Citation: Fan Xia, Yanni Xiao, Peiyu Liu, Robert A. Cheke, Xuanya Li. Differences in how interventions coupled with effective reproduction numbers account for marked variations in COVID-19 epidemic outcomes[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5085-5098. doi: 10.3934/mbe.2020274
[1] | The Center for Systems Science and Engineering (CSSE) at JHU. Available from: https: //systems.jhu.edu/ (accessed on 15 April 2020). |
[2] | National Health Commission of the People's Republic of China (in Chinese), 2020. Available from: http://www.nhc.gov.cn/xcs/yqtb/202003/097e6e91ecb6464ea69fd1a324c9b 1b4.shtml. |
[3] | D. Ni, A comparative study of the two strategies for COVID-19, 2020. Available from: http: //cn.chinadaily.com.cn/a/202003/19/WS5e731e02a3107bb6b57a7913.html. |
[4] | Korea Centers for Disease Control and Prevention, 2020. Available from: https://www.cdc.go.kr/board/board.es?mid=a30402000000&bid=0030. |
[5] | Ministry of Health, Labour and Welfare, 2020. Available from: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00086.html. |
[6] | Spanish Ministry of Health, 2020. Available from: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Paginas/ InformesCOVID-19.aspx. |
[7] | World Health Organization, 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. |
[8] | B. Xu, B. Gutierrez, S. Mekaru, K. Sewalk, L. Goodwin, A. Loskill, et al., Epidemiological data from the COVID-19 outbreak, real-time case information, Sci. Data, 7 (2020), 1-6. |
[9] | E. Goldstein, J. Dushoff, J. Ma, J. B. Plotkin, D. D. Earn, M. Lipsitch, Reconstructing influenza incidence by deconvolution of daily mortality time series, Proc. Natl. Acad. Sci., 106 (2009), 21825-21829. |
[10] | Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med., 382 (2020), 1199-1207. |
[11] | H. Nishiura, M. G. Roberts, Estimation of the reproduction number for 2009 pandemic influenza A(H1N1) in the presence of imported cases, Euro Surveill., 15 (2010), 19622. |
[12] | A. Cori, N. M. Ferguson, C. Fraser, S. Cauchemez, A new framework and software to estimate time-varying reproduction numbers during epidemics, Am. J. Epidemiol., 178 (2013), 1505-1512. |
[13] | H. Nishiura, N. M. Linton, A. R. Akhmetzhanov, Serial interval of novel coronavirus (COVID-19) infections, Int. J. Infect. Dis., 93 (2020), 284-286. |
[14] | T. Gnyani, C. Kremer, D. Chen, A. Torneri, C. Faes, J. Wallinga, et al., Estimating the generation interval for COVID-19 based on symptom onset data, medRxiv, (2020). doi: https://doi.org/10.1101/2020.03.05.20031815. |
[15] | C. You, Y. Deng, W. Hu, J. Sun, Q. Lin, F. Zhou, et al., Estimation of the time-varying reproduction number of COVID-19 outbreak in China, Int. J. Hyg. Environ. Health, 228 (2020), 113555. |
[16] | S. Zhao, Estimating the time interval between transmission generations when negative values occur in the serial interval data: using COVID-19 as an example, Math. Biosci. Eng., 17 (2020), 3512-3519. |
[17] | K. Wang, S. Zhao, H. Li, Y. Song, L. Wang, M. H. Wang, et al., Real-time estimation of the reproduction number of the novel coronavirus disease (COVID-19) in China in 2020 based on incidence data, Ann. Transl. Med., 8 (2020), 689. |
[18] | S. Flaxman, S. Mishra, A. Gandy, H. Unwin, H. Coupland, T. A. Mellan, et al., Report 13: Estimating the number of infections and the impact of nonpharmaceutical interventions on COVID-19 in 11 European countries. (2020). doi: https://doi.org/10.25561/77731. |
[19] | Reuters. Available from: https://graphics.reuters.com/CHINA-HEALTH-SOUTHKOREA-CLUSTERS/0100B5G33SB/index.html (accessed on 15 April 2020). |
[20] | S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis., 92 (2020), 214-217. |
[21] | S. Sanche, Y. T. Lin, C. Xu, E. Romero-Severson, N. Hengartner, R. Ke, High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2, Emerg. Infect. Dis., 26 (2020), 1470-1477. |
[22] | B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462. |
[23] | Y. Xiao, B. Tang, J. Wu, R. A. Cheke, S. Tang, Linking key intervention timing to rapid decline of the COVID-19 effective reproductive number to quantify lessons from mainland China, Int. J. Infect. Dis., 97 (2020), 296-298. |
[24] | E. Shim, A. Tariq, W. Choi, Y. Lee, G. Chowell, Transmission potential and severity of COVID-19 in South Korea, Int. J. Infect. Dis., 93 (2020), 339-344. |
[25] | J. Hwang, H. Park, J. Jung, S. Kim, N. Kim, Basic and effective reproduction numbers of COVID-19 cases in South Korea excluding Sincheonji cases, medRxiv, (2020). |
[26] | S. Kim, Y. D. Jeong, J. H. Byun, G. Cho, A. Park, J. H. Jung, et al., Evaluation of COVID-19 epidemic outbreak caused by temporal contact-increase in South Korea, Int. J. Infect. Dis., 96 (2020), 454-457. |
[27] | B. Tang, F. Xia, S. Tang, N. L. Bragazzi, Q. Li, X. Sun, et al., The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemics in the final phase of the current outbreak in China, Int. J. Infect. Dis., 95 (2020), 288-293. |
[28] | H. Legido-Quigley, N. Asgari, Y. Teo, G. M. Leung, H. Oshitani, K. Fukuda, et al., Are high-performing health systems resilient against the COVID-19 epidemic?, The Lancet, 395 (2020), 848-850. |