global Lipschitz constant of f on Bn = {x ∈ Rd : |x| ≤ n} and f , f are the minimal
and maximal value of f on Bn, respectively. Altogether, this yields the estimate∣∣∣pi

f [ϕ](t) − pi
f [ϕ̂](t)

∣∣∣ ≤ (
1 + (1 + 2L f )βneβ( f− f )

)
‖ϕ̂i − ϕi‖t.

For the vectors p f (t) = (pi
f [ϕ](t))i=1,...,N and p̂ f (t) = ( p̂i

f [ϕ](t))i=1,...,N this implies

|p f (t) − p̂ f (t)|2 =

N∑
i=1

∣∣∣pi
f [ϕ](t) − pi

f [ϕ̂](t)
∣∣∣2 ≤ (

1 + (1 + 2L f )βneβ( f− f )
)
‖ϕ − ϕ̂‖2t .

Similarly, we have

∣∣∣v f [ϕ(t)] − v f [ϕ̂(t)]
∣∣∣ ≤ ∣∣∣∣∣∣

∑N
i=1

(
ϕi(t) − ϕ̂i(t)

)
e−α f (ϕi(t))∑N

i=1 e−α f (ϕi(t))

∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
∑N

i=1 ϕ̂
i(t)

(
e−α f (ϕi(t)) − e−α f (ϕ̂i(t))

)
∑N

i=1 e−α f (ϕi(t))

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑N

i=1 ϕ̂
i(t)e−α f (ϕ̂i(t))

(∑N
i=1 ϕ̂

i(t)e−α f (ϕ̂i(t)) −
∑N

i=1 ϕ
i(t)e−α f (ϕi(t))

)(∑N
i=1 e−α f (ϕi(t))

) (∑N
i=1 e−α f (ϕ̂i(t))

)
∣∣∣∣∣∣∣∣

=: J1 + J2 + J3,

which satisfy

J1 ≤ |ϕ(t) − ϕ̂(t)|1, J2 ≤
αnL f e−α f

N
|ϕ(t) − ϕ̂(t)|1, and J3 ≤ neα( f− f )

(
1
N

+ αnL f

)
|ϕ̂(t) − ϕ(t)|1.

Thus, we get

∣∣∣v f [ϕ(t)] − v f [ϕ̂(t)]
∣∣∣ ≤ 1 +

αnL f e−α f

N
+ neα( f− f )

(
1
N

+ αnL f

) |ϕ̂(t) − ϕ(t)|1.

Taking squares leads to the estimate

∣∣∣v f [ϕ(t)] − v f [ϕ̂(t)]
∣∣∣2 ≤ 1 +

αnL f e−α f

N
+ neα( f− f )

(
1
N

+ αnL f

)2

2N−1|ϕ̂(t) − ϕ(t)|2.
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