Processing math: 100%
Research article Special Issues

Modified dragonfly algorithm based multilevel thresholding method for color images segmentation

  • Received: 01 April 2019 Accepted: 30 May 2019 Published: 15 July 2019
  • Accurate image segmentation is the preprocessing step of image processing. Multi-level threshold segmentation has important research value in image segmentation, which can effectively solve the problem of region analysis of complex images, but the computational complexity increases accordingly. In order to overcome this problem, an modified Dragonfly algorithm (MDA) is proposed to determine the optimal combination of different levels of thresholds for color images. Chaotic mapping and elite opposition-based learning strategies (EOBL) are used to improve the randomness of the initial population. The hybrid algorithm of Dragonfly Algorithms (DA) and Differential Evolution (DE) is used to balance the two basic stages of optimization: exploration and development. Kapur entropy, minimum cross-entropy and Otsu method are used as fitness functions of image segmentation. The performance of 10 test color images is evaluated and compared with 9 different meta-heuristic algorithms. The results show that the color image segmentation method based on MDA is more effective and accurate than other competitors in average fitness value (AF), standard deviation (STD), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and feature similarity index (FSIM). Friedman test and Wilcoxon's rank sum test are also performed to assess the significant difference between the algorithms.

    Citation: Xiaoxu Peng, Heming Jia, Chunbo Lang. Modified dragonfly algorithm based multilevel thresholding method for color images segmentation[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6467-6511. doi: 10.3934/mbe.2019324

    Related Papers:

    [1] Shikai Wang, Kangjian Sun, Wanying Zhang, Heming Jia . Multilevel thresholding using a modified ant lion optimizer with opposition-based learning for color image segmentation. Mathematical Biosciences and Engineering, 2021, 18(4): 3092-3143. doi: 10.3934/mbe.2021155
    [2] Shikai Wang, Heming Jia, Xiaoxu Peng . Modified salp swarm algorithm based multilevel thresholding for color image segmentation. Mathematical Biosciences and Engineering, 2020, 17(1): 700-724. doi: 10.3934/mbe.2020036
    [3] Wenqi Ji, Xiaoguang He . Kapur's entropy for multilevel thresholding image segmentation based on moth-flame optimization. Mathematical Biosciences and Engineering, 2021, 18(6): 7110-7142. doi: 10.3934/mbe.2021353
    [4] Nilkanth Mukund Deshpande, Shilpa Gite, Biswajeet Pradhan, Ketan Kotecha, Abdullah Alamri . Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia. Mathematical Biosciences and Engineering, 2022, 19(2): 1970-2001. doi: 10.3934/mbe.2022093
    [5] Shenghan Li, Linlin Ye . Multi-level thresholding image segmentation for rubber tree secant using improved Otsu's method and snake optimizer. Mathematical Biosciences and Engineering, 2023, 20(6): 9645-9669. doi: 10.3934/mbe.2023423
    [6] Hong Qi, Guanglei Zhang, Heming Jia, Zhikai Xing . A hybrid equilibrium optimizer algorithm for multi-level image segmentation. Mathematical Biosciences and Engineering, 2021, 18(4): 4648-4678. doi: 10.3934/mbe.2021236
    [7] Akansha Singh, Krishna Kant Singh, Michal Greguš, Ivan Izonin . CNGOD-An improved convolution neural network with grasshopper optimization for detection of COVID-19. Mathematical Biosciences and Engineering, 2022, 19(12): 12518-12531. doi: 10.3934/mbe.2022584
    [8] Xiaoye Zhao, Yinlan Gong, Lihua Xu, Ling Xia, Jucheng Zhang, Dingchang Zheng, Zongbi Yao, Xinjie Zhang, Haicheng Wei, Jun Jiang, Haipeng Liu, Jiandong Mao . Entropy-based reliable non-invasive detection of coronary microvascular dysfunction using machine learning algorithm. Mathematical Biosciences and Engineering, 2023, 20(7): 13061-13085. doi: 10.3934/mbe.2023582
    [9] Xueyuan Li, MiaoYu, Xiaoling Zhou, Yi Li, Hong Chen, Liping Wang, Jianghui Dong . A method of ultrasound diagnosis for unilateral peripheral entrapment neuropathy based on multilevel side-to-side image contrast. Mathematical Biosciences and Engineering, 2019, 16(4): 2250-2265. doi: 10.3934/mbe.2019111
    [10] Mengya Zhang, Qing Wu, Zezhou Xu . Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem. Mathematical Biosciences and Engineering, 2019, 16(5): 4692-4707. doi: 10.3934/mbe.2019235
  • Accurate image segmentation is the preprocessing step of image processing. Multi-level threshold segmentation has important research value in image segmentation, which can effectively solve the problem of region analysis of complex images, but the computational complexity increases accordingly. In order to overcome this problem, an modified Dragonfly algorithm (MDA) is proposed to determine the optimal combination of different levels of thresholds for color images. Chaotic mapping and elite opposition-based learning strategies (EOBL) are used to improve the randomness of the initial population. The hybrid algorithm of Dragonfly Algorithms (DA) and Differential Evolution (DE) is used to balance the two basic stages of optimization: exploration and development. Kapur entropy, minimum cross-entropy and Otsu method are used as fitness functions of image segmentation. The performance of 10 test color images is evaluated and compared with 9 different meta-heuristic algorithms. The results show that the color image segmentation method based on MDA is more effective and accurate than other competitors in average fitness value (AF), standard deviation (STD), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and feature similarity index (FSIM). Friedman test and Wilcoxon's rank sum test are also performed to assess the significant difference between the algorithms.


    Image segmentation is a fundamental preprocessing stage in computer vision, and the main goal of which is to partition a given image into several meaningful regions with respect to position, texture, gray level value, etc [1,2]. In the recent decades, many scholars and researchers have done a great deal of work in this field and a number of segmentation techniques have been proposed. Basically, the currently used segmentation techniques can be summarized as three main categories: edge - based method, region-based method, and threshold-based method [3,4,5,6]. Among the available segmentation methods, thresholding technique holds the prime position and becomes popular due to the strong robustness, fast computation speed and high accuracy.

    The thresholding method can be broadly classified into bi-level and multilevel depending on the number of thresholds required to be determined. Bi-level thresholding method splits the image into two classes: foreground and background, while the multilevel thresholding method can partition the image into several similar parts based on intensity. Over the years, the multilevel thresholding technique has been used extensively and much work has been done on it. Among the various multilevel thresholding techniques, Kapur's entropy, Minimum cross entropy (MCE), and Otsu method (between-class variance) are the most popular ones, which perform much better than other existing methods [7,8,9]. Kapur's entropy method maximizes the histogram entropy of segmented classes to obtain the optimal threshold values. MCE method minimizes the cross entropy between the original classes and the segmented classes. Otsu method maximizes the between class variance of segmented classes and it has been widely used to solve image segmentation problems. When the number of thresholds is small, the performance of these segmentation techniques is satisfied. However, when the number of thresholds increases, the computational complexity will result in exponential growth since they search the solution space exhaustively to obtain the optimal thresholds.

    Therefore, to avoid above weakness, a number of swarm intelligence (SI) techniques have been used extensively and combined with various thresholding methods, such as particle swarm optimization (PSO), genetic algorithm (GA), harmony search optimization (HSO), bat algorithm (BA), ant colony optimization (ACO), etc [10]. For example, Abdul et al. proposed a technique based on grey wolf optimization (GWO) and its combination with Kapur's entropy and Otsu method for image segmentation [11]. Also, Cuevas et al developed and evaluated a multilevel image thresholding method based on DE in 2010 [12]. Genyun Sun et al. utilized a novel hybrid algorithm of gravitational search algorithm (GSA) with GA for multi-level thresholding [13]. The experimental results indicate that GSA-GA has superior or comparative segmentation performance. In favor of satellite image segmentation, Bhandari et al. presented two multi-level thresholding techniques based on cuckoo search (CS) algorithm and wind driven optimization (WDO) using Kapur's entropy [14]. Moreover, Madhubanti and Amitava proposed a bacterial foraging optimization (BFO) based multilevel thresholding technique for magnetic resonance brain image segmentation [15]. They employed BFO to maximize the Kapur's function values. Furthermore, there are many other swarm intelligence algorithms and their modified algorithms, that were utilized for multilevel thresholding including: social spiders optimization (SSO) [16], hybrid differential evolution algorithm [17], modified bacterial foraging (MBF) [18], Patch-Levy-based bees algorithm (PLBA) [19], teaching-learning-based optimization (TLBO) [20], krill herd optimization (KHO) [21] and Lévy flight guided firefly algorithm (LFA) [22]. However, most of these techniques may get stuck in local optimal and the stability of them becomes poor when the number of thresholds is high due to several factors [23]. For instance, generating an inappropriate initial population will affect the convergence performance of proposed algorithm. Besides, the accuracy of solution may be influenced by the transformation of exploration and exploration phases.

    In order to overcome the drawbacks above and obtain an efficient method for color image segmentation, MDA based color image segmentation using Kapur's entropy, MCE method and Otsu method is proposed in this paper. The initial and the updating phases of standard DA have been improved through the techniques as follows [24]. In the initial phase of standard DA, the chaotic maps and the EOBL strategy are adopted to enhance the randomness of initial population. Moreover, a hybrid algorithm of dragonfly algorithm and differential evolution is utilized to balance the exploration and exploitation of algorithm for updating phase. In this paper, the performance of the proposed method is validated on ten test color images and the experimental results indicate the appropriate performance of MDA based method over other multilevel thresholding methods. Additionally, several performance evaluation measures such as arithmetic mean (AM), standard deviation (STD), peak signal to noise ratio (PSNR), structural similarity index (SSIM) and feature similarity index (FSIM) are included for quantitative analysis. Besides, a non-parametric Wilcoxon's rank sum test has also been conducted in the paper for statistical analysis [25].

    Detailed discussion in regard to the theory and realization of the MDA based method is given in the following sections. In Section 2, the general description of multilevel thresholding methods is introduced. The standard dragonfly algorithm is reviewed in Section 3. In Section 4, the proposed MDA based multilevel thresholding method is introduced in details. The environmental experiment of the proposed method is described in Section 5 and a comprehensive set of experimental results and comparison of other existing methods are provided in Section 6. Finally, the relevant conclusions and the future research directions are drawn in Section 7.

    The image threshold method can be summarized as two categories: bi-level thresholding method and multilevel thresholding method. Bi-level thresholding method involves one threshold value which partitions the image into two classes: foreground and background, however if the image is quite complex and contains various objects, the bi-level thresholding method is not very effective [11]. Therefore, multilevel thresholding method is used extensively for image segmentation [26,27,28,29,30,31]. A brief formulation of three techniques is given in the following subsections. In addition, the RGB images has three basic color components of red, green and blue, so these thresholding techniques are executed three times to determine the optimal threshold values of each color component [32].

    Kapur's method is also an unsupervised automatic thresholding technique, which selects the optimum thresholds based on the entropy of segmented classes [8]. Assuming that [th1,th2,...,thn] represents the threshold values which divided the image into various classes. Then the object function of Kapur's method can be defined as:

    H(th1,th2,...,thn)=H0+H1+...+Hn (1)

    Where

    H0=th11j=0pjω0lnpjω0,ω0=th11j=0pj (2)
    H1=th21j=th1pjω1lnpjω1,ω1=th21j=th1pj (3)
    Hn=L1j=thnpjωnlnpjωn,ωn=L1j=thnpj (4)

    H0, H1, …, Hn denote the entropies of distinct classes. ω0, ω1, …, ωn are the probability of each class. In order to obtain the optimal threshold values, the fitness function in Eq. (1) is maximized.

    fKapur(th1,th2,...,thn)=argmax{H(th1,th2,...,thn)} (5)

    Minimum cross entropy (MCE) method finds the optimal threshold values based on minimizing the cross entropy between the original image and the segmented image [9]. MCE method can be defined as minimizing the following objective function:

    M(th1,th2,...,thn)=MG+M0+M1+...+Mn (6)

    where

    MG=L1j=0jpjlog(j) (7)
    M0=th11j=0jpjlog(μ0),μ0=th11j=0jpjω0,ω0=th11j=0pj (8)
    M1=th21j=th1jpjlog(μ1),μ1=th21j=th1jpjω1,ω1=th21j=th1pj (9)
    Mn=L1j=thnjpjlog(μn),μn=L1j=thnjpjωn,ωn=L1j=thnpj (10)

    M0, M1, …, Mn represent the cross entropies of distinct classes. ω0, ω1, …, ωn are the probability of each class. MG is a constant. Thus, the objective function in Eq. (6) can be rewritten as:

    η(th1,th2,...,thn)=M0+M1+...+Mn (11)
    η(th1,th2,...,thn)=th11j=0jpjlog(th11j=0jpjth11j=0pj)th21j=th1jpjlog(th21j=th1jpjth21j=th1pj)...L1j=thnjpjlog(L1j=thnjpjL1j=thnpj) (12)

    Let m0=b1j=apj and m1=b1j=ajpj, then

    η(th1,th2,...,thn)=m1(0,th11)log(m1(0,th11)m0(0,th11))m1(th1,th21)log(m1(th1,th21)m0(th1,th21))...m1(thn,L1)log(m1(thn,L1)m0(thn,L1)) (13)

    The MCE method search the optimal threshold values by minimizing the objective function in Eq. (13).

    fMCE(th1,th2,...,thn)=argmin{η(th1,th2,...,thn)} (14)

    Otsu method (between-class variance) is a non-parametric thresholding technique, which selects the optimum thresholds based on the between-class variance of segmented classes [7]. Let L represents the number of gray levels in a given image and [th1,th2,...,thn] denotes the threshold values which are selected to partition the image into various classes. Then the objective function of Otsu method can be defined as:

    σ2B(th1,th2,...,thn)=σ20+σ21+...+σ2n (15)

    Where

    σ20=ω0(μ0μT)2,ω0=th11j=0pj,μ0=th11j=0jpjω0 (16)
    σ21=ω1(μ1μT)2,ω1=th21j=th1pj,μ1=th21j=th1jpjω1 (17)
    σ2n=ωn(μnμT)2,ωn=L1j=thnpj,μn=L1j=thnjpjωn (18)

    μT denotes the mean intensity for whole image, μT=L1j=0jpj=ω0μ0+ω1μ1+...+ωnμn

    And Eq. (15) is maximized to obtain the optimal threshold values.

    fotsu(th1,th2,...,thn)=argmax{σ2B(th1,th2,...,thn)} (19)

    As we know, the computational complexity of these three thresholding techniques above will result in exponential growth as the number of thresholds increase. Under such circumstance, Kapur's entropy, MCE and Otsu method are not very effective for multilevel thresholding. Therefore, MDA is proposed to improve the accuracy and computation speed of thresholding techniques. The ultimate goal of proposed method is to determine the optimal threshold values by optimizing (either maximizing or minimizing) the objective function given in Eq. (1), Eq. (13), and Eq. (15).

    Dragonfly algorithm is inspired by the static and dynamic behaviors of dragonflies in nature. It is firstly proposed by Mirjalili to solve the problem of submarine propeller optimization [24]. In the static swarm, dragonflies create sub-swarms and fly over small areas to hunt the preys. This static behavior represents the exploitation phase of optimization. In the dynamic swarm, however, a mass of dragonflies make the group for migrating in one direction, which represents the exploration phase of optimization. Moreover, five factors are designed to simulate the behaviors of dragonflies, namely separation (S), alignment (A), cohesion (C), attraction towards food (F), and distraction outwards enemy (E). The mathematical model of these factors is given as follows:

    The separation of ith dragonfly individual denoted by Si is given by:

    Si=ndj=1xixj (20)

    where nd denotes the number of neighbors. xi and xj represent the position of current dragonfly and its neighbor respectively. It's worth noting that if the distance between xi and xj is less than the preset value, then xj is a neighbor of xi. And the preset value will increase with the number of iterations.

    The alignment of ith dragonfly individual denoted by Si is determined as follows:

    Ai=ndj=1vjnd (21)

    where vj is the jth neighboring dragonfly's velocity. Ai shows the velocity consistency of the swarm.

    The cohesion of ith dragonfly individual denoted by Ci is computed by:

    Ci=ndj=1xjndxi (22)

    where xi is the position of ith dragonfly individual. xj is the jth neighboring dragonfly individual's position. nd denotes the number of neighbors.

    The food source provides an attraction for ith dragonfly individual denoted by Fi and it can be defined as follows:

    Fi=xfoodxi (23)

    where xi shows the position of ith dragonfly individual. xfood represents the position of food source.

    The distraction outwards an enemy of ith dragonfly individual denoted by Ei is evaluated by:

    Ei=xenemy+xi (24)

    where xi is the position of ith dragonfly individual. xenemy shows the position of the enemy. It is worth mentioning that the xfood and xenemy represent the best and worst position respectively which the swarm of dragonflies has searched for so far.

    The position vector of ith dragonfly individual during the interval [t,t+1] can be calculated as follows:

    xt+1i=xti+Δxt+1i (25)

    where

    Δxt+1i=(sSi+aAi+cCi+fFi+eEi)+ωΔxti (26)

    Δx indicates the direction of the movement of dragonfly individual. s, a, c, f, and e denote the weight for five factors namely separation, alignment, cohesion, food, and enemy respectively. ω represents the inertia weight. t shows the iteration counter.

    It is worthy of noting that if there is no neighbor individual, the current dragonfly will fly around the search space using a random walk (Levy's flight) to improve the performance of algorithm. Under such circumstance, the position of ith dragonfly individual is updated by the equation as follows:

    xt+1i=xti+Levy×xti (27)

    Where

    Levy=0.01×r1×σ|r2|1/β (28)
    σ=(Γ(1+β)×sin(πβ2)Γ(1+β2)×β×2(β12))1/β (29)
    Γ(x)=(x1)! (30)

    r1 and r2 are two random numbers in the range of [0,1]. β is a constant. Pseudo code of dragonfly algorithm based multilevel thresholding has been given in Figure 1.

    Figure 1.  Pseudo codes of dragonfly algorithm based multilevel thresholding.

    In this section, we give a detailed introduction of the MDA based method that will be used to obtain the optimal threshold values for image segmentation. The chaotic maps and the elite opposition-based learning (EOBL) strategy are utilized to improve the randomness of initial population. Then, a hybrid algorithm of DA and DE is used to balance the two essential phases of optimization, namely exploration and exploitation [33,34,35,36,37]. Besides, the flowchart of MDA for finding the optimal threshold values is shown in Figure 2.

    Figure 2.  Flowchart of the MDA based method.

    In this phase, the initial population is generated by an efficient method that combines the chaotic maps and the EOBL strategy [23]. A brief explanation of these two techniques is given in the subsections below.

    In the standard DA, the initialization of dragonflies is generated randomly. The chaotic maps can explore the search space more efficient than the existing random generators based on probabilities, on account of their special properties including ergodicity, unpredictability, and non-repetition. Therefore, the logistic map is adopted to generate the initial population in this paper with the purpose of improving the diversity of dragonflies. Mathematical definition of the logistic map is as follows:

    xn+1=μ×xn(1xn) (31)

    where μ is the growth rate parameter, μ[0,4]. xn represents the value obtained at nth step, xn[0,1].

    For a feasible solution, calculate the current solution and evaluate its opposite solution at the same time, then select the better solution as the next generation individual [34]. It is quite clear that this greedy selection method can guarantee the prominent acceleration in convergence as well as reducing the possibility of trapping into local optimal. The EOBL strategy can be summarized as follows:

    xj=k(daj+dbj)xj,j=1,2,...,Dim (32)
    daj=min(xj),dbj=max(xj) (33)

    where Dim is the number of dimensions. xj(aj,bj),aj and bj denote the lower bound and the upper bound of the given search space respectively. k is a generalized coefficient uniformly distributed in the interval of [0, 1]. daj and dbj are the dynamic lower bound and the dynamic upper bound of the jth dimension search space, and are calculated according to Eq. (33). By replacing the fixed bound with the dynamic bound, the opposite solution xj can be located in the gradually reduced search space, which promotes faster convergence of the algorithm.

    For a problem to be maximized, the opposite solution will be selected if f(xj)>f(xj); otherwise, continue with xj for further generation [38,39].

    In this phase, the solution is updated through a novel technique that combines the dragonfly algorithm and differential evolution algorithm. More details of the hybrid algorithm will be discussed in the subsection below.

    Differential evolution (DE) algorithm is a population-based stochastic optimization algorithm for solving optimization problems, which is introduced by Price and Storn [33,40]. Basically, the DE algorithm contains two significant parameters, namely mutation scaling factor denoted by SF and crossover probability denoted by CR. Same as the other meta-heuristic algorithms, several operators have been included in the DE algorithm such as mutation, crossover, and selection operators [40,41,42].

    The mutation operation of DE algorithm is defined as follows:

    mg+1i=xgr1+SF(xgr2xgr3) (34)

    where mg+1i represents the mutant individual in the (g+1)th generation. xgr1, xgr2, and xgr3 are different individuals from the population. In other words, r1, r2, and r3 cannot be equal. SF is a constant that indicates the mutation scaling factor.

    In the process of crossover, the trial individual cg+1i is selected from the current individual xgi or the mutant individual mg+1i on account of enhancing the diversity of population[43,44]. The crossover operation of DE algorithm is described as:

    cg+1i={mg+1iifrandCRxgiifrand>CR (35)

    where rand represents a random value which is in the range [0,1]. CR is a constant that shows the crossover probability.

    After the process of selection, the individual of next generation xg+1i is selected according to the comparison of fitness value between the trail individual cg+1i and the target individual xgi. For a problem to be minimized, the selection operation of DE algorithm can be summarized as follows:

    xg+1i={cg+1iiff(cg+1i)<f(xgi)xgiotherwise (36)

    where f denotes the fitness function value of a given problem.

    In order to improve the exploration and exploitation performance of the proposed algorithm, the hybrid algorithm between the DA and the DE is utilized. On the one hand, the DA algorithm has a satisfied capability of avoiding convergence to the local optimum, thus it is served as global search technique. On the other hand, the DE algorithm is adopted as local search technique, which can increase the precision of solutions.

    As we know, the fitness value of current solution indicates its quality. Therefore, we calculate the average fitness value of population in the iterative process to evaluate each particle. All fitness values are presented as absolute values to accommodate Kapur's entropy, MCE and Otsu, threshold techniques. If |fi|>|ˉf|, the DE algorithm will be used to update the solution xgi using Eq. (34) to Eq. (36). However, if |fi||ˉf|, then the current solution will be updated using Eq. (25) or Eq. (27).

    In order to verify the performance of proposed algorithm, ten color images from Berkley segmentation data set are used. The test images namely Bridge, Building, Cactus, Cow, Deer, Diver, Elephant, Horse, Kangaroo, Lake and their corresponding histograms for each of the color channels (Red, Green, and Blue) are shown in Figure 3. All test images aresize. Moreover, all the experimental series are carried out through simulations in MATLAB R2017a on a computer with the following configuration: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz and 8GB RAM with Microsoft Windows 10 system (64bit).

    Figure 3.  Original test images named 'Bridge', 'Building', 'Cactus', 'Cow', 'Deer, 'Diver, 'Elephant, 'Horse', 'Kangaroo' and 'Lake' respectively and the corresponding histograms for each of the color channels (Red, Green and Blue).

    Performance of the proposed algorithm is compared with nine other swarm algorithms that are used extensively. These algorithms are:

    1. Dragonfly Algorithm (DA): simulates the static and dynamic behaviors of dragonflies to find an optimal solution [24].

    2. Salp Swarm Algorithm (SSA): mimics the original behavior of salp chain for finding food. And this algorithm is easy to implement because of the only parameter [45].

    3. Sine Cosine Algorithm (SCA): the algorithm converges to the optimal solution depending on the oscillatory properties of sine and cosine functions [46,47].

    4. Ant Lion Optimization (ALO): emulates the hunting mechanism of antlions which can be divided into five main steps such as the random walk of ants, building traps, entrapment of ants in traps, catching preys, and re - building traps [48,49].

    5. Harmony Search Optimization (HSO): simulates the behavior of musicians for adjusting the tune of each instrument with their own memory and reaches a state of harmony eventually [50].

    6. Bat Algorithm (BA): Idealizes the characteristics of echolocation process of bats. Each bat adjusts the distance of movement by changing the pulse rate and the volume of sound [51,52].

    7. Particle Swarm Optimization (PSO): an intelligent algorithm inspired by the migration of birds. Each bird represents a potential solution to the given problem [53,54].

    8. Beta Differential Evolution (BDE): A new beta probability distribution has been used for altering of F and CR parameters that are represented as beta differential evolution [55].

    9. Elite Opposition-Flower Pollination Algorithm (EOFPA): Using a greedy strategy, individual with the best fitness value in the population is viewed as the elite individual Basic Flower Pollination Algorithm use Lévy flight in global search process. The probability of obtaining better solution in global search is improved and the search space is expanded [56].

    The parametric settings of each algorithm are presented in Table 1.

    Table 1.  Parameters of the algorithms.
    Algorithm Parameters Values
    MDA Number of dragonflies 30
    No. of iterations 500
    Mutation scaling factor SF 0.5
    Crossover probability CR 0.9
    Maximum velocity 25.5
    DA Number of dragonflies 30
    No. of iterations 500
    Maximum velocity 25.5
    controlling parameter c1 [0, 2]
    SSA Number of salps 30
    No. of iterations 500
    controlling parameter r1 [0, 2]
    SCA Population size 30
    No. of iterations 500
    ALO Number of antlions 30
    No. of iterations 500
    Pitch Adjustment Rate 0.3
    HSO Harmony Memory Considering Rate 0.95
    Tuning bandwidth BW 25.5
    Harmony memory size 30
    No. of iterations 500
    Loudness 0.25
    BA Pulse emission rate 0.5
    Maximum frequency 2
    Minimum frequency 0
    Factor updating loudness α 0.95
    Factor updating pulse emission rate γ 0.05
    Scaling factor 4
    Number of bats 30
    No. of iterations 500
    Maximum particle velocity 25.5
    PSO Maximum inertia weight 0.9
    Minimum inertia weight 0.4
    Learning factors c1 and c2 2
    Number of particles 30
    No. of iterations 500
    BED The array of scaling factor F [0, 1]
    The crossover rate CR [0, 1]
    No. of iterations 500
    Population size 30
    EOFPA No. of iterations 500
    The flowers/pollen gametes 30
    Switch probability [0, 1]

     | Show Table
    DownLoad: CSV

    The performance of each algorithm is assessed by the following measures, some of them are used to evaluate the fitness values, and the others are evaluated the quality of segmented images. For the former part, two indices namely arithmetic mean and standard deviation are used and their definitions are as follows:

    Arithmetic mean (AM): indicates the center value of sample data and it is defined as:

    AM=1nrnri=1fi (37)

    Standard deviation (STD): a value indicates the dispersion of sample data and it is mathematically represented as:

    STD=1nr1nri=1(fiAM)2 (38)

    where nr represents the total number of runs fi represents the fitness value at the ith run

    For the latter part, three indices namely PSNR, SSIM, and FSIM are used and their definitions are as follows:

    Peak signal to noise ratio (PSNR): an index which is used to evaluate the similarity of the processed image against the original image and it is defined as:

    PSNR=10log10(2552MSE) (39)

    MSE represents the mean squared error and is calculated as:

    MSE=1MNMi=1Nj=1[I(i,j)K(i,j)]2 (40)

    where I(i,j) and K(i,j) denote the gray level of the original image and the segmented image in the ith row and jth column respectively. M and N denote the number of rows and columns in the image matrix respectively

    Structural similarity index (SSIM): a measure of the similarity between the original image and the segmented image, which takes various factors such as brightness, contrast, and structural similarity into account and it is defined as [57]:

    Structural similarity index (SSIM): a measure of the similarity between the original image and the segmented image, which takes various factors such as brightness, contrast, and structural similarity into account and it is defined as [57]:

    SSIM(x,y)=(2μxμy+c1)(2σxy+c2)(μ2x+μ2y+c1)(σ2x+σ2y+c2) (41)

    where μx and μy denote the mean intensities of the original image and the segmented image respectively. σ2x and σ2y are the standard deviation of the original image and the segmented image respectively. σxy denotes the covariance between the original image and the segmented image c1 and c2 are constants.

    Feature similarity index (FSIM): another measure of the image quality through evaluating the feature similarity between the original image and the segmented image and it is defined as [58,59]:

    FSIM=xΩSL(x)×PCm(x)xΩPCm(x) (42)

    Where, Ω represents the whole image pixel domain, SL(x) is a similarity score, PCm(x) denotes the phase consistency measure which is defined as:

    PCm(x)=max(PC1(x),PC2(x)) (43)

    where PC1(x) and PC2(x) represent the phase consistency of two blocks respectively.

    SL(x)=[SPC(x)]α[SG(x)]β (44)

    Where

    SPC(x)=2PC1(x)×PC2(x)+T1PC21(x)×PC22(x)+T1 (45)
    SG(x)=2G1(x)×G2(x)+T2G21(x)×G22(x)+T2 (46)

    SPC(x) denotes the similarity measure of phase consistency, SG(x) denotes the gradient magnitude of two regions G1(x) and G2(x), α, β, T1 an T2 are all constants.

    Moreover, a higher value of the three indices proposed above indicates a better quality of the segmented image. The values of SSIM and FSIM index are in the range.

    This section presents the experimental results of MDA based method and the analysis in terms of accuracy and stability. In order to verity the superiority of proposed MDA method over the other bio-inspired methods, a statistical analysis is also conducted.

    The segmented images obtained by all the algorithms using Otsu method, Kapur's entropy, and MCE are presented in Figure 4, Figure 5, and Figure 6 respectively. From the segmented results it is found that visual quality improves as the number of threshold levels is increased and the MDA based method gives higher segmentation performance for most of the considered test images.

    Figure 4.  The segmented images for different algorithms using Otsu's method at five levels (Cow).
    Figure 5.  The segmented images for different algorithms using Kapur's entropy at five levels (Deer).
    Figure 6.  The segmented images for different algorithms using MCE method at five levels (Driver).

    There is no guarantee that all methods converge to the same solution each time due to the stochastic nature of meta-heuristic algorithms. Therefore, two indices namely AM and STD are evaluated to analyze the accuracy and stability of all methods. A lower value of STD shows higher stability of the method. Whereas, higher values of AM indicate higher accuracy of the thresholding results. Each algorithm (using Otsu method, Kapur's entropy, and MCE) is run over 100 times to study the effectiveness of MDA. The AM values of fitness functions are given in Tables 2-4. It can be easily seen from these tables that MDA based method obtains higher AM value of fitness function against other methods. Therefore, the proposed technique performs better in terms of segmentation accuracy. The STD values of fitness functions are given in Tables 5-7. It can be observed from these tables that MDA based method obtains lower STD value of the fitness function as compared to other methods in general. This proves that the proposed MDA based method offers better stability and consistency, which is suitable for multilevel segmentation of images. For visual analysis, the convergence curves for fitness function using Otsu method, Kapur's entropy, and MCE are shown in Figures 7-9 (for Levels = 12) for ten test images. It can be seen that MDA based method performs better convergence property than other methods.

    Table 2.  The AM values of fitness functions using Otsu's method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 4386.0155 4386.0155 4386.0155 4383.2562 4386.0155 4385.6741 4385.6859 4386.0155 4275.6231 4305.6849
    6 4456.6941 4456.6745 4456.6812 4444.5333 4456.6812 4454.8023 4455.0995 4456.6896 4389.0323 4433.0295
    8 4484.1180 4483.9262 4481.7449 4459.9789 4484.1093 4481.4416 4466.3154 4484.1162 4382.9916 4433.2254
    10 4498.2080 4497.9168 4497.7713 4482.3727 4498.2009 4494.7658 4471.7015 4497.7081 4459.3658 4433.7415
    12 4506.5451 4504.8726 4504.8661 4488.6786 4506.5326 4501.1585 4475.5967 4502.7801 4341.1585 4332.5967
    Building 4 3666.7889 3666.7889 3666.7889 3661.2005 3666.7889 3666.4479 3666.5619 3666.7889 3535.4479 3598.5619
    6 3736.1408 3736.1359 3736.1408 3701.9165 3736.1289 3734.3517 3715.7878 3736.1157 3689.3517 3687.7878
    8 3765.4064 3763.7146 3761.8726 3732.2340 3765.3964 3776.4662 3754.6370 3765.2956 3722.6370 3733.2956
    10 3780.2478 3780.0474 3775.2198 3761.4603 3780.2365 3780.1030 3764.3500 3779.2472 3759.7500 3733.9872
    12 3788.7772 3785.0051 3784.1982 3764.2379 3785.6140 3784.0790 3767.8448 3787.9557 3698.8448 3780.9557
    Cactus 4 2126.2412 2126.2412 2126.2412 2122.4910 2126.2412 2124.6012 2125.8760 2126.2412 2120.6012 2122.8650
    6 2188.8128 2188.7833 2188.8074 2170.4086 2188.7851 2187.7032 2173.0367 2188.7902 2174.7042 2169.0577
    8 2213.2398 2211.6703 2209.8554 2185.0069 2213.1713 2210.4804 2200.8495 2212.9784 2199.4804 2198.8485
    10 2225.0856 2223.9729 2224.1614 2206.6749 2224.7509 2222.4256 2212.5880 2224.8807 2216.4286 2216.5640
    12 2231.9191 2227.8378 2230.5400 2214.0593 2230.9317 2227.4470 2213.0484 2230.2080 2217.4470 2218.0484
    Cow 4 3953.7954 3953.7954 3953.7954 3947.6284 3953.7937 3953.6631 3953.3749 3953.7954 3947.6651 3949.3589
    6 4018.8130 4018.5006 4018.8067 3997.9203 4018.7855 4016.5598 4006.7333 4018.8091 4004.5578 4010.7833
    8 4048.9214 4047.7684 4048.9027 4025.8279 4048.9098 4046.5501 4030.1545 4048.7097 4030.5471 4047.1755
    10 4063.2203 4062.2329 4062.3868 4046.0778 4060.1107 4058.5699 4051.8095 4062.5712 4048.5669 4049.8045
    12 4071.2438 4070.4191 4069.9258 4050.7113 4071.1365 4063.9022 4053.6927 4070.1930 4069.9062 4058.6927
    Deer 4 1122.5798 1122.5798 1122.5798 1121.1187 1122.5798 1122.2487 1122.5083 1110.4477 1117.2487 1120.9083
    6 1161.5839 1161.5775 1161.5775 1142.9409 1161.5705 1154.9956 1147.5510 1152.1515 1097.9556 1148.5540
    8 1178.1038 1178.0725 1178.1023 1157.6053 1175.7847 1169.9586 1173.4041 1175.1126 1158.966 1168.4061
    10 1186.5170 1186.2849 1180.0212 1166.4972 1185.4142 1178.7451 1172.1178 1183.8460 1168.7851 1169.1168
    12 1191.1450 1189.9832 1187.3761 1177.2843 1187.0185 1183.5727 1172.5974 1187.5187 1178.547 1177.5944
    Diver 4 1522.2967 1522.2967 1522.2967 1520.5664 1522.2967 1519.8700 1521.7928 1522.2640 1507.8700 1519.7928
    6 1551.5394 1551.4815 1551.5394 1548.3600 1551.5337 1549.0623 1549.0902 1551.4279 1539.0863 1538.0702
    8 1562.9129 1562.7854 1561.9790 1556.4619 1561.9507 1559.9760 1558.8788 1562.4085 1559.9760 1558.8788
    10 1569.5513 1568.2960 1568.0981 1560.6939 1569.4202 1565.9504 1557.2689 1564.9109 1548.9904 1553.2009
    12 1572.8927 1572.8457 1570.6416 1565.8103 1571.7146 1570.6842 1561.5625 1570.6104 1568.8042 1551.5355
    Elephant 4 1922.2912 1922.2912 1922.2912 1918.9804 1922.2912 1921.8603 1922.0942 1922.2682 1919.8643 1920.0542
    6 1965.3704 1965.3704 1965.2581 1938.3278 1965.3693 1964.1737 1962.4793 1965.1725 1963.1757 1952.4453
    8 1984.7096 1982.4376 1981.5554 1964.4215 1984.6837 1979.0474 1977.1272 1979.8723 1975.0444 1976.1242
    10 1994.7387 1993.2369 1989.9457 1978.0828 1992.1249 1987.8605 1984.2041 1987.1609 1985.8365 1983.2043
    12 2000.4189 1998.6301 1996.5621 1986.4930 1997.8161 1994.4913 1978.0329 1994.6057 1992.4333 1979.0459
    Horse 4 2310.6909 2310.6909 2310.6909 2305.7078 2310.6909 2309.9326 2310.3382 2310.6598 2299.9456 2307.3332
    6 2378.2916 2378.2825 2378.2916 2370.1264 2378.2680 2375.9490 2369.4067 2370.9811 2369.9230 2370.4567
    8 2406.3611 2406.3126 2406.3320 2383.0984 2406.2989 2401.2306 2382.1623 2405.4886 2399.2546 2375.1633
    10 2420.4694 2418.4885 2418.1694 2399.4467 2416.1505 2411.9233 2399.8047 2418.6889 2401.9343 2397.8467
    12 2428.4816 2427.6154 2427.5850 2408.8655 2426.3828 2422.8833 2403.5197 2423.5853 2400.8223 2403.5332
    Kangaroo 4 1114.7964 1114.7964 1114.7964 1110.2121 1114.7903 1114.3295 1114.6277 1114.7889 1107.3295 1105.4477
    6 1164.7521 1164.7327 1164.7463 1146.3046 1164.7463 1163.3312 1154.3339 1158.7069 1154.3212 1149.3459
    8 1187.4052 1187.0806 1186.6851 1165.7543 1187.3525 1183.0318 1167.0394 1186.8491 1179.0338 1170.0344
    10 1199.0953 1196.3070 1196.2935 1183.8805 1198.8494 1194.1221 1180.9305 1195.4164 1189.1561 1179.9455
    12 1205.6955 1200.5395 1200.9629 1189.7715 1204.7195 1201.8035 1186.1872 1201.2637 1200.8465 1176.1342
    Lake 4 3602.5126 3602.5126 3602.5126 3595.0459 3602.5126 3602.0153 3602.1261 3602.4966 3599.0442 3600.1445
    6 3676.1680 3675.8735 3676.1650 3654.2173 3668.5190 3675.3194 3671.9734 3676.0909 3659.3174 3669.9564
    8 3705.3747 3699.8939 3705.3197 3667.8620 3705.3361 3701.3738 3688.8008 3697.8809 3686.3458 3677.8358
    10 3719.6677 3719.4646 3719.6472 3691.5485 3719.5805 3712.8384 3706.5417 3716.1525 3710.8335 3705.5865
    12 3727.6944 3726.4808 3725.0242 3698.3776 3724.0969 3721.2794 3710.6391 3724.5939 3690.7961 3684.5679

     | Show Table
    DownLoad: CSV
    Table 3.  The AM values of fitness functions using Kapur's entropy.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 18.1907 18.1907 18.1906 18.1526 18.1445 18.1873 18.1827 18.1907 18.1663 18.1597
    6 23.5682 23.5675 23.5679 23.3085 23.5678 23.5383 23.5023 23.5680 23.5597 23.5483
    8 28.3015 28.2786 28.2814 27.6408 28.3002 28.2265 27.6685 28.2965 28.2197 27.6589
    10 32.6202 32.6118 32.6137 30.9182 32.6175 32.5149 30.9871 32.5589 32.5078 30.9861
    12 36.5456 36.3356 36.4038 34.5257 35.8899 36.1310 34.6846 36.3876 36.1290 34.6754
    Building 4 18.8295 18.8295 18.8295 18.8158 18.8295 18.8226 18.8278 18.8295 18.8117 18.8256
    6 24.1205 24.1102 24.1201 23.8745 24.0527 24.0527 23.9953 24.0966 24.0156 23.9643
    8 28.9969 28.9867 28.9965 27.8900 28.9943 28.9057 28.3981 28.9857 28.8521 28.2457
    10 33.4091 33.3553 33.3952 31.4147 31.4153 33.0362 31.9753 33.3670 32.9653 31.8533
    12 37.4610 37.3651 37.1874 34.8359 37.3891 37.1524 35.6430 37.3001 37.0854 35.3576
    Cactus 4 18.5843 18.5843 18.5843 18.5632 18.5843 18.5761 18.5818 18.5843 18.4797 18.5748
    6 23.8420 23.8418 23.8420 23.4790 23.8417 23.7550 23.8085 23.8412 23.6854 23.7422
    8 28.5198 28.5051 28.4490 27.8225 28.5094 28.3850 27.7631 28.4991 28.3742 27.6854
    10 32.8542 32.8325 32.8457 31.3685 32.8479 32.6682 32.0858 32.7519 32.5853 32.0753
    12 36.8707 36.7269 36.7470 34.5881 36.7313 36.6221 34.7641 36.6960 36.5586 34.4763
    Cow 4 18.5002 18.4994 18.5002 18.4624 18.5002 18.4902 18.4983 18.5002 18.4774 18.4333
    6 23.9812 23.9795 23.9811 23.7240 23.8746 23.9496 23.8805 23.9796 23.5974 23.8365
    8 28.8794 28.8320 28.8785 28.1316 28.7981 28.7163 28.4547 28.7927 28.6873 28.3766
    10 33.3769 33.2290 33.2647 32.0085 33.3423 33.1886 31.9696 33.2887 33.0674 31.6773
    12 37.5478 37.3152 37.4710 35.6447 37.4301 37.1716 34.9981 37.2740 37.1643 34.4351
    Deer 4 17.7349 17.7349 17.7349 17.6786 17.7349 17.7135 17.7281 17.7349 17.4555 17.2441
    6 22.8322 22.8321 22.8319 22.5782 22.8321 22.7880 22.7745 22.8309 22.6470 22.6845
    8 27.2958 27.2929 27.2812 26.2300 27.2806 27.2006 26.2772 27.2733 27.1996 26.2692
    10 31.3387 31.3160 31.3360 29.2343 30.6775 30.9565 29.5594 31.2597 30.85645 29.5474
    12 35.0702 34.4227 34.3552 31.7673 34.4560 34.5034 32.6665 34.4692 34.4694 32.5765
    Diver 4 18.3361 18.3358 18.3350 18.2989 18.3364 18.3263 18.3232 18.3364 18.2883 18.1972
    6 23.6781 23.6780 23.6775 23.4056 23.6385 23.6085 23.6370 23.6772 23.4785 23.5850
    8 28.3676 28.3511 28.3668 27.4894 28.3655 28.3069 27.8034 28.3593 28.2788 27.6444
    10 32.6130 32.5412 32.5953 31.5176 31.9590 32.4207 30.5849 32.5548 32.2977 30.6059
    12 36.5313 35.7728 35.9128 33.6363 35.8612 36.0536 33.4780 35.7932 36.0156 33.4620
    Elephant 4 18.1761 18.1759 18.1761 18.1295 18.1761 18.1649 18.1713 18.1761 18.1086 18.1478
    6 23.3175 23.3173 23.3173 23.0015 23.3151 23.2798 23.2584 23.3080 23.1976 23.1658
    8 27.9489 27.8447 27.9453 26.9483 27.8597 27.8217 27.7337 27.9263 27.7937 26.9867
    10 32.1636 32.0784 32.1632 30.4741 32.1142 31.9377 30.3712 32.0997 31.7812 30.3647
    12 36.0009 35.7483 35.7545 32.9324 35.8113 35.5656 33.4534 35.7970 34.8626 32.8634
    Horse 4 18.6122 18.6122 18.6122 18.5974 18.6121 18.6081 18.6089 18.6121 18.0771 18.2979
    6 23.7909 23.7897 23.7908 23.5302 23.7903 23.7650 23.7601 23.7906 23.6997 22.9791
    8 28.4407 28.4312 28.4404 27.8054 28.4385 28.3584 28.1669 28.4277 27.3234 26.1239
    10 32.6907 32.5229 32.6719 31.2299 32.6865 32.2931 31.9769 32.6336 32.1891 31.3566
    12 36.5861 36.4546 36.4579 34.1298 36.5790 35.9428 33.9804 36.4842 35.6435 33.6689
    Kangaroo 4 18.9363 18.9362 18.9360 18.8904 18.9215 18.9352 18.9227 18.9363 18.7633 18.8644
    6 24.4756 24.4707 24.4650 24.2231 24.4742 24.4465 24.3311 24.4713 24.0535 24.1431
    8 29.4235 29.4222 29.4202 28.8466 29.4191 29.3775 29.2686 29.4158 29.2777 29.1576
    10 33.8985 33.8650 33.8894 32.4266 33.8981 33.6472 31.7512 33.8709 33.5347 31.2442
    12 38.0564 37.9305 37.9644 36.4710 37.9993 37.7302 36.7833 37.9278 37.6432 36.6453
    Lake 4 17.7485 17.7485 17.7485 17.7140 17.7347 17.7431 17.7477 17.7485 17.3476791 17.5897
    6 22.7151 22.7148 22.7150 22.5244 22.7149 22.6387 22.6811 22.7146 22.5467 22.3551
    8 27.2343 27.2271 27.2291 26.4737 27.2342 27.0464 26.8541 27.2195 26.5671 27.2305
    10 31.3868 31.3760 31.3488 29.4879 31.3622 31.1878 30.4835 31.3469 30.3657 31.2569
    12 35.2977 34.9685 35.1190 33.2548 34.6736 34.7786 33.0519 34.5806 32.0652 33.5967

     | Show Table
    DownLoad: CSV
    Table 4.  The AM values of fitness functions using MCE method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 -620.2763 -620.2763 -620.2763 -620.2542 -620.2763 -620.2648 -620.2578 -620.2763 -609.0790 -609.3784
    6 -620.6749 -620.6743 -620.6749 -620.6221 -620.6748 -620.6437 -620.6128 -620.6748 -609.6698 -609.7163
    8 -620.8419 -620.8385 -620.8414 -620.7237 -620.8097 -620.7891 -620.6825 -620.8393 -609.8519 -609.8320
    10 -620.9233 -620.9178 -620.9058 -620.8120 -620.9068 -620.8768 -620.8129 -620.9175 -609.9459 -610.0020
    12 -620.9702 -620.9608 -620.9477 -620.8790 -620.9668 -620.9398 -620.8730 -620.9541 -609.9813 -610.0675
    Building 4 -660.4584 -660.4584 -660.4584 -660.4452 -660.4584 -660.4560 -660.4562 -660.4584 -658.6000 -658.7712
    6 -660.8619 -660.8616 -660.8619 -660.8236 -660.8014 -660.8492 -660.8435 -660.8619 -659.0710 -659.1223
    8 -661.0323 -661.0316 -661.0312 -660.8618 -661.0320 -660.9857 -660.7957 -661.0070 -659.3262 -659.3747
    10 -661.1222 -661.1219 -661.0910 -661.0239 -661.1093 -661.0670 -661.0161 -661.0894 -659.3922 -659.4202
    12 -661.1753 -661.1616 -661.1249 -661.0725 -661.1443 -661.1479 -661.0530 -661.1650 -659.5068 -659.5193
    Cactus 4 -375.3032 -375.3032 -375.3032 -375.2890 -375.3032 -375.2894 -375.2985 -375.3032 -372.5073 -371.6678
    6 -375.6282 -375.6275 -375.6281 -375.5085 -375.5830 -375.6132 -375.5937 -375.6275 -372.9594 -373.0201
    8 -375.7553 -375.7483 -375.7532 -375.6164 -375.7541 -375.7250 -375.5836 -375.7529 -375.1600 -370.2542
    10 -375.8189 -375.8003 -375.8125 -375.7240 -375.8078 -375.7907 -375.7469 -375.8125 -372.1932 -372.3085
    12 -375.8552 -375.8445 -375.8338 -375.7616 -375.8434 -375.8263 -375.7679 -375.8484 -370.3258 -374.3484
    Cow 4 -700.7303 -700.7303 -700.7303 -700.7303 -700.7134 -700.7303 -700.7263 -700.6034 -698.8509 -698.9133
    6 -701.0632 -701.0632 -701.0632 -700.9918 -701.0281 -701.0334 -701.0425 -701.0631 -699.1213 -699.1382
    8 -701.1934 -701.1928 -701.1932 -701.0718 -701.1763 -701.1654 -701.1646 -701.1924 -699.3032 -699.2943
    10 -701.2660 -701.2620 -701.2453 -701.1829 -701.2657 -701.2356 -701.1861 -701.2536 -699.3819 -699.4248
    12 -701.3083 -701.2998 -701.2872 -701.2130 -701.2949 -701.2783 -701.2162 -701.2998 -699.4799 -699.4939
    Deer 4 -394.8162 -394.8162 -394.8162 -394.7204 -394.8162 -394.8098 -394.8158 -394.7272 -377.5073 -377.6678
    6 -395.0601 -395.0601 -395.0601 -394.9579 -395.0290 -394.9943 -394.9624 -395.0593 -377.9594 -378.0201
    8 -395.1690 -395.1521 -395.1171 -395.1094 -395.1303 -395.1088 -395.0924 -395.1305 -378.1600 -378.2542
    10 -395.2250 -395.2132 -395.1898 -395.1037 -395.1815 -395.1494 -395.1254 -395.1797 -378.1932 -378.3085
    12 -395.2572 -395.2394 -395.2311 -395.1551 -395.2271 -395.2057 -395.1679 -395.2235 -378.3258 -378.3484
    Diver 4 -130.2537 -130.2537 -130.2537 -130.2490 -130.2537 -130.1758 -130.1763 -130.2537 -129.9030 -129.1653
    6 -130.4961 -130.4955 -130.4816 -130.4609 -130.4587 -130.4076 -130.4042 -130.4947 -128.4047 -126.3978
    8 -130.6021 -130.6007 -130.5604 -130.5324 -130.5841 -130.5097 -130.4255 -130.5598 -127.5298 -129.6061
    10 -130.6536 -130.6447 -130.6170 -130.5825 -130.6424 -130.5848 -130.5879 -130.6252 -128.6593 -129.7220
    12 -130.6882 -130.6721 -130.6341 -130.5951 -130.6744 -130.6113 -130.5267 -130.6643 -129.7131 -129.7822
    Elephant 4 -456.8572 -456.8572 -456.8572 -456.8455 -456.8552 -456.8524 -456.8540 -456.8552 -4552665 -455.2189
    6 -457.1171 -457.1171 -457.1171 -457.0303 -457.0916 -457.0805 -457.0660 -457.1167 -455.4441 -455.7034
    8 -457.2138 -457.2028 -457.2017 -457.1199 -457.1564 -457.1792 -457.1036 -457.1707 -455.7360 -455.7811
    10 -457.2615 -457.2584 -457.2571 -457.1509 -457.2461 -457.2384 -457.2160 -457.2471 -455.8112 -455.9329
    12 -457.2974 -457.2750 -457.2645 -457.1782 -457.2761 -457.2625 -457.2034 -457.2755 -455.8923 -4559428
    Horse 4 -650.9465 -650.9465 -650.9465 -650.9346 -650.9464 -650.9453 -650.8275 -650.9464 -638.8670 -639.0225
    6 -651.2310 -651.2305 -651.2310 -651.1613 -651.2309 -651.2223 -651.2226 -651.2308 -639.0824 -639.1809
    8 -651.3496 -651.3491 -651.3492 -651.2074 -651.3354 -651.3218 -651.3145 -651.3486 -639.2078 -639.2707
    10 -651.4103 -651.4075 -651.3959 -651.3230 -651.4090 -651.3884 -651.3445 -651.3985 -639.3381 -639.3124
    12 -651.4451 -651.4384 -651.4396 -651.3675 -651.4213 -651.4220 -651.3387 -651.4357 -639.3136 -639.3694
    Kangaroo 4 -441.3100 -441.3100 -441.3100 -441.2870 -441.3099 -441.3033 -441.3051 -441.3100 -440.3940 -440.6180
    6 -441.6207 -441.6151 -441.6207 -441.5240 -441.6198 -441.5944 -441.5567 -441.6204 -440.8093 -440.8583
    8 -441.7491 -441.7469 -441.7401 -441.6495 -441.7466 -441.7079 -441.6409 -441.7284 -440.9658 -440.0692
    10 -441.8182 -441.8136 -441.7947 -441.7388 -441.7836 -441.7767 -441.6903 -441.7961 -440.1546 -440.1106
    12 -441.8579 -441.8372 -441.8412 -441.7623 -441.8426 -441.8145 -441.7252 -441.8418 -440.1620 -440.2211
    Lake 4 -812.1139 -812.1139 -812.1139 -812.0987 -812.1139 -812.1079 -812.0152 -812.1139 -811.9079 -810.5752
    6 -812.3819 -812.3818 -812.3819 -812.2984 -812.3818 -812.3736 -812.3574 -812.3818 -811.7736 -810.3594
    8 -812.4913 -812.4849 -812.4913 -812.3919 -812.4845 -812.4776 -812.4708 -812.4777 -810.6776 -810.2308
    10 -812.5476 -812.5416 -812.5465 -812.4565 -812.5374 -812.5347 -812.4901 -812.5360 -810.8347 -811.4691
    12 -812.5797 -812.5663 -812.5738 -812.4903 -812.5752 -812.5588 -812.5076 -812.5747 -811.9588 -810.4976

     | Show Table
    DownLoad: CSV
    Table 5.  The STD values of fitness functions using Otsu's method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 0.0000e + 00 0.0000e + 00 0.0000e + 00 1.5052e + 00 6.9599e - 03 2.9240e - 01 1.0625e + 01 1.9536e - 02 1.2525e - 02 1.5216e - 02
    6 4.1541e - 03 1.0091e - 01 5.6543e - 03 1.3679e + 01 4.6615e + 00 1.7517e + 00 1.4785e + 01 4.5974e + 00 1.3759e + 01 4.4865e + 00
    8 2.2692e - 03 7.3258e - 01 1.1033e + 00 3.3881e + 00 3.8795e + 00 9.8235e - 01 3.1223e + 00 1.5591e - 01 3.3871e + 00 1.9732e - 01
    10 5.3445e - 02 1.8133e + 00 8.9802e - 01 4.4712e + 00 2.2772e + 00 7.2268e - 01 8.1170e + 00 1.4814e + 00 9.5750e + 00 3.4353e + 00
    12 2.2612e - 01 8.7240e - 01 1.1039e + 00 2.5169e + 00 1.6665e + 00 1.2467e + 00 1.8633e + 00 1.1796e + 00 2.9986e + 00 2.8652e + 00
    Building 4 0.0000e + 00 5.2206e - 03 0.0000e + 00 1.0556e + 00 0.0000e + 00 2.0873e - 01 1.9321e - 01 4.9614e - 03 3.2768e - 01 5.9787e - 03
    6 2.7075e - 03 4.1034e - 01 1.4030e - 03 5.8629e + 00 3.7949e + 00 5.4196e - 01 4.5020e + 00 4.8013e + 00 5.9732e + 00 5.8364e + 00
    8 1.5158e - 02 7.8094e - 01 3.6351e + 00 4.4713e + 00 1.8527e + 00 1.0868e + 00 7.2455e + 00 1.8760e + 00 9.8648e + 00 7.8648e + 00
    10 2.5611e - 02 1.5275e + 00 2.2609e + 00 1.8080e + 00 1.8371e + 00 1.1496e + 00 2.8591e + 00 2.5056e + 00 6.8734e + 00 6.8642e + 00
    12 2.6689e - 01 6.5488e - 01 1.0901e + 00 1.5993e + 00 6.8305e - 01 1.0169e + 00 3.8292e + 00 9.4510e - 01 5.8743e + 00 9.9608e - 01
    Cactus 4 0.0000e + 00 8.8624e - 03 0.0000e + 00 9.7805e - 01 1.9783e - 03 2.2157e - 01 9.0407e - 02 1.0212e + 01 8.8738e - 02 7.9492e + 01
    6 0.0000e + 00 1.4716e - 01 1.0193e - 02 6.3001e + 00 2.8521e + 00 1.2033e + 00 5.9922e + 00 3.6189e + 00 6.8438e + 00 7.9332e + 00
    8 2.7104e - 03 9.2525e - 01 4.1563e - 01 5.5874e + 00 1.8328e + 00 1.4973e + 00 5.7798e + 00 1.6235e + 00 6.6432e + 00 4.4932e + 00
    10 7.5561e - 03 7.4369e - 01 2.9334e - 01 3.4511e + 00 1.7996e + 00 8.5357e - 01 5.9010e + 00 1.3657e + 00 6.9754e + 00 5.9733e + 00
    12 1.2812e - 01 1.4887e + 00 4.1829e - 01 1.7774e + 00 8.5019e - 01 7.4279e - 01 1.6913e + 00 6.4976e - 01 5.4883e + 00 7.4934e - 01
    Cow 4 5.0842e - 13 9.4847e - 06 6.1882e - 07 1.3402e + 00 5.1671e - 03 3.2173e - 01 1.4038e - 01 9.3752e - 03 3.9754e - 01 9.7353e - 03
    6 1.6545e - 01 1.9084e - 01 1.6323e - 01 5.9744e + 00 2.5197e + 00 1.3783e + 00 2.3592e + 00 1.6166e - 01 5.4873e + 00 2.9753e - 01
    8 2.4108e - 02 7.2264e - 01 9.2347e - 01 4.8122e + 00 2.4409e - 02 1.5244e + 00 6.3387e + 00 8.8607e - 01 7.8478e + 00 9.7743e - 01
    10 2.5064e - 01 3.3253e - 01 9.2932e - 01 3.1243e + 00 6.9114e - 01 7.6097e - 01 6.7771e + 00 1.2230e + 00 7.6436e + 00 8.9549e + 00
    12 1.0103e - 01 1.3010e + 00 1.0714e - 01 2.1099e + 00 4.9416e - 01 1.0799e + 00 5.4692e + 00 1.0640e + 00 6.7484e + 00 5.8622e + 00
    Deer 4 0.0000e + 00 0.0000e + 00 5.4207e + 00 5.4024e + 00 7.4593e - 03 4.5577e - 01 6.2558e - 02 5.3883e + 00 7.6532e - 02 8.7353e + 00
    6 0.0000e + 00 2.3296e + 00 2.5645e + 00 3.9302e + 00 2.2381e + 00 2.2796e + 00 6.8111e + 00 4.7647e + 00 7.3752e + 00 6.8352e + 00
    8 2.4978e - 02 3.0141e + 00 1.5768e + 00 2.9499e + 00 3.4235e + 00 3.2422e + 00 3.7797e + 00 2.0554e + 00 6.7534e + 00 5.7534e + 00
    10 4.0174e - 01 1.5329e + 00 1.5146e + 00 2.1600e + 00 1.9536e + 00 1.6882e + 00 8.6796e + 00 3.0491e + 00 7.9333e + 00 6.8457e + 00
    12 4.1945e - 01 1.3304e + 00 1.0805e + 00 3.8898e + 00 9.9896e - 01 7.9462e - 01 5.3120e + 00 1.7347e + 00 6.4378e + 00 4.8363e + 00
    Diver 4 1.6462e - 03 1.3852e - 02 0.0000e + 00 4.2953e - 01 1.0325e - 02 4.3669e - 01 1.8932e - 01 2.0237e + 00 4.7522e - 01 5.4656e + 00
    6 0.0000e + 00 4.5469e - 02 1.3710e - 03 2.1993e + 00 7.7053e - 01 1.6244e + 00 4.9161e + 00 3.5567e - 02 7.7453e + 00 6.8634e - 02
    8 3.0942e - 02 9.2514e - 01 4.5038e - 01 1.8318e + 00 4.4823e - 01 3.5167e - 01 2.0986e + 00 1.0432e + 00 3.7543e + 00 4.8652e + 00
    10 8.3825e - 03 7.0084e - 01 5.9167e - 01 1.9117e + 00 2.1269e - 01 9.7038e - 01 1.2839e + 00 7.0318e - 01 3.8658e + 00 8.7454e - 01
    12 1.3694e - 01 5.1430e - 01 4.0234e - 01 2.1263e + 00 2.6468e - 01 1.4983e - 01 1.9739e + 00 5.5533e - 01 5.4867e + 00 6.7543e - 01
    Elephant 4 0.0000e + 00 6.4237e - 03 0.0000e + 00 6.0503e + 00 9.0498e - 04 1.6488e - 01 1.8436e - 01 7.2737e - 03 3.7523e - 01 8.7647e - 03
    6 4.4492e - 02 1.9454e + 00 2.3242e + 00 6.2803e + 00 1.7561e + 00 1.3165e + 00 3.0963e + 00 4.7712e + 00 5.8437e + 00 6.8783e + 00
    8 5.5357e - 01 1.2826e + 00 1.5730e + 00 3.1859e + 00 1.5738e + 00 7.7418e - 01 4.9522e + 00 7.3335e - 01 6.8773e + 00 8.6534e - 01
    10 1.2384e + 00 2.1375e + 00 1.2931e + 00 5.7291e + 00 6.7686e + 01 1.6294e + 00 1.0518e + 01 2.0065e + 00 3.8856e + 01 4.7436e + 00
    12 4.3928e - 01 5.2442e - 01 1.0687e + 00 2.3214e + 00 1.7015e + 00 1.1204e + 00 2.8496e + 00 1.7069e + 00 4.8753e + 00 5.8475e + 00
    Horse 4 0.0000e + 00 0.0000e + 00 0.0000e + 00 2.9545e + 00 1.0649e - 03 2.2981e - 01 1.4238e + 01 1.8426e - 02 4.7583e + 01 3.8964e - 02
    6 7.9497e - 04 4.3199e - 02 4.3438e - 03 7.1120e + 00 1.2905e - 02 8.5581e - 01 6.9369e - 01 5.0399e + 00 7.7643e - 01 6.8353e + 00
    8 4.5720e - 02 2.3215e + 00 1.7100e + 00 6.0056e + 00 2.2284e + 00 6.7892e - 01 4.5581e + 00 2.1843e - 01 6.7654e + 00 5.8753e - 01
    10 1.7780e - 02 1.0456e + 00 1.0097e + 00 4.8101e + 00 2.8650e + 00 1.0801e + 00 7.7065e + 00 1.5548e + 00 8.8775e + 00 5.8753e + 00
    12 3.6262e - 02 9.1042e - 01 5.2105e - 01 2.7274e + 00 9.6076e - 01 1.3683e + 00 3.1956e + 00 1.2537e + 00 4.7535e + 00 4.7653e + 00
    Kangaroo 4 0.0000e + 00 2.8080e - 03 0.0000e + 00 1.4197e + 00 0.0000e + 00 4.5233e - 01 1.5513e - 01 1.1710e - 02 2.8684e - 01 4.7833e - 02
    6 7.0945e - 04 3.3564e - 02 3.1934e - 03 8.2077e + 00 1.2418e - 02 1.0105e + 00 4.8869e + 00 3.0115e + 00 5.7536e + 00 4.8753e + 00
    8 7.9087e - 03 5.6464e - 02 3.6501e - 01 6.1105e + 00 1.2628e + 00 1.2967e + 00 5.9183e + 00 2.3696e + 00 6.8733e + 00 5.8757e + 00
    10 2.5610e - 03 4.6108e - 01 1.1588e + 00 4.0363e + 00 5.7158e - 01 8.9576e - 01 6.7443e + 00 1.3835e + 00 7.9864e + 00 4.8875e + 00
    12 4.0049e - 02 8.7691e - 01 1.1766e + 00 2.5601e + 00 3.8831e - 01 6.2671e - 01 3.8655e + 00 1.3033e + 00 5.8754e + 00 4.8684e + 00
    Lake 4 5.0842e - 13 8.5440e - 07 4.4517e - 03 1.0043e + 01 1.4746e - 04 1.5678e - 01 2.4311e + 01 1.2714e - 02 4.9854e + 01 3.9685e - 02
    6 1.3355e - 03 1.0129e - 01 3.4139e + 00 6.2361e + 00 1.6624e - 02 1.4420e + 00 1.4072e + 01 3.6018e + 00 3.7987e + 01 4.8644e + 00
    8 1.8655e - 01 1.5349e + 00 1.5352e + 00 2.7270e + 00 1.5140e + 00 1.8072e + 00 7.3736e + 00 3.7370e + 00 9.3875e + 00 4.8743e + 00
    10 5.2140e - 03 1.3903e + 00 1.4982e + 00 3.8401e + 00 1.6502e + 00 1.7344e + 00 1.1550e + 01 2.2614e + 00 5.9486e + 01 3.7844e + 00
    12 1.3347e - 01 8.2871e - 01 6.0813e - 01 9.4868e - 01 1.0480e + 00 1.1963e + 00 7.1376e + 00 1.8657e + 00 8.7543e + 00 5.9883e + 00

     | Show Table
    DownLoad: CSV
    Table 6.  The STD values of fitness functions using Kapur's entropy.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 0.0000e + 00 1.1889e - 03 4.5792e - 05 1.2654e - 02 2.5227e - 02 2.6238e - 03 2.3338e - 02 4.5792e - 05 3.8752e - 03 4.8758e - 02
    6 1.0803e - 04 1.1619e - 04 1.2647e - 04 7.0324e - 02 3.1088e - 04 1.7798e - 02 4.0157e - 02 1.3631e - 04 4.8775e - 02 6.8753e - 02
    8 1.9295e - 04 8.4380e - 03 1.3024e - 02 2.3574e - 01 2.5639e - 02 4.3985e - 02 1.3272e - 01 1.4655e - 02 5.8753e - 02 4.7533e - 01
    10 6.3220e - 03 5.5282e - 02 5.7422e - 02 2.0425e - 01 1.9574e - 02 4.6981e - 02 5.8561e - 01 3.1833e - 02 6.8735e - 02 7.8743e - 01
    12 1.6956e - 02 9.7999e - 02 4.5541e - 02 3.0201e - 01 3.6739e - 01 1.2307e - 01 6.4889e - 01 2.4119e - 02 3.9864e - 01 7.8743e - 01
    Building 4 0.0000e + 00 0.0000e + 00 0.0000e + 00 7.0614e - 03 3.2018e - 05 1.2271e - 03 9.2528e - 04 0.0000e + 00 4.9863e - 03 9.8743e - 04
    6 8.8020e - 03 1.5824e - 02 4.2359e - 02 6.1177e - 02 9.7401e - 03 3.0400e - 02 1.7481e - 01 1.1671e - 02 4.8733e - 02 4.3734e - 01
    8 2.8468e - 03 3.2699e - 02 3.0477e - 03 1.7964e - 01 4.6111e - 02 3.0846e - 02 2.1943e - 01 3.3616e - 02 4.8753e - 02 5.9843e - 01
    10 2.0785e - 02 2.3636e - 02 2.1609e - 02 2.5603e - 01 8.2992e - 02 3.5160e - 02 5.6484e - 01 2.2881e - 02 4.8753e - 02 6.9886e - 01
    12 5.2186e - 02 9.7696e - 02 1.5118e - 01 5.0506e - 01 9.8895e - 02 1.6661e - 01 6.3697e - 01 1.7954e - 01 5.9864e - 01 7.4875e - 01
    Cactus 4 2.6599e - 05 2.5477e - 03 8.5579e - 05 4.3927e - 03 5.8348e - 05 3.1864e - 03 2.1741e - 03 2.6752e - 05 5.3634e - 03 3.8767e - 03
    6 1.4541e - 04 9.5823e - 04 1.6053e - 04 7.4453e - 02 2.9505e - 04 1.9699e - 02 5.3930e - 02 4.3274e - 04 4.9863e - 02 6.8244e - 02
    8 9.5675e - 04 8.8883e - 03 2.7352e - 02 1.3299e - 01 3.2443e - 02 3.3815e - 02 1.8186e - 01 7.3041e - 03 5.8743e - 02 4.7863e - 01
    10 4.3610e - 03 3.9010e - 02 5.3608e - 03 2.6713e - 01 4.9142e - 02 3.2420e - 02 1.5062e - 01 3.3415e - 02 5.8674e - 02 4.9836e - 01
    12 2.7111e - 03 7.4828e - 02 3.2452e - 02 2.3010e - 01 1.8277e - 02 5.0186e - 02 6.4139e - 01 7.3479e - 03 6.8765e - 02 7.8754e - 01
    Cow 4 4.3875e - 04 4.5348e - 04 4.5512e - 03 1.9697e - 02 2.1813e - 02 3.4052e - 02 7.4689e - 03 4.3942e - 04 4.6733e - 02 8.8735e - 03
    6 2.8795e - 05 8.4886e - 02 3.9295e - 02 5.9538e - 02 6.2887e - 02 1.5797e - 02 2.9128e - 01 4.9848e - 04 2.7535e - 02 3.8965e - 01
    8 3.6982e - 02 1.2156e - 01 4.4534e - 02 1.1567e - 01 7.5803e - 02 4.3787e - 02 4.7450e - 01 6.0485e - 02 5.8767e - 02 5.9886e - 01
    10 4.3049e - 02 1.2759e - 01 7.2200e - 02 2.1993e - 01 5.6487e - 02 4.4582e - 02 4.3961e - 01 5.2046e - 02 6.7854e - 02 5.9846e - 01
    12 3.2045e - 02 2.6235e - 01 7.0662e - 02 3.1597e - 01 1.1705e - 01 5.1689e - 02 5.3110e - 01 7.5080e - 02 7.8775e - 02 8.7654e - 01
    Deer 4 0.0000e + 00 5.8974e - 03 5.9135e - 03 4.0585e - 03 7.2305e - 03 1.9331e - 02 6.9060e - 03 7.2004e - 03 6.7864e - 02 7.7435e - 03
    6 2.2839e - 04 1.4763e - 03 3.3548e - 04 8.1484e - 02 6.2308e - 04 1.9429e - 02 1.1446e - 02 8.4301e - 04 2.8863e - 02 3.9753e - 02
    8 2.9669e - 03 6.7418e - 03 3.2304e - 03 1.3820e - 01 2.3685e - 02 7.5112e - 02 3.6370e - 01 5.8357e - 03 9.8754e - 02 4.8963e - 01
    10 4.9822e - 03 2.8841e - 01 2.7250e - 01 6.5556e - 01 2.6518e - 01 1.9191e - 01 6.4420e - 01 2.8244e - 01 2.0793e - 01 7.8735e - 01
    12 6.1415e - 02 4.7209e - 01 2.0164e - 01 3.5708e - 01 4.9867e - 01 1.1798e - 01 4.9348e - 01 2.4177e - 01 2.9753e - 01 5.4383e - 01
    Diver 4 4.5390e - 04 9.5888e - 04 7.7273e - 04 1.8401e - 02 6.0705e - 04 4.7672e - 03 1.4489e - 03 4.5784e - 04 5.8986e - 03 2.8633e - 03
    6 0.0000e + 00 2.0699e - 02 2.1247e - 02 2.0500e - 02 1.6986e - 02 2.0526e - 02 5.9176e - 02 2.1127e - 02 3.8646e - 02 6.9743e - 02
    8 4.9174e - 04 2.1986e - 02 2.7020e - 02 2.9803e - 01 2.7249e - 02 3.1078e - 02 8.7167e - 02 3.3923e - 01 5.8946e - 02 9.8763e - 02
    10 5.5672e - 03 2.1660e - 02 4.5160e - 02 2.5325e - 01 2.7837e - 01 9.0056e - 02 5.5104e - 01 2.7969e - 01 9.8534e - 02 6.8754e - 01
    12 2.1843e - 02 3.0838e - 01 2.8180e - 02 1.3301e - 01 4.2689e - 01 8.5895e - 02 5.6435e - 01 3.2203e - 01 9.8757e - 02 6.7654e - 01
    Elephant 4 0.0000e + 00 1.9632e - 02 0.0000e + 00 1.6930e - 02 1.9460e - 02 3.0622e - 03 4.9727e - 03 1.5939e - 02 5.8754e - 03 5.8754e - 03
    6 8.9460e - 04 4.7949e - 03 7.4900e - 03 2.7495e - 02 3.9956e - 03 3.5767e - 02 1.0488e - 02 3.3018e - 03 4.8753e - 02 2.8785e - 02
    8 1.2782e - 02 1.4891e - 02 5.2655e - 02 3.0559e - 01 1.1137e - 01 7.2515e - 02 2.7681e - 01 1.8693e - 02 8.4875e - 02 3.8754e - 01
    10 1.0683e - 02 2.2650e - 02 7.8857e - 02 3.4112e - 01 3.1072e - 02 1.4351e - 01 8.6519e - 01 6.9635e - 02 2.8645e - 01 9.7643e - 01
    12 3.2082e - 02 1.5757e - 01 7.0852e - 02 4.7685e - 01 9.6941e - 02 1.2052e - 01 6.8057e - 01 3.7980e - 02 3.9865e - 01 7.9863e - 01
    Horse 4 0.0000e + 00 4.3697e - 05 0.0000e + 00 5.7362e - 03 3.0031e - 05 1.1992e - 03 9.0646e - 04 0.0000e + 00 2.9864e - 03 9.7845e - 04
    6 3.9001e - 05 6.8235e - 04 6.4030e - 05 2.7168e - 02 1.8898e - 02 2.4707e - 02 3.9755e - 01 1.6253e - 04 3.8496e - 02 4.0379e - 01
    8 1.0658e - 03 1.5830e - 02 1.5773e - 02 1.7886e - 01 3.2528e - 01 2.0050e - 02 5.1045e - 02 1.8431e - 02 3.8564e - 02 6.8734e - 02
    10 1.1899e - 03 2.6765e - 02 1.0699e - 02 4.4824e - 01 2.0086e - 03 9.0610e - 02 1.0780e + 00 1.9035e - 02 9.9363e - 02 2.9747e + 00
    12 1.0195e - 02 9.3998e - 02 1.0905e - 02 1.4685e - 01 2.7702e - 01 1.3892e - 01 1.1139e + 00 1.6405e - 02 2.9875e - 01 3.9785e + 00
    Kangaroo 4 0.0000e + 00 1.8494e - 03 0.0000e + 00 1.3075e - 02 7.9334e - 03 2.8633e - 03 3.8586e - 03 5.7127e - 05 3.4079e - 03 4.9445e - 03
    6 2.9074e - 03 3.7403e - 03 2.9915e - 03 7.1561e - 02 3.3148e - 03 5.2471e - 03 3.8709e - 02 3.0783e - 03 6.9856e - 03 4.9865e - 02
    8 5.6649e - 04 1.1019e - 02 5.4813e - 03 8.2995e - 02 5.6226e - 03 7.0540e - 03 3.1840e - 01 4.0150e - 03 8.4835e - 03 4.9864e - 01
    10 3.7801e - 03 1.1827e - 02 1.8489e - 02 3.4071e - 01 6.9291e - 03 3.8810e - 02 5.2978e - 01 8.3780e - 03 5.9836e - 02 6.9886e - 01
    12 8.7743e - 03 4.7216e - 02 1.6021e - 02 4.4485e - 01 2.2123e - 02 6.8302e - 02 8.7635e - 01 3.7581e - 02 7.9867e - 02 9.7643e - 01
    Lake 4 0.0000e + 00 0.0000e + 00 0.0000e + 00 9.7684e - 03 6.1440e - 03 4.9956e - 03 2.4380e - 04 9.6789e - 05 5.6536e - 03 3.8464e - 04
    6 1.1065e - 04 3.8191e - 03 1.1223e - 04 5.6110e - 02 3.2872e - 04 2.1645e - 02 1.6446e - 02 2.1150e - 04 3.9865e - 02 2.4783e - 02
    8 1.2889e - 03 7.5427e - 03 2.1513e - 02 9.1336e - 02 2.0880e - 02 4.3782e - 02 5.4877e - 01 5.1575e - 03 5.4765e - 02 6.6584e - 01
    10 6.1286e - 03 4.2495e - 02 2.5681e - 02 3.4080e - 01 1.3618e - 02 1.2310e - 01 8.1195e - 01 1.3520e - 02 2.9864e - 01 9.8346e - 01
    12 1.0719e - 02 6.5413e - 02 2.2308e - 01 2.9771e - 01 6.4892e - 02 5.0581e - 02 6.3487e - 01 3.5103e - 02 6.5794e - 02 7.3875e - 01

     | Show Table
    DownLoad: CSV
    Table 7.  The STD values of fitness functions using MCE method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 0.0000e + 00 4.3555e - 05 0.0000e + 00 4.9764e - 03 1.9393e - 05 8.8101e - 04 1.0221e - 02 1.9393e - 05 3.0201e - 01 6.3697e - 01
    6 1.6098e - 05 2.2962e - 03 4.1531e - 05 2.2771e - 02 1.8929e - 02 8.7123e - 03 5.3511e - 02 3.2681e - 04 1.7954e - 01 2.2881e - 02
    8 4.1976e - 05 2.6942e - 03 1.6424e - 02 1.6160e - 02 9.5683e - 03 1.2381e - 02 5.2152e - 02 1.3810e - 02 7.4453e - 02 5.3608e - 03
    10 4.5375e - 05 5.3553e - 03 2.9144e - 02 1.7617e - 02 6.8743e - 03 1.0299e - 02 4.5361e - 02 6.4860e - 03 1.9697e - 02 2.1813e - 02
    12 1.3560e - 03 5.3794e - 03 1.3202e - 02 1.9366e - 02 1.4206e - 02 5.8245e - 03 2.5064e - 02 8.4871e - 03 2.9128e - 01 1.1567e - 01
    Building 4 0.0000e + 00 0.0000e + 00 0.0000e + 00 8.4222e - 03 8.2640e - 02 1.8660e - 03 4.0474e - 03 3.7078e - 05 1.5062e - 01 5.9538e - 02
    6 5.7722e - 06 2.2725e - 02 1.8815e - 05 2.1296e - 02 1.3243e - 04 1.4934e - 02 6.4824e - 02 4.4130e - 05 6.4139e - 01 1.1567e - 01
    8 8.1194e - 05 4.6351e - 03 1.0580e - 02 2.0644e - 02 1.8725e - 02 9.6663e - 03 3.7373e - 02 8.9031e - 03 5.9538e - 02 2.4707e - 02
    10 4.3296e - 03 4.5957e - 03 1.4784e - 02 2.9631e - 02 1.4996e - 02 7.8380e - 03 4.1964e - 02 1.3119e - 02 1.1567e - 01 2.2050e - 02
    12 2.9477e - 03 4.7520e - 03 1.0995e - 02 1.4305e - 02 9.2023e - 03 3.3979e - 03 3.3865e - 02 3.3371e - 03 5.9538e - 02 9.0610e - 02
    Cactus 4 0.0000e + 00 1.7572e - 06 0.0000e + 00 5.5546e - 03 1.4347e - 06 1.9111e - 03 1.9601e - 03 0.0000e + 00 1.1567e - 01 1.3892e - 01
    6 0.0000e + 00 2.2275e - 04 3.3031e - 05 2.0208e - 02 1.6240e - 02 7.5591e - 03 3.3427e - 03 1.8360e - 04 3.1104e - 03 1.3820e - 01
    8 5.7902e - 05 7.8170e - 03 1.6810e - 03 3.3547e - 02 7.3692e - 03 4.4322e - 03 6.7041e - 02 2.6121e - 03 2.7250e - 01 6.5556e - 01
    10 1.3753e - 04 7.0512e - 03 5.4453e - 03 5.7462e - 03 7.6790e - 03 7.0182e - 03 4.6264e - 02 1.3599e - 03 2.3624e - 01 3.468e - 01
    12 1.7572e - 06 1.9572e - 06 6.2473e - 05 5.5546e - 03 1.9347e - 06 1.9111e - 03 1.9601e - 03 3.9851e - 04 7.7243e - 03 1.8401e - 02
    Cow 4 0.0000e + 00 3.5553e - 06 0.0000e + 00 4.3800e - 03 7.0152e - 06 1.4766e - 03 5.5669e - 02 2.1702e - 05 2.730e - 01 6.5556e - 01
    6 8.3327e - 06 3.3821e - 04 2.9309e - 05 2.9149e - 02 1.5862e - 02 1.1595e - 02 2.3744e - 02 5.9844e - 05 2.0164e - 01 3.5708e - 01
    8 1.0541e - 05 7.6901e - 03 8.9780e - 03 1.2516e - 02 7.2417e - 03 5.5736e - 03 3.6431e - 02 1.4694e - 02 7.7273e - 02 1.8401e - 02
    10 4.4374e - 04 7.8347e - 03 6.0441e - 03 2.7480e - 02 8.2380e - 03 6.4775e - 03 8.9388e - 03 7.9328e - 03 2.1247e - 02 2.0322e - 02
    12 6.9515e - 04 7.2237e - 03 4.2157e - 03 1.2538e - 02 5.5394e - 03 5.9790e - 03 2.4809e - 02 3.0575e - 03 2.7010e - 02 2.673e - 01
    Deer 4 0.0000e + 00 2.8320e - 05 4.2927e - 02 3.5671e - 02 5.1525e - 02 6.7133e - 03 5.1398e - 02 3.0850e - 05 7.6374e - 03 7.6974e - 03
    6 2.6894e - 05 3.4557e - 05 2.5596e - 02 3.2448e - 02 1.6901e - 02 1.9843e - 02 5.0846e - 02 1.6964e - 02 3.8839e - 04 1.9763e - 03
    8 2.8452e - 05 1.2801e - 02 3.2649e - 02 2.4045e - 02 2.0842e - 02 9.6566e - 03 2.4055e - 02 1.7755e - 02 4.6669e - 03 2.7418e - 03
    10 1.7530e - 04 2.9018e - 02 1.2639e - 02 1.9853e - 02 1.1923e - 02 1.6688e - 02 5.3703e - 02 5.5481e - 03 5.6722e - 03 3.4841e - 01
    12 2.1929e - 03 1.2338e - 02 8.8961e - 03 9.8628e - 03 6.5436e - 03 6.7611e - 03 1.7855e - 02 1.0242e - 02 6.5415e - 02 6.5209e - 01
    Diver 4 0.0000e + 00 0.0000e + 00 0.0000e + 00 4.1200e - 03 2.9214e - 02 2.5662e - 02 4.3891e - 02 3.1663e - 05 8.5668e - 04 6.3673e - 04
    6 2.4028e - 07 2.7901e - 04 2.3344e - 02 1.4257e - 02 1.0952e - 02 1.3559e - 02 7.2014e - 02 1.1899e - 02 3.0089e - 02 8.7357e - 02
    8 7.2607e - 05 7.7633e - 03 1.4945e - 02 1.9285e - 02 1.3145e - 02 1.6465e - 02 4.3331e - 02 9.7951e - 03 3.9863e - 02 4.6700e - 02
    10 6.6864e - 04 2.8358e - 03 1.1158e - 02 1.8721e - 02 1.1055e - 02 6.6527e - 03 3.3078e - 02 9.4649e - 03 5.9793e - 02 5.7864e - 02
    12 3.0549e - 03 7.9756e - 03 8.9144e - 03 7.0841e - 03 1.2907e - 02 1.3726e - 02 4.1452e - 02 1.1751e - 02 5.4598e - 01 3.7680e - 02
    Elephant 4 0.0000e + 00 9.0077e - 04 9.0267e - 04 4.1081e - 02 1.1055e - 03 4.1184e - 04 4.9507e - 02 9.2036e - 04 2.7340e - 02 6.4674e - 02
    6 1.4221e - 06 8.0570e - 04 1.3606e - 02 2.4760e - 02 1.1116e - 02 1.4617e - 02 4.5924e - 02 3.0920e - 02 3.9863e - 02 4.5632e - 03
    8 7.9685e - 04 1.0640e - 02 1.2130e - 02 2.6000e - 02 1.0469e - 02 7.8799e - 03 2.8428e - 02 1.1566e - 02 9.8876e - 01 3.9450e - 01
    10 2.3569e - 03 2.6128e - 03 3.0860e - 03 1.8732e - 02 8.0987e - 03 8.4090e - 03 2.4145e - 02 6.6496e - 03 6.9973e - 01 4.0876e - 02
    12 1.0095e - 03 8.1323e - 03 5.5866e - 03 2.3722e - 02 1.2886e - 02 3.3161e - 03 3.9390e - 02 5.4535e - 03 5.6643e - 01 3.0267e - 02
    Horse 4 0.0000e + 00 7.6146e - 06 0.0000e + 00 3.9869e - 02 0.0000e + 00 1.2334e - 03 3.3564e - 04 0.0000e + 00 8.6683e - 03 4.9931e - 05
    6 6.9579e - 06 2.9511e - 04 1.4611e - 05 3.9917e - 02 1.3604e - 02 1.9567e - 03 3.8756e - 02 1.0109e - 04 3.9825e - 02 1.9603e - 02
    8 3.2793e - 05 3.6051e - 03 5.9145e - 04 1.9079e - 02 3.1548e - 04 1.3885e - 02 3.6609e - 02 6.0967e - 03 2.1978e - 01 4.9930e - 01
    10 2.6460e - 05 2.5018e - 03 2.0397e - 03 1.4575e - 02 8.7068e - 03 6.2620e - 03 2.7941e - 02 4.9061e - 03 4.5722e - 01 4.9928e - 03
    12 4.5934e - 04 5.9886e - 03 5.6341e - 03 2.3385e - 02 5.5206e - 03 6.2517e - 03 1.9090e - 02 3.7609e - 03 2.7638e - 01 3.0145e - 01
    Kangaroo 4 0.0000e + 00 6.9161e - 05 0.0000e + 00 4.5684e - 03 1.3734e - 05 3.7605e - 03 5.9342e - 02 7.9425e - 06 3.0024e - 02 1.5722e - 03
    6 1.8491e - 06 3.5289e - 06 7.4256e - 04 2.8424e - 02 5.6422e - 03 4.7666e - 03 6.5992e - 02 6.9616e - 05 5.7732e - 02 4.9731e - 03
    8 4.1239e - 05 1.3851e - 03 5.3166e - 03 2.3963e - 02 9.8772e - 03 4.3838e - 03 3.9993e - 02 7.9770e - 03 9.0244e - 02 6.0721e - 03
    10 2.7729e - 04 2.3215e - 03 6.1821e - 03 1.5739e - 02 8.2379e - 03 6.0833e - 03 2.9610e - 02 8.2685e - 03 3.5673e - 01 7.0421e - 03
    12 3.2988e - 04 6.1240e - 03 8.4453e - 03 9.4158e - 03 1.0962e - 02 5.6801e - 03 2.7494e - 02 3.0349e - 03 5.9722e - 01 6.8722e - 02
    Lake 4 0.0000e + 00 2.0336e - 06 0.0000e + 00 8.3246e - 03 9.5161e - 06 4.1782e - 04 2.1471e - 03 2.0336e - 06 8.6322e - 03 6.2880e - 03
    6 5.4704e - 06 5.7846e - 04 1.3840e - 02 4.1747e - 02 1.8414e - 02 1.6083e - 03 4.1550e - 02 6.8613e - 05 8.9630e - 02 7.8652e - 04
    8 2.5563e - 05 6.9062e - 03 5.9416e - 03 2.7668e - 02 1.9965e - 02 4.8122e - 03 2.8436e - 02 1.1764e - 02 9.7383e - 02 5.8235e - 02
    10 7.3581e - 05 3.9563e - 03 3.9417e - 03 8.5210e - 03 1.1233e - 02 4.2182e - 03 2.3901e - 02 3.8337e - 03 4.8252e - 01 2.8433e - 02
    12 9.4260e - 04 6.5949e - 03 2.0884e - 03 1.2109e - 02 9.0033e - 03 5.1305e - 03 3.5508e - 02 2.7738e - 03 3.0211e - 01 5.9363e - 02

     | Show Table
    DownLoad: CSV
    Figure 7.  The convergence curves for fitness function using Otsu's method at 12 levels (Bridge).
    Figure 8.  The convergence curves for fitness function using Kapur's entropyat 12 levels (Building).
    Figure 9.  The convergence curves for fitness function using MCE method at 12 levels (Cactus).

    In order to study the performance of MDA based method quantitatively, three indices namely PSNR, SSIM, and FSIM are used for all segmented images. Higher values of these indices, better visual similarity between the original image and the segmented image. The optimal PSNR values obtained by all existing methods based on Otsu, Kapur, and MCE are given in Table 8, Table 9, and Table 10 respectively. From the tables it is found that MDA based method gives higher values than other methods in general. For example, the PSNR values in case of Cactus image (for Levels = 12) using MCE are 31.8637, 26.1599, 25.7562, 26.2726, 28.2229, 28.9389, 29.0718, and 26.3566, 23.9993, 23.2377 for MDA, DA, SSA, SCA, ALO, HSO, BA, PSO, BDE, and EOFPA respectively. On comparing the SSIM and FSIM values, which are given in Tables 11-13 and Tables 14-16, the proposed MDA based method has again outperformed the other methods due its precise search ability. It is also seen from the tables above that, the values of these indices increase as the number of threshold levels increase. This indicates the segmentation accuracy improves as the number of threshold levels is increased. For visual analysis, the quantitative results of three indices above through Otsu, Kapur, and MCE method are statistically shown in Figures 10-12, Figures 13-15, and Figures 16-18. It can be seen that the proposed MDA method and other methods have given the similar results with a small number of threshold levels (such as Levels = 4). Whereas, the values obtained by MDA based method are higher than the other existing methods, which indicates the appropriate performance of proposed method.

    Table 8.  The PSNR values using Otsu's method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 18.9590 18.9590 18.9590 18.8034 18.9590 18.8983 18.8959 18.9590 17.3764 17.316
    6 21.0920 21.0911 21.0912 20.5635 21.0920 20.9637 20.6669 21.0909 19.1881 18.6372
    8 22.5471 22.3377 22.4018 22.3838 22.5463 22.4298 21.9278 22.4010 22.0039 21.0101
    10 23.4904 23.3166 23.9987 23.0423 23.4885 24.0388 23.1488 23.5456 23.1010 22.3231
    12 27.7081 24.5108 27.6512 23.5212 24.8332 27.6248 27.6485 24.7378 24.0274 24.7898
    Building 4 17.4155 17.4155 17.4155 16.9523 17.4155 17.4062 17.4155 17.4155 16.9011 16.9837
    6 19.8902 19.8187 19.8827 19.2310 19.8816 19.5492 19.0128 19.8782 18.9328 18.9880
    8 22.6625 22.5599 22.5680 19.5148 22.3500 22.6063 22.0638 22.4596 21.8258 22.4735
    10 27.1866 24.2853 24.1301 22.4138 23.9861 24.8874 23.0124 24.2530 22.9203 23.4174
    12 27.1983 26.3422 24.7812 24.3360 25.2812 25.9322 24.9121 25.0993 23.8136 25.8439
    Cactus 4 20.3428 20.3428 20.3428 20.3309 20.3428 19.8275 20.3239 20.3428 18.5723 18.7159
    6 22.6678 22.6661 22.6656 22.6482 22.6643 22.6390 22.5184 22.6668 19.2167 19.3623
    8 23.9827 23.7898 23.9062 23.9712 23.9422 23.5290 23.2659 23.9202 21.3695 21.8403
    10 24.8346 24.4556 24.6361 24.4523 24.7911 24.5695 24.7745 24.8199 22.4557 23.5664
    12 25.3709 24.8899 25.0184 24.5561 25.2555 24.8233 25.2156 25.2255 22.8350 22.6485
    Cow 4 19.7023 19.7023 19.7023 19.0298 19.6970 19.7023 19.6131 19.7023 16.7087 17.7800
    6 21.8735 21.8689 21.6575 21.2382 21.6519 21.5546 21.7785 21.6414 18.8470 19.6007
    8 23.6239 23.2169 23.4659 23.0928 23.5503 23.4506 22.9317 23.5084 21.8301 21.2347
    10 24.4648 24.4371 24.4203 24.3740 24.3462 23.7822 23.2376 24.2446 21.5213 23.1898
    12 25.0056 24.5718 24.8910 24.5712 24.5871 24.6769 23.8856 24.9461 23.2105 24.1131
    Deer 4 17.2462 17.2462 17.2462 17.1630 17.2462 17.1945 17.2462 16.8531 17.2167 17.2285
    6 22.3158 21.1255 21.1255 21.2796 21.0306 20.9120 21.0078 21.0168 19.9878 22.3087
    8 26.4239 23.5746 23.5002 24.0895 24.6123 26.3803 25.5392 23.9308 20.6895 22.7359
    10 27.1472 26.4163 26.8848 27.1317 27.1133 26.5453 26.8428 26.8889 22.3587 24.5996
    12 27.9602 27.1372 27.5484 27.8531 26.8076 26.9325 27.5315 27.3095 24.1497 26.6583
    Diver 4 24.4620 24.4620 24.4620 24.1907 24.4620 24.3989 24.3677 24.3073 22.1893 22.9514
    6 26.9548 26.9170 26.9448 26.7044 26.9499 26.6182 26.8265 26.9420 23.9825 24.7704
    8 29.5492 29.0513 28.6783 29.0786 28.7387 28.3422 29.2312 28.3347 25.0701 25.4638
    10 29.8856 29.4112 29.3481 29.1587 29.8131 29.2198 29.7836 29.8342 25.1395 27.5492
    12 31.1721 30.5343 29.7237 31.0997 31.0803 30.9819 30.5211 30.6319 26.5864 27.9708
    Elephant 4 18.4590 18.4590 18.4590 18.0512 18.4590 18.4539 18.3943 18.4092 17.9796 18.4096
    6 20.9780 20.5021 20.7348 20.9025 20.4230 20.9187 19.9182 20.5901 19.6514 20.2232
    8 24.6549 23.6814 23.3417 23.1786 22.8950 24.5622 23.5645 24.3392 21.5350 24.2511
    10 25.7650 25.4617 25.5042 25.0738 25.6656 25.1711 25.4416 25.6173 22.8253 23.9163
    12 28.5499 26.3839 27.1607 27.3927 26.9031 28.4144 28.2370 26.5514 23.4172 25.3764
    Horse 4 18.5055 18.5055 18.5055 18.1434 18.5055 18.4145 18.3600 18.4552 17.2096 17.1942
    6 22.6464 21.6461 21.6464 21.7744 21.6383 21.6707 21.8331 21.4744 20.7108 21.6493
    8 27.1218 23.7877 23.7854 25.8693 24.0577 25.3926 24.7503 23.8225 22.3332 22.7768
    10 28.6567 24.9734 26.1591 28.5737 28.3542 28.0356 26.0373 26.8562 23.3827 22.5028
    12 30.1088 25.9198 28.5245 28.8863 29.9344 29.6778 29.5050 28.9135 25.1314 24.9332
    Kangaroo 4 19.3419 19.3419 19.3419 18.9806 19.3351 19.2601 19.2313 19.3312 18.5756 19.2651
    6 25.2386 24.3138 24.3100 22.7301 24.3100 24.6060 24.8281 24.7980 21.1692 22.5045
    8 30.1938 28.9547 29.4461 26.8673 28.4724 30.1943 26.9309 28.0531 21.6472 22.6528
    10 33.3271 32.0741 32.5754 31.3008 31.8186 31.2343 30.6409 31.7392 23.6473 25.961
    12 34.2483 33.3702 33.5729 28.8392 33.8080 34.2136 31.7286 33.0561 24.8493 25.4618
    Lake 4 17.8079 17.8079 17.8079 17.8948 17.8079 17.8154 17.8994 17.7555 15.13304217 16.62476501
    6 23.7148 20.0906 20.2511 23.6525 22.1280 20.5707 20.5545 20.1912 16.80790196 16.45672222
    8 25.1894 23.7439 22.1234 24.4846 22.2729 23.2811 23.1193 24.2111 21.46744331 18.86515735
    10 27.3522 24.2819 23.3769 25.8174 23.2683 26.8299 26.3802 25.8904 22.20327956 21.45476838
    12 29.8302 25.2634 29.3626 29.1830 29.6264 29.0032 27.3752 26.0006 23.99130606 23.80486517

     | Show Table
    DownLoad: CSV
    Table 9.  The PSNR values using Kapur's entropy.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 20.3166 20.3166 20.2807 20.1875 18.3087 20.0478 20.0579 20.3166 18.0357 18.6645
    6 24.3943 23.2706 23.2631 23.9862 23.3301 24.0850 22.8633 23.3948 19.5943 20.5940
    8 25.9201 25.3943 25.5275 25.7371 25.5862 25.4035 25.6526 25.6077 21.1853 22.0672
    10 28.8445 27.5984 27.0704 28.3361 27.2035 27.9440 27.2823 27.4710 22.4667 23.2884
    12 32.1186 27.8596 30.0963 31.4096 30.0612 31.8332 28.2530 30.9551 23.3027 24.6414
    Building 4 17.4224 17.4155 17.415 17.0523 17.4155 17.4142 17.4155 17.4155 17.4116 17.4155
    6 19.9023 19.8637 19.8907 19.2310 19.8816 19.5492 19.7828 19.8072 19.7734 19.7631
    8 22.9857 22.5599 22.5680 21.3148 22.3500 22.6063 22.0638 22.6296 20.1984 20.5919
    10 27.2576 26.8043 24.1301 22.3738 23.9861 24.8874 23.0124 24.4590 22.2514 22.0813
    12 28.4124 27.3672 26.2312 24.8230 25.67 12 25.8392 24.9071 25.0989 24.2399 24.4493
    Cactus 4 17.2477 17.2477 17.2477 17.2083 17.2477 17.1240 17.2076 17.2477 16.4696 16.7799
    6 25.9105 24.0561 23.9672 21.5683 21.5404 24.9770 22.9863 22.2332 18.0968 19.4701
    8 28.7324 28.6092 28.5111 25.5115 28.6082 28.5553 27.6544 28.4325 19.1565 20.9022
    10 30.6897 30.4082 30.4321 28.3328 30.6687 30.4376 27.8268 30.5039 20.9462 22.4891
    12 32.4563 31.8106 32.0824 29.9900 32.1917 32.2054 29.6553 31.6696 22.3502 21.3577
    Cow 4 19.3706 19.3456 19.3706 19.1520 19.3706 19.2890 19.3563 19.3706 16.3414 18.2875
    6 24.6314 23.7690 23.9292 23.9305 22.0374 24.1317 23.3235 23.8404 18.4244 21.1759
    8 27.9669 26.7169 26.5471 27.1888 26.0817 27.2073 27.0670 25.9695 21.8036 21.3845
    10 30.8466 28.8963 28.4620 28.5871 29.1743 28.6751 27.6186 29.6997 23.6779 23.4505
    12 32.6043 32.2767 32.4801 28.9822 32.1704 32.5000 30.2576 31.5353 21.9672 23.9536
    Deer 4 21.9086 21.9086 21.9086 21.8579 21.9086 21.8656 21.8624 21.9086 15.8959 18.8904
    6 25.8662 25.7468 25.7976 25.2465 25.7708 25.7644 25.8643 25.8127 21.3477 20.6717
    8 29.1490 28.3340 28.0174 28.3990 28.1621 28.5526 28.3437 28.4946 22.1424 22.4715
    10 30.9920 30.4913 30.9573 28.9004 30.0481 30.8749 28.8843 30.1549 23.4554 23.8936
    12 32.9202 32.0876 30.9895 29.7392 32.7632 31.7944 29.8111 32.4031 25.5468 25.6665
    Diver 4 21.6563 20.9671 21.4636 21.3132 20.9636 20.9593 21.4310 20.9636 20.3982 21.2676
    6 23.8743 22.3082 22.3113 22.9759 22.3083 22.3378 22.1613 22.3090 23.0791 21.7095
    8 27.2237 24.4619 24.4493 24.4387 24.4538 24.6248 25.8560 24.4246 22.6522 25.1251
    10 29.4785 26.0826 26.3010 26.3667 26.4421 26.5201 28.3006 26.7262 25.0380 26.7153
    12 29.5071 27.2349 27.1253 26.9334 26.8751 26.6722 28.5156 27.0078 24.8993 24.2954
    Elephant 4 18.6558 18.6551 18.6558 18.6533 18.6558 18.5722 18.4352 18.6558 17.9303 18.2680
    6 23.4967 20.8588 20.8588 22.2481 21.3148 20.8610 20.2596 21.7136 18.8900 20.7315
    8 26.2198 23.1849 23.4237 23.4877 24.1624 24.5724 23.1158 23.3720 20.5137 21.8626
    10 28.9322 27.6131 25.2279 27.0446 27.7051 25.3211 25.1289 25.3938 20.8363 23.6299
    12 29.8636 29.4535 26.7054 28.6767 29.4309 26.3023 29.2218 29.8395 24.1360 22.5109
    Horse 4 19.5685 19.5685 19.5685 19.5569 19.5616 19.5208 19.2442 19.5037 17.6152 18.1643
    6 24.0011 23.0457 22.9153 23.1092 22.9575 23.1314 22.7394 23.0037 20.2580 21.0483
    8 27.3558 26.6826 26.9406 26.3270 27.1482 27.2741 26.7321 26.9479 22.8904 21.8187
    10 29.3890 28.0878 28.9131 28.8581 29.3174 29.3410 27.3223 29.1691 23.5858 21.4618
    12 31.6166 29.1202 30.4900 29.8254 30.7306 30.7994 30.0701 30.8250 24.5833 23.3923
    Kangaroo 4 19.3602 19.3419 19.3419 18.9906 19.3351 19.2890 19.2313 19.3451 17.6221 19.2606
    6 25.3116 24.3138 24.3120 22.8730 24.9068 24.6890 24.8608 24.3312 21.5133 21.5163
    8 30.2043 28.8512 29.4451 26.8932 28.8920 30.1893 26.9309 28.0531 21.7764 21.4465
    10 33.3301 32.1521 32.5122 31.4008 31.9123 31.2653 30.5950 31.7392 23.0558 21.7999
    12 34.2579 33.5667 33.5679 28.8232 33.9012 34.2716 31.7886 33.8661 24.1207 23.6892
    Lake 4 18.2514 18.2514 18.2514 18.1857 18.0607 18.2348 18.2435 18.2514 16.4759 15.0601
    6 23.6183 22.9541 22.7654 22.8559 23.0808 23.0525 22.6119 22.9201 17.8063 18.2172
    8 27.4202 26.1891 26.0786 27.2324 26.0580 25.9331 25.6984 25.8055 20.0112 19.3166
    10 31.8548 29.0040 29.1402 28.3226 28.8951 28.6493 28.0904 28.9814 22.3835 22.3242
    12 33.5569 30.7909 30.4219 29.9866 31.1864 32.9733 28.4370 30.7989 23.3754 22.4949

     | Show Table
    DownLoad: CSV
    Table 10.  The PSNR values using MCE method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 19.2861 19.2861 19.2861 19.2055 19.2861 19.2229 19.2480 19.2861 16.9146 17.8353
    6 22.1149 21.6223 21.6743 21.8527 21.6255 21.6285 21.5617 21.6775 20.6040 19.7740
    8 27.0817 23.1912 23.2581 23.7577 23.3021 23.7125 23.7922 23.0945 21.9409 21.0794
    10 28.0991 24.4551 24.6218 25.4063 26.6986 24.3297 24.5463 24.3360 23.2507 21.9060
    12 29.8725 25.1136 29.8542 27.2696 26.9861 25.5679 24.7926 29.3463 23.9524 24.4563
    Building 4 17.4155 17.4155 17.4155 17.3512 17.4155 17.2362 17.4155 17.4155 17.4155 17.4155
    6 19.9001 19.8187 19.8827 19.0280 19.8816 19.5492 19.0638 19. 4596 19.8014 19.5000
    8 22.7921 22.5599 22.6780 19.5148 22.3500 22.6063 22.0128 22.4512 21.8680 22.1245
    10 27.2061 24.2853 24.1301 22.2338 23.8961 24.9474 23.3224 24.6730 22.5496 23.0076
    12 27.4723 27.0421 25.0232 24.8906 25.6701 25.8344 24.9589 25.1773 24.5120 24.9875
    Cactus 4 21.0442 21.0442 21.0442 21.0422 21.0126 21.0118 21.0333 21.0442 18.2742 19.3560
    6 24.9529 23.3510 23.3674 23.3678 24.0485 23.5364 23.4052 23.3895 20.2090 20.6766
    8 28.5911 24.5707 24.5779 24.5286 24.5989 24.5600 26.5850 24.6217 21.9887 22.1574
    10 29.9778 25.3832 25.3712 25.4471 27.9011 25.6677 27.6291 25.6254 22.0914 23.7324
    12 31.8637 26.1599 25.7562 26.2726 28.2229 28.9389 29.0718 26.3566 23.9993 23.2377
    Cow 4 19.7030 19.7030 19.6961 19.7030 19.6629 19.7030 19.6343 19.2385 18.4964 17.9766
    6 24.1672 21.9280 21.9130 21.3218 21.9130 21.8494 21.7807 21.9032 20.3522 19.2911
    8 27.3862 24.0409 24.0290 22.8483 24.0287 23.9099 23.6381 23.9633 20.2832 22.2579
    10 28.9123 25.1526 25.0983 24.6953 25.1431 26.3286 25.5584 28.8959 20.6888 21.3226
    12 30.6430 30.5606 29.4939 27.4681 26.0056 27.0059 29.7306 29.9207 24.3489 23.7499
    Deer 4 15.6122 15.6122 15.6122 15.0935 15.6122 15.5409 15.3976 15.6084 15.6122 15.6122
    6 24.6247 19.1380 19.1380 17.9988 22.2128 23.7311 19.1380 19.4118 21.0277 22.7668
    8 28.0177 23.9777 23.6379 21.3379 24.2505 25.7888 22.3424 25.0594 21.7233 23.8596
    10 30.4749 27.9028 24.8091 23.3179 28.4935 30.3411 28.8443 27.0434 24.3608 25.5655
    12 32.3489 31.2369 25.0884 26.1129 29.9859 31.2170 31.0402 30.0412 26.2164 26.8012
    Diver 4 22.2354 22.2354 22.2354 22.2239 22.2354 22.2020 22.1763 22.2124 22.1863 22.2354
    6 27.8765 25.6318 26.8252 25.4321 27.6780 26.0988 26.4248 26.3044 24.2075 24.2863
    8 29.7961 27.7268 27.6574 27.5539 28.5651 29.6757 26.8094 27.5598 26.0722 24.1376
    10 31.3786 29.0860 28.7092 28.1075 28.5887 30.6830 30.3389 31.3065 25.7920 27.7836
    12 31.8544 30.3199 30.1751 29.0378 30.8514 31.1978 31.4286 31.3641 27.3253 27.4796
    Elephant 4 18.3463 18.3336 18.3463 18.1708 17.4852 17.3805 17.5702 17.4852 18.3463 18.2466
    6 22.1628 20.4135 20.4535 21.9961 21.7783 20.4135 20.6891 20.3317 20.1564 21.0282
    8 24.7220 23.3686 23.7688 20.9605 24.5748 22.0756 22.7301 24.5871 23.1261 21.9422
    10 26.9608 25.5516 25.8022 22.5515 25.4095 25.9089 24.3794 26.5956 23.0379 23.8127
    12 29.3330 27.9280 28.9816 24.8952 27.1191 28.2273 25.7960 28.3370 23.8743 23.5579
    Horse 4 20.1345 19.6709 19.6709 19.6709 19.6763 19.7642 20.0307 19.6716 18.1976 19.3682
    6 24.6958 23.0096 23.1941 23.2140 23.1452 23.2670 22.9247 23.1408 20.7912 21.0884
    8 27.2155 25.6084 25.4453 25.5795 25.4993 25.5279 24.7919 25.7945 21.5042 22.3496
    10 28.8068 26.7811 27.7569 27.8577 27.2524 27.9344 27.2989 28.1843 24.2632 23.8468
    12 31.2694 28.2212 28.6299 29.7647 31.1706 29.1077 30.2376 29.5208 24.7799 25.3405
    Kangaroo 4 18.3519 17.4067 17.4067 17.4067 17.4103 17.0564 17.5407 17.4078 18.2768 18.3300
    6 23.1569 21.4058 20.6824 21.1593 21.0394 20.6824 22.5463 20.6663 20.7331 21.1320
    8 30.0907 26.0815 26.7610 25.4635 26.1473 24.6898 23.6899 26.0395 22.3714 23.3637
    10 32.6099 30.3705 27.9116 26.5561 30.5514 32.0864 29.5856 30.0876 25.4257 25.1888
    12 34.1968 34.1044 31.2554 27.3589 32.5094 33.6201 31.1735 33.9460 25.4637 27.0112
    Lake 4 20.0431 18.9654 18.9611 18.5261 18.9611 18.5723 18.9711 18.9611 15.2170 17.5212
    6 23.1596 21.9103 21.8344 21.9101 21.8345 21.7848 21.6807 21.9074 19.9245 19.0321
    8 26.8396 22.9554 23.4779 23.4811 24.2708 24.7097 22.7091 23.7849 19.4923 21.2751
    10 28.9053 25.3040 25.3547 25.6594 26.8900 26.4456 24.8679 24.7697 21.2984 23.3053
    12 30.8523 25.6771 28.9978 27.3762 29.6128 28.9323 28.0416 27.6008 23.7859 23.7204

     | Show Table
    DownLoad: CSV
    Table 11.  The SSIM values using Otsu's method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 0.7113 0.7113 0.7113 0.7043 0.7113 0.7110 0.7090 0.7113 0.6573 0.7026
    6 0.8056 0.8056 0.8055 0.8003 0.8055 0.7992 0.7921 0.8056 0.8047 0.7817
    8 0.8567 0.8522 0.8544 0.8441 0.8566 0.8461 0.8505 0.8543 0.8567 0.8424
    10 0.8835 0.8792 0.8717 0.8715 0.8826 0.8756 0.8777 0.8824 0.8762 0.8763
    12 0.9028 0.8903 0.9003 0.8828 0.8944 0.8980 0.8969 0.8935 0.8888 0.9020
    Building 4 0.7372 0.7372 0.7372 0.7313 0.7372 0.7372 0.7365 0.7372 0.6592 0.6868
    6 0.8052 0.8043 0.8030 0.8052 0.8031 0.8031 0.8002 0.8024 0.7017 0.7455
    8 0.8389 0.8382 0.8384 0.8353 0.8382 0.8346 0.8303 0.8387 0.7955 0.8048
    10 0.8737 0.8637 0.8635 0.8558 0.8639 0.8545 0.8531 0.8633 0.8005 0.8252
    12 0.8831 0.8813 0.8826 0.8751 0.8824 0.8823 0.8826 0.8824 0.8461 0.8729
    Cactus 4 0.5798 0.5798 0.5798 0.5785 0.5798 0.5599 0.5798 0.5798 0.5737 0.5700
    6 0.6815 0.6812 0.6813 0.6790 0.6815 0.6815 0.6705 0.6813 0.6729 0.6498
    8 0.7351 0.7275 0.7320 0.7287 0.7349 0.7151 0.7087 0.7344 0.7325 0.7321
    10 0.7690 0.7541 0.7611 0.7678 0.7654 0.7551 0.7681 0.7689 0.7650 0.7628
    12 0.7888 0.7668 0.7747 0.7767 0.7823 0.7693 0.7724 0.7828 0.7851 0.7677
    Cow 4 0.7231 0.7231 0.7231 0.7081 0.7229 0.7225 0.7219 0.7231 0.7038 0.7067
    6 0.8050 0.7960 0.8045 0.7888 0.8044 0.7897 0.7975 0.8057 0.7858 0.7798
    8 0.8455 0.8403 0.8446 0.8430 0.8447 0.8436 0.8362 0.8448 0.8170 0.8453
    10 0.8739 0.8688 0.8730 0.8651 0.8723 0.8706 0.8675 0.8706 0.8031 0.8469
    12 0.8887 0.8751 0.8818 0.8835 0.8842 0.8768 0.8778 0.8841 0.8701 0.8823
    Deer 4 0.6480 0.6480 0.6480 0.6434 0.6480 0.6432 0.6480 0.6326 0.6397 0.6463
    6 0.8121 0.7898 0.7898 0.8034 0.7901 0.7874 0.7656 0.7923 0.7591 0.8120
    8 0.8749 0.8566 0.8554 0.8606 0.8595 0.8667 0.8642 0.8653 0.7847 0.8208
    10 0.9043 0.8987 0.8931 0.8869 0.8971 0.9015 0.9016 0.9042 0.8587 0.8950
    12 0.9291 0.9203 0.9190 0.9248 0.9171 0.9161 0.9087 0.9281 0.8958 0.9057
    Diver 4 0.3451 0.3451 0.3451 0.3404 0.3451 0.3437 0.3436 0.3450 0.3446 0.3411
    6 0.4352 0.4349 0.4352 0.4132 0.4352 0.4053 0.4352 0.4314 0.4327 0.4324
    8 0.5743 0.5517 0.4710 0.4917 0.4702 0.4425 0.5405 0.4771 0.5675 0.5233
    10 0.6073 0.5922 0.4985 0.6026 0.6024 0.4838 0.6380 0.5744 0.4822 0.6048
    12 0.6730 0.6262 0.5055 0.6130 0.6159 0.6107 0.6456 0.5841 0.6068 0.6632
    Elephant 4 0.6080 0.6080 0.6080 0.5992 0.6080 0.6073 0.6041 0.6080 0.6065 0.6042
    6 0.7149 0.7073 0.6950 0.7079 0.7084 0.6944 0.6911 0.6945 0.6990 0.7145
    8 0.7957 0.7560 0.7446 0.7685 0.7692 0.7543 0.7834 0.7588 0.7497 0.7838
    10 0.8447 0.8029 0.7844 0.8421 0.8229 0.7777 0.8314 0.8229 0.8102 0.8029
    12 0.8776 0.8164 0.8458 0.8775 0.8257 0.8376 0.8431 0.8309 0.8776 0.8657
    Horse 4 0.7462 0.7462 0.7462 0.7304 0.7462 0.7370 0.7428 0.7450 0.6384 0.6560
    6 0.8736 0.8433 0.8436 0.8582 0.8436 0.8573 0.8427 0.8350 0.7952 0.8313
    8 0.9207 0.8900 0.8900 0.9195 0.8928 0.9059 0.8915 0.8913 0.8388 0.8528
    10 0.9475 0.9069 0.9332 0.9399 0.9426 0.9334 0.9128 0.9283 0.8639 0.8476
    12 0.9552 0.9232 0.9479 0.9457 0.9503 0.9458 0.9424 0.9447 0.9002 0.8971
    Kangaroo 4 0.7130 0.7130 0.7130 0.7042 0.7126 0.7116 0.7086 0.7129 0.6375 0.6732
    6 0.8414 0.8413 0.8414 0.8207 0.8414 0.8363 0.8220 0.8338 0.7698 0.8036
    8 0.9101 0.9014 0.9015 0.8687 0.9007 0.8978 0.8672 0.8976 0.7547 0.8233
    10 0.9352 0.9266 0.9286 0.9069 0.9333 0.9211 0.9014 0.9256 0.8290 0.8893
    12 0.9494 0.9378 0.9394 0.9219 0.9492 0.9454 0.9192 0.9436 0.8724 0.8834
    Lake 4 0.6677 0.6676 0.6676 0.6624 0.6676 0.6672 0.6677 0.6662 0.6199 0.6635
    6 0.7982 0.7646 0.7673 0.7979 0.7853 0.7719 0.7699 0.7663 0.6870 0.7027
    8 0.8781 0.8408 0.8277 0.8589 0.8290 0.8388 0.8212 0.8698 0.8205 0.7837
    10 0.8929 0.8620 0.8630 0.8812 0.8618 0.8846 0.8778 0.8804 0.8681 0.8331
    12 0.9186 0.8836 0.9057 0.8897 0.9070 0.9044 0.8912 0.8888 0.8515 0.8652

     | Show Table
    DownLoad: CSV
    Table 12.  The SSIM values using Kapur's entropy.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDA EOFPA
    Bridge 4 0.6942 0.6942 0.6930 0.6352 0.6889 0.6941 0.6851 0.6942 0.6645 0.6772
    6 0.8170 0.7948 0.7945 0.8051 0.7958 0.8073 0.7890 0.7969 0.7594 0.8127
    8 0.8558 0.8437 0.8490 0.8370 0.8509 0.8425 0.8443 0.8509 0.8557 0.8551
    10 0.8984 0.8837 0.8770 0.8780 0.8798 0.8880 0.8859 0.8803 0.8841 0.8857
    12 0.9379 0.8904 0.9126 0.9359 0.9135 0.9236 0.8982 0.9221 0.9241 0.9100
    Building 4 0.7384 0.7384 0.7384 0.7370 0.7384 0.7321 0.7379 0.7384 0.7100 0.6493
    6 0.8268 0.8242 0.8214 0.8194 0.8061 0.8216 0.8199 0.8160 0.7319 0.7376
    8 0.8690 0.8660 0.8666 0.8503 0.8671 0.8685 0.8462 0.8656 0.7095 0.7367
    10 0.8960 0.8930 0.8915 0.8649 0.8943 0.8907 0.8694 0.8924 0.8010 0.8069
    12 0.9167 0.9124 0.9134 0.8945 0.9137 0.9147 0.8866 0.9089 0.8416 0.8599
    Cactus 4 0.6220 0.6220 0.6220 0.6211 0.6207 0.6198 0.6201 0.6220 0.4588 0.4650
    6 0.8041 0.7119 0.7130 0.7132 0.7546 0.7120 0.7118 0.7138 0.5973 0.6548
    8 0.8772 0.7557 0.7570 0.7589 0.7612 0.7453 0.8131 0.7586 0.6363 0.7261
    10 0.9072 0.7797 0.7837 0.7903 0.8430 0.7859 0.8569 0.7907 0.7089 0.7736
    12 0.9187 0.8078 0.7949 0.8164 0.8462 0.8472 0.8668 0.8164 0.7656 0.7188
    Cow 4 0.6847 0.6827 0.6847 0.6837 0.6847 0.6833 0.6838 0.6847 0.6793 0.6830
    6 0.8151 0.7801 0.7823 0.7823 0.7913 0.7838 0.7701 0.7804 0.7421 0.8128
    8 0.8684 0.8558 0.8543 0.8584 0.8404 0.8499 0.8451 0.8386 0.8317 0.8199
    10 0.9059 0.8786 0.8922 0.8798 0.9045 0.8955 0.8481 0.8948 0.8544 0.8746
    12 0.9252 0.9176 0.9218 0.9106 0.9209 0.9234 0.8943 0.9140 0.8741 0.8815
    Deer 4 0.6468 0.6468 0.6468 0.6385 0.6468 0.6467 0.6424 0.6468 0.4978 0.6468
    6 0.7928 0.7918 0.7907 0.7868 0.7923 0.7846 0.7902 0.7928 0.7919 0.7580
    8 0.8663 0.8649 0.8542 0.8222 0.8581 0.8598 0.8544 0.8650 0.7811 0.8139
    10 0.9069 0.9031 0.9063 0.8389 0.8937 0.8933 0.8675 0.8977 0.8291 0.8549
    12 0.9338 0.9251 0.9138 0.8882 0.9322 0.9164 0.8742 0.9272 0.8947 0.8984
    Diver 4 0.4393 0.4393 0.4393 0.4298 0.4393 0.4095 0.4202 0.4393 0.4383 0.4321
    6 0.6108 0.6060 0.5739 0.5831 0.5682 0.4672 0.5918 0.5862 0.6001 0.5501
    8 0.8221 0.6708 0.6074 0.6724 0.6627 0.6000 0.7211 0.6304 0.7962 0.8003
    10 0.9111 0.6921 0.6520 0.7011 0.6873 0.6278 0.7519 0.6820 0.8130 0.8131
    12 0.9183 0.7537 0.6933 0.7615 0.7566 0.6303 0.7791 0.7146 0.8281 0.8814
    Elephant 4 0.5266 0.5258 0.5266 0.5253 0.5266 0.5212 0.5212 0.5266 0.5266 0.5195
    6 0.6878 0.6103 0.6103 0.6105 0.6192 0.6520 0.5864 0.6332 0.6492 0.6845
    8 0.8032 0.6783 0.6942 0.6976 0.7281 0.7224 0.7094 0.6978 0.7229 0.7631
    10 0.8242 0.8025 0.7513 0.7701 0.7996 0.7534 0.7247 0.7594 0.7079 0.8019
    12 0.8759 0.8403 0.7942 0.7859 0.8411 0.8463 0.8182 0.8505 0.8187 0.7491
    Horse 4 0.7496 0.7496 0.7496 0.7483 0.7492 0.7476 0.7425 0.7482 0.6587 0.6769
    6 0.8645 0.8532 0.8503 0.8535 0.8507 0.8557 0.8493 0.8526 0.7706 0.7907
    8 0.9231 0.9168 0.9198 0.9082 0.9218 0.9203 0.9186 0.9199 0.8587 0.8251
    10 0.9455 0.9306 0.9434 0.9357 0.9452 0.9387 0.9252 0.9445 0.8553 0.7948
    12 0.9602 0.9453 0.9562 0.9434 0.9581 0.9579 0.9409 0.9586 0.8730 0.8409
    Kangaroo 4 0.6355 0.6345 0.6347 0.6264 0.5800 0.6354 0.6266 0.6355 0.6344 0.6335
    6 0.7745 0.7558 0.7647 0.7499 0.7700 0.7661 0.7377 0.7698 0.7686 0.7738
    8 0.8555 0.8487 0.8514 0.8133 0.8493 0.8333 0.8335 0.8468 0.7650 0.7709
    10 0.8983 0.8874 0.8851 0.8398 0.8927 0.8880 0.8412 0.8963 0.8167 0.7521
    12 0.9235 0.9170 0.9193 0.8954 0.9143 0.9114 0.8838 0.9208 0.8294 0.8155
    Lake 4 0.6625 0.6625 0.6625 0.6610 0.6599 0.6615 0.6613 0.6625 0.6609 0.6377
    6 0.7980 0.7970 0.7900 0.7864 0.7975 0.7964 0.7871 0.7923 0.7442 0.7460
    8 0.8682 0.8641 0.8630 0.8551 0.8649 0.8635 0.8531 0.8610 0.8138 0.7938
    10 0.9156 0.9018 0.9065 0.8733 0.9016 0.9025 0.8876 0.8998 0.8369 0.8575
    12 0.9390 0.9275 0.9258 0.9034 0.9287 0.9323 0.8979 0.9220 0.8718 0.8648

     | Show Table
    DownLoad: CSV
    Table 13.  The SSIM values using MCE method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 0.7366 0.7366 0.7366 0.7355 0.7366 0.7348 0.7356 0.7366 0.6931 0.6918
    6 0.8266 0.8214 0.8224 0.8199 0.8212 0.8226 0.8202 0.8221 0.7918 0.7982
    8 0.8829 0.8694 0.8703 0.8635 0.8710 0.8679 0.8739 0.8672 0.8516 0.8550
    10 0.9071 0.8966 0.9070 0.8893 0.9052 0.9002 0.8795 0.8957 0.8976 0.8873
    12 0.9345 0.9101 0.9180 0.9195 0.9204 0.9212 0.8978 0.9238 0.9022 0.9265
    Building 4 0.7553 0.7553 0.7553 0.7537 0.7553 0.7549 0.7551 0.7553 0.6365 0.6991
    6 0.8221 0.8185 0.8176 0.8131 0.8181 0.8185 0.8172 0.8175 0.7506 0.7318
    8 0.8521 0.8468 0.8466 0.8239 0.8491 0.8511 0.8390 0.8476 0.8003 0.8024
    10 0.8820 0.8639 0.8645 0.8540 0.8726 0.8724 0.8571 0.8735 0.8023 0.8297
    12 0.9048 0.8922 0.8802 0.8765 0.8966 0.8811 0.8957 0.8786 0.8527 0.8656
    Cactus 4 0.4681 0.4681 0.4681 0.4671 0.4681 0.4637 0.4673 0.4681 0.4657 0.4629
    6 0.6581 0.5566 0.5548 0.5573 0.5546 0.5960 0.5702 0.5560 0.6454 0.6295
    8 0.7983 0.7213 0.7949 0.7707 0.6305 0.6478 0.7329 0.6397 0.7855 0.7888
    10 0.8446 0.7609 0.8330 0.7738 0.7436 0.8322 0.7820 0.7121 0.8344 0.8363
    12 0.8672 0.7861 0.8619 0.8372 0.7952 0.8634 0.8492 0.8624 0.8513 0.8209
    Cow 4 0.7327 0.7327 0.7320 0.7327 0.7285 0.7327 0.7319 0.7140 0.7252 0.7327
    6 0.8227 0.8206 0.8206 0.8137 0.8133 0.8149 0.8217 0.8199 0.7943 0.8213
    8 0.8712 0.8604 0.8603 0.8610 0.8568 0.8455 0.8677 0.8583 0.8489 0.8318
    10 0.8921 0.8895 0.8848 0.8830 0.8912 0.8865 0.8896 0.8889 0.8156 0.8744
    12 0.9139 0.9108 0.9043 0.9131 0.9119 0.9075 0.8956 0.9097 0.8822 0.8922
    Deer 4 0.6399 0.6399 0.6399 0.6170 0.6399 0.6304 0.6345 0.6323 0.6381 0.6330
    6 0.8098 0.7790 0.7790 0.7627 0.7956 0.7790 0.8026 0.7845 0.7389 0.7832
    8 0.8807 0.8621 0.8671 0.8443 0.8553 0.8544 0.8305 0.8628 0.7842 0.8523
    10 0.9130 0.9108 0.8948 0.8491 0.9035 0.8997 0.8915 0.8886 0.8737 0.8860
    12 0.9362 0.9336 0.9174 0.8651 0.9227 0.9218 0.9191 0.9235 0.8922 0.9079
    Diver 4 0.1592 0.1351 0.1579 0.1516 0.1351 0.1570 0.1337 0.1351 0.1448 0.1413
    6 0.2508 0.1743 0.1743 0.2117 0.1743 0.1736 0.1667 0.1743 0.2476 0.2455
    8 0.5062 0.2698 0.2715 0.2716 0.2717 0.2864 0.3493 0.2697 0.4995 0.4941
    10 0.6209 0.3446 0.3557 0.5907 0.3566 0.3814 0.3595 0.3819 0.6119 0.6123
    12 0.6299 0.5336 0.3968 0.6005 0.3868 0.3936 0.5492 0.3971 0.6141 0.6193
    Elephant 4 0.5256 0.5208 0.5256 0.5253 0.5036 0.5212 0.5092 0.5191 0.5189 0.5169
    6 0.6787 0.6093 0.6001 0.6605 0.6192 0.6760 0.5864 0.6332 0.6716 0.6679
    8 0.7902 0.6983 0.6984 0.6876 0.7281 0.7204 0.7254 0.6868 0.7902 0.7803
    10 0.8189 0.8015 0.7845 0.7861 0.7866 0.7214 0.7357 0.7414 0.8141 0.8042
    12 0.8670 0.8303 0.7712 0.7989 0.8311 0.8543 0.8212 0.8435 0.8125 0.8098
    Horse 4 0.7878 0.7769 0.7769 0.7769 0.7791 0.7783 0.7855 0.7689 0.6849 0.7398
    6 0.8841 0.8679 0.8700 0.8700 0.8687 0.8673 0.8647 0.8691 0.7936 0.8095
    8 0.9249 0.9118 0.9106 0.9139 0.9117 0.9069 0.9032 0.9144 0.8239 0.8532
    10 0.9413 0.9313 0.9354 0.9320 0.9336 0.9339 0.9389 0.9398 0.8851 0.8743
    12 0.9601 0.9451 0.9459 0.9537 0.9596 0.9529 0.9504 0.9536 0.8939 0.9144
    Kangaroo 4 0.7084 0.6978 0.6978 0.6958 0.6985 0.6881 0.6919 0.6980 0.6295 0.7071
    6 0.8353 0.8252 0.8211 0.8024 0.8256 0.8211 0.8106 0.8203 0.7677 0.7520
    8 0.8978 0.8934 0.8936 0.8646 0.8916 0.8878 0.8445 0.8867 0.7731 0.8215
    10 0.9297 0.9289 0.9222 0.8966 0.9190 0.9228 0.8905 0.9224 0.8699 0.8722
    12 0.9479 0.9457 0.9471 0.9050 0.9434 0.9398 0.9086 0.9471 0.8763 0.9062
    Lake 4 0.6875 0.6871 0.6875 0.6807 0.6875 0.6783 0.6788 0.6875 0.6346 0.6589
    6 0.7906 0.7904 0.7892 0.7882 0.7895 0.7856 0.7800 0.7902 0.7906 0.7692
    8 0.8579 0.8360 0.8441 0.8470 0.8487 0.8473 0.8280 0.8432 0.7952 0.8246
    10 0.8919 0.8798 0.8813 0.8785 0.8835 0.8833 0.8612 0.8740 0.8399 0.8827
    12 0.9200 0.8950 0.9176 0.9049 0.9090 0.9093 0.8971 0.9092 0.8726 0.8929

     | Show Table
    DownLoad: CSV
    Table 14.  The FSIM values using Otsu's method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 0.7972 0.7972 0.7972 0.7925 0.7972 0.7972 0.7972 0.7972 0.7684 0.7886
    6 0.8669 0.8667 0.8669 0.8525 0.8669 0.8642 0.8576 0.8669 0.8669 0.8365
    8 0.8995 0.8988 0.8993 0.8795 0.8995 0.8973 0.8916 0.8989 0.8826 0.8775
    10 0.9183 0.9177 0.9164 0.9099 0.9175 0.9126 0.9086 0.9181 0.9039 0.8923
    12 0.9383 0.9274 0.9378 0.9103 0.9289 0.9318 0.9292 0.9288 0.9120 0.9240
    Building 4 0.7762 0.7762 0.7762 0.7722 0.7762 0.7762 0.7762 0.7762 0.7234 0.7362
    6 0.8413 0.8413 0.8409 0.8370 0.8408 0.8413 0.8387 0.8403 0.7659 0.7850
    8 0.8752 0.8749 0.8747 0.8575 0.8739 0.8731 0.8660 0.8744 0.8161 0.8417
    10 0.9075 0.8981 0.8975 0.8827 0.8968 0.8923 0.8857 0.8979 0.8348 0.8574
    12 0.9161 0.9156 0.9021 0.9036 0.9130 0.9130 0.9049 0.9122 0.8883 0.8905
    Cactus 4 0.7771 0.7771 0.7771 0.7747 0.7771 0.7740 0.7764 0.7771 0.7770 0.7771
    6 0.8458 0.8456 0.8458 0.8371 0.8456 0.8444 0.8402 0.8458 0.8454 0.8464
    8 0.8812 0.8760 0.8794 0.8805 0.8812 0.8746 0.8650 0.8810 0.8804 0.8733
    10 0.9012 0.8957 0.8993 0.9011 0.9001 0.8971 0.8790 0.9009 0.8968 0.9012
    12 0.9133 0.9064 0.9101 0.9078 0.9129 0.9044 0.9099 0.9113 0.9013 0.9053
    Cow 4 0.7983 0.7983 0.7983 0.7909 0.7983 0.7982 0.7975 0.7983 0.7813 0.7834
    6 0.8698 0.8657 0.8695 0.8455 0.8694 0.8612 0.8607 0.8690 0.8434 0.8397
    8 0.9022 0.8990 0.9017 0.8830 0.9015 0.9008 0.8961 0.9015 0.8810 0.8885
    10 0.9212 0.9207 0.9214 0.9086 0.9103 0.9190 0.9129 0.9196 0.8495 0.8888
    12 0.9329 0.9307 0.9313 0.9178 0.9136 0.9203 0.9186 0.9312 0.9076 0.9279
    Deer 4 0.7449 0.7449 0.7449 0.7422 0.7449 0.7434 0.7439 0.7410 0.7158 0.7332
    6 0.8517 0.8423 0.8423 0.8367 0.8420 0.8466 0.8307 0.8507 0.7969 0.8551
    8 0.9086 0.8875 0.8861 0.8840 0.8921 0.9033 0.9022 0.8940 0.8153 0.8513
    10 0.9346 0.9203 0.9233 0.9097 0.9212 0.9322 0.9223 0.9292 0.8827 0.9027
    12 0.9481 0.9349 0.9416 0.9466 0.9363 0.9382 0.9323 0.9445 0.9009 0.9307
    Diver 4 0.7798 0.7798 0.7798 0.7776 0.7798 0.7739 0.7754 0.7783 0.7798 0.7798
    6 0.8331 0.8329 0.8331 0.8303 0.8332 0.8212 0.8327 0.8331 0.8324 0.8301
    8 0.8648 0.8599 0.8627 0.8631 0.8617 0.8471 0.8498 0.8641 0.8614 0.8614
    10 0.8877 0.8819 0.8798 0.8870 0.8853 0.8717 0.8562 0.8643 0.8804 0.8739
    12 0.9114 0.9021 0.8913 0.8982 0.8979 0.8879 0.8746 0.8910 0.9114 0.9114
    Elephant 4 0.7582 0.7582 0.7582 0.7516 0.7582 0.7564 0.7568 0.7582 0.7924 0.7582
    6 0.8248 0.8217 0.8139 0.8245 0.8216 0.8130 0.8150 0.8136 0.8228 0.8209
    8 0.8582 0.8514 0.8477 0.8533 0.8552 0.8515 0.8574 0.8539 0.8463 0.8582
    10 0.8855 0.8775 0.8723 0.8854 0.8848 0.8683 0.8849 0.8828 0.8738 0.8778
    12 0.9051 0.8915 0.9023 0.9036 0.8947 0.8943 0.8851 0.8866 0.8802 0.9008
    Horse 4 0.8207 0.8207 0.8207 0.8194 0.8207 0.8206 0.8181 0.8200 0.7313 0.7576
    6 0.8887 0.8786 0.8787 0.8881 0.8783 0.8867 0.8760 0.8736 0.8576 0.8862
    8 0.9303 0.9079 0.9078 0.9298 0.9102 0.9215 0.9069 0.9070 0.8814 0.8808
    10 0.9489 0.9252 0.9363 0.9466 0.9393 0.9386 0.9169 0.9370 0.9081 0.8875
    12 0.9568 0.9349 0.9392 0.9479 0.9559 0.9559 0.9501 0.9466 0.9103 0.9323
    Kangaroo 4 0.7456 0.7456 0.7456 0.7387 0.7455 0.7448 0.7425 0.7452 0.7207 0.7456
    6 0.8534 0.8529 0.8529 0.8250 0.8529 0.8515 0.8468 0.8498 0.8340 0.8528
    8 0.9214 0.9148 0.9186 0.8776 0.9117 0.9213 0.8827 0.9086 0.8286 0.8690
    10 0.9522 0.9457 0.9471 0.9279 0.9453 0.9375 0.9224 0.9434 0.9075 0.9026
    12 0.9685 0.9557 0.9567 0.9392 0.9607 0.9628 0.9356 0.9554 0.9239 0.9292
    Lake 4 0.7694 0.7694 0.7694 0.7684 0.7654 0.7677 0.7682 0.7689 0.7399 0.7694
    6 0.8582 0.8370 0.8376 0.8560 0.8478 0.8401 0.8389 0.8369 0.7859 0.7923
    8 0.9063 0.8804 0.8730 0.8902 0.8738 0.8790 0.8666 0.8936 0.8610 0.8461
    10 0.9137 0.8929 0.8936 0.9132 0.8933 0.9120 0.9074 0.9103 0.8870 0.8808
    12 0.9399 0.9054 0.9357 0.9210 0.9384 0.9317 0.9166 0.9189 0.8835 0.8849

     | Show Table
    DownLoad: CSV
    Table 15.  The FSIM values using Kapur's entropy.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 0.7954 0.7954 0.7947 0.7941 0.7856 0.7943 0.7915 0.7954 0.7262 0.7361
    6 0.8787 0.8701 0.8695 0.8651 0.8700 0.8749 0.8641 0.8705 0.7359 0.8764
    8 0.9081 0.9008 0.9043 0.8956 0.9052 0.9004 0.8941 0.9051 0.8783 0.8948
    10 0.9274 0.9240 0.9220 0.9095 0.9227 0.9244 0.9225 0.9221 0.8928 0.9056
    12 0.9549 0.9308 0.9409 0.9471 0.9434 0.9505 0.9276 0.9451 0.9054 0.9201
    Building 4 0.7776 0.7776 0.7776 0.7771 0.7776 0.7757 0.7769 0.7776 0.7401 0.7354
    6 0.8574 0.8564 0.8547 0.8472 0.8428 0.8547 0.8502 0.8507 0.8022 0.7879
    8 0.9017 0.9009 0.9000 0.8703 0.9004 0.9001 0.8757 0.8987 0.8136 0.7887
    10 0.9283 0.9257 0.9258 0.8887 0.9274 0.9228 0.8992 0.9260 0.8481 0.8528
    12 0.9444 0.9423 0.9440 0.9193 0.9439 0.9440 0.9149 0.9394 0.8840 0.8803
    Cactus 4 0.7766 0.7766 0.7766 0.7756 0.7761 0.7762 0.7762 0.7766 0.7304 0.7284
    6 0.8489 0.8488 0.8482 0.8470 0.8464 0.8483 0.8448 0.8484 0.8011 0.8056
    8 0.8981 0.8840 0.8847 0.8834 0.8835 0.8827 0.8728 0.8846 0.8344 0.8758
    10 0.9266 0.9045 0.9070 0.9181 0.9054 0.9049 0.8886 0.9066 0.8683 0.8960
    12 0.9390 0.9196 0.9165 0.9187 0.9271 0.9262 0.9203 0.9161 0.8800 0.8806
    Cow 4 0.7726 0.7708 0.7726 0.7722 0.7726 0.7709 0.7717 0.7726 0.7703 0.7703
    6 0.8635 0.8522 0.8538 0.8442 0.8635 0.8548 0.8418 0.8524 0.8304 0.8547
    8 0.9024 0.8964 0.9014 0.8891 0.8984 0.8959 0.8834 0.8973 0.8765 0.8779
    10 0.9311 0.9223 0.9256 0.9038 0.9201 0.9298 0.8881 0.9251 0.8951 0.9120
    12 0.9473 0.9428 0.9453 0.9282 0.9453 0.9471 0.9114 0.9412 0.9017 0.9080
    Deer 4 0.7496 0.7496 0.7496 0.7470 0.7496 0.7355 0.7456 0.7496 0.6511 0.7429
    6 0.8617 0.8607 0.8600 0.8511 0.8613 0.8559 0.8580 0.8612 0.8397 0.8291
    8 0.9122 0.9114 0.9061 0.8735 0.9078 0.9083 0.8997 0.9118 0.8417 0.8613
    10 0.9393 0.9352 0.9387 0.8841 0.9323 0.9337 0.9115 0.9322 0.8806 0.9047
    12 0.9573 0.9509 0.9440 0.9275 0.9568 0.9468 0.9145 0.9531 0.9168 0.9195
    Diver 4 0.7295 0.7093 0.7275 0.7159 0.7092 0.7268 0.7066 0.7092 0.7037 0.7242
    6 0.7528 0.7528 0.7528 0.7527 0.7526 0.7511 0.7387 0.7528 0.7446 0.7525
    8 0.8116 0.7948 0.7945 0.8045 0.7949 0.7982 0.7944 0.7925 0.8115 0.8116
    10 0.8470 0.8129 0.8234 0.8263 0.8251 0.8399 0.8329 0.8461 0.8464 0.8456
    12 0.8776 0.8625 0.8548 0.8551 0.8512 0.8410 0.8359 0.8547 0.8679 0.8685
    Elephant 4 0.7151 0.7148 0.7151 0.7149 0.7151 0.7117 0.7115 0.7151 0.7115 0.7120
    6 0.8016 0.7707 0.7707 0.7708 0.7711 0.7921 0.7577 0.7799 0.8007 0.8008
    8 0.8543 0.8104 0.8221 0.8246 0.8426 0.8313 0.8093 0.8240 0.8244 0.8451
    10 0.8813 0.8782 0.8601 0.8423 0.8738 0.8616 0.8153 0.8640 0.8425 0.8786
    12 0.9057 0.8965 0.8835 0.9036 0.9007 0.8978 0.8531 0.8806 0.8882 0.8725
    Horse 4 0.8264 0.8264 0.8264 0.8243 0.8262 0.8254 0.8231 0.8264 0.7714 0.7843
    6 0.8900 0.8897 0.8883 0.8890 0.8891 0.8891 0.8847 0.8892 0.8358 0.8393
    8 0.9355 0.9316 0.9324 0.9197 0.9339 0.9341 0.9316 0.9326 0.8989 0.8731
    10 0.9558 0.9457 0.9518 0.9495 0.9531 0.9541 0.9390 0.9520 0.9011 0.8674
    12 0.9707 0.9536 0.9632 0.9565 0.9647 0.9655 0.9538 0.9638 0.9147 0.9060
    Kangaroo 4 0.7364 0.7362 0.7355 0.7275 0.6934 0.7359 0.7347 0.7364 0.7349 0.7364
    6 0.8485 0.8388 0.8427 0.8298 0.8470 0.8450 0.8203 0.8468 0.8388 0.8445
    8 0.9153 0.9116 0.9113 0.8906 0.9113 0.9058 0.9020 0.9110 0.8460 0.8402
    10 0.9450 0.9403 0.9393 0.8920 0.9421 0.9386 0.9072 0.9431 0.8831 0.8697
    12 0.9612 0.9576 0.9589 0.9295 0.9575 0.9545 0.9288 0.9587 0.8962 0.9052
    Lake 4 0.7464 0.7464 0.7464 0.7430 0.7408 0.7452 0.7449 0.7464 0.7430 0.7381
    6 0.8443 0.8371 0.8366 0.8276 0.8387 0.8371 0.8312 0.8370 0.7971 0.8113
    8 0.8988 0.8948 0.8936 0.8888 0.8920 0.8912 0.8827 0.8894 0.8458 0.8448
    10 0.9441 0.9268 0.9297 0.9017 0.9258 0.9259 0.9165 0.9263 0.8775 0.8727
    12 0.9620 0.9465 0.9441 0.9274 0.9477 0.9582 0.9249 0.9436 0.8995 0.8989

     | Show Table
    DownLoad: CSV
    Table 16.  The FSIM values using MCE method.
    Images Levels MDA DA SSA SCA ALO HSO BA PSO BDE EOFPA
    Bridge 4 0.7948 0.7948 0.7948 0.7940 0.7948 0.7945 0.7938 0.7948 0.7881 0.7891
    6 0.8652 0.8573 0.8570 0.8453 0.8556 0.8554 0.8517 0.8570 0.86520 0.8600
    8 0.9101 0.8985 0.8963 0.8728 0.8951 0.9015 0.8927 0.8921 0.8914 0.8619
    10 0.9293 0.9182 0.9176 0.8977 0.9235 0.9266 0.8966 0.9138 0.9065 0.8803
    12 0.9501 0.9314 0.9302 0.9335 0.9348 0.9422 0.9128 0.9406 0.9101 0.9289
    Building 4 0.7772 0.7772 0.7772 0.7754 0.7772 0.7762 0.7770 0.7772 0.7277 0.7619
    6 0.8460 0.8425 0.8419 0.8348 0.8451 0.8420 0.8408 0.8418 0.8029 0.7832
    8 0.8811 0.8726 0.8731 0.8416 0.8740 0.8731 0.8637 0.8783 0.8221 0.8537
    10 0.9105 0.8907 0.8904 0.8741 0.8984 0.9025 0.8800 0.9016 0.8490 0.8660
    12 0.9328 0.9205 0.9060 0.8996 0.9244 0.9063 0.9173 0.9042 0.8928 0.8911
    Cactus 4 0.7340 0.7340 0.7340 0.7335 0.7340 0.7312 0.7331 0.7340 0.7244 0.7325
    6 0.8110 0.7972 0.7966 0.8018 0.7965 0.7976 0.8020 0.7975 0.7917 0.7965
    8 0.8765 0.8619 0.8742 0.8745 0.8400 0.8475 0.8658 0.8430 0.8577 0.8673
    10 0.9094 0.8887 0.9039 0.8903 0.8934 0.9035 0.8925 0.8775 0.8754 0.8922
    12 0.9270 0.9015 0.9246 0.8909 0.9257 0.9078 0.9009 0.9241 0.9117 0.9067
    Cow 4 0.7975 0.7975 0.7973 0.7975 0.7949 0.7975 0.7968 0.7774 0.7974 0.7935
    6 0.8715 0.8713 0.8712 0.8594 0.8669 0.8688 0.8675 0.8712 0.8690 0.8675
    8 0.9066 0.9062 0.9063 0.8869 0.9035 0.8981 0.9029 0.9052 0.8815 0.8796
    10 0.9263 0.9253 0.9225 0.9161 0.9258 0.9207 0.9156 0.9261 0.8709 0.9013
    12 0.9424 0.9395 0.9338 0.9311 0.9395 0.9373 0.9187 0.9379 0.9107 0.9175
    Deer 4 0.7485 0.7485 0.7485 0.7480 0.7485 0.7455 0.7466 0.7476 0.7156 0.7482
    6 0.8607 0.8601 0.8590 0.8531 0.8593 0.8579 0.8581 0.8602 0.7937 0.8604
    8 0.9119 0.9109 0.9034 0.8856 0.9098 0.9103 0.9097 0.9068 0.8382 0.8882
    10 0.9376 0.9312 0.9307 0.8956 0.9311 0.9354 0.9178 0.9302 0.8935 0.9048
    12 0.9478 0.9419 0.9422 0.9301 0.9437 0.9429 0.9181 0.9428 0.9151 0.9192
    Diver 4 0.8083 0.8083 0.8083 0.8073 0.8083 0.8008 0.7961 0.8082 0.7115 0.7290
    6 0.8422 0.8399 0.8393 0.8396 0.8325 0.8352 0.8321 0.8403 0.7426 0.7332
    8 0.8815 0.8813 0.8620 0.8664 0.8776 0.8525 0.8497 0.8646 0.8036 0.7981
    10 0.9033 0.8998 0.8890 0.8826 0.8987 0.8729 0.8690 0.8925 0.8219 0.8381
    12 0.9100 0.9096 0.9007 0.8908 0.9040 0.8870 0.8756 0.9070 0.8686 0.8585
    Elephant 4 0.7657 0.7653 0.7657 0.7609 0.7640 0.7651 0.7648 0.7650 0.6993 0.7016
    6 0.8294 0.8279 0.8278 0.8219 0.8293 0.8279 0.8178 0.8278 0.7987 0.8000
    8 0.8733 0.8585 0.8582 0.8586 0.8586 0.8569 0.8431 0.8536 0.8355 0.8476
    10 0.8816 0.8808 0.8803 0.8758 0.8811 0.8757 0.8638 0.8816 0.8678 0.8794
    12 0.9084 0.8932 0.9069 0.8901 0.8964 0.8952 0.8953 0.8969 0.8796 0.8808
    Horse 4 0.8266 0.8266 0.8266 0.8257 0.8266 0.8264 0.8202 0.8266 0.7711 0.8128
    6 0.8953 0.8862 0.8871 0.8875 0.8871 0.8910 0.8842 0.8866 0.8491 0.8596
    8 0.9317 0.9201 0.9186 0.9081 0.9186 0.9165 0.9070 0.9214 0.8657 0.8913
    10 0.9498 0.9342 0.9368 0.9373 0.9374 0.9432 0.9451 0.9399 0.9153 0.9017
    12 0.9654 0.9472 0.9500 0.9520 0.9653 0.9516 0.9555 0.9545 0.9279 0.9324
    Kangaroo 4 0.7364 0.7229 0.7229 0.7229 0.7232 0.7146 0.7214 0.7229 0.7259 0.7212
    6 0.8423 0.8269 0.8184 0.8057 0.8239 0.8184 0.8222 0.8180 0.8174 0.7918
    8 0.9212 0.8954 0.8977 0.8613 0.8958 0.8841 0.8489 0.8879 0.8367 0.8795
    10 0.9469 0.9361 0.9204 0.8916 0.9283 0.9452 0.9122 0.9247 0.9001 0.8817
    12 0.9623 0.9486 0.9606 0.9088 0.9502 0.9582 0.9217 0.9615 0.9056 0.9228
    Lake 4 0.7765 0.7764 0.7765 0.7727 0.7765 0.7731 0.7758 0.7765 0.7306 0.7314
    6 0.8451 0.8450 0.8443 0.8448 0.8445 0.8422 0.8372 0.8449 0.8418 0.8311
    8 0.8945 0.8768 0.8812 0.8885 0.8849 0.8831 0.8704 0.8810 0.8474 0.8564
    10 0.9134 0.9047 0.9051 0.9115 0.9064 0.9079 0.8901 0.8994 0.8758 0.9036
    12 0.9370 0.9158 0.9347 0.9337 0.9248 0.9314 0.9226 0.9257 0.8956 0.9162

     | Show Table
    DownLoad: CSV
    Figure 10.  Comparison of PSNR values for different algorithms using Otsu's method at five levels.
    Figure 11.  Comparison of SSIM values for different algorithms using Otsu's method at five 12 levels.
    Figure 12.  Comparison of FSIM values for different algorithms using Otsu's method at five levels.
    Figure 13.  Comparison of PSNR values for different algorithms using Kapur's entropy at five levels.
    Figure 14.  Comparison of SSIM values for different algorithms using Kapur's entropy at five levels.
    Figure 15.  Comparison of FSIM values for different algorithms using Kapur's entropy at five levels.
    Figure 16.  Comparison of PSNR values for different algorithms using MCE method at five levels.
    Figure 17.  Comparison of SSIM values for different algorithms using MCE method at five levels.
    Figure 18.  Comparison of FSIM values for different algorithms using MCE method at 4, 6, 8, 10 and 12 levels.

    In order to add further analysis to the results given above, a non-parametric Wilcoxon's rank sum test for 30 cases of experiment (10 images through 3 different thresholding approaches) has been conducted, which is performed at significance level 5%. The fitness function values of MDA based method are compared with other existing methods. The null hypothesis considered as there is no significant difference between the two compared methods. h=1 means the null hypothesis can be rejected at 5% significance level. On the other hand, h=0 means the null hypothesis cannot be rejected. p is statistical probability. If a value of p<0.05, it means that there is strong evidence against the null hypothesis. Table 17 gives the p and h values of all cases at 12 threshold levels. From the table it is found that MDA based method gives the satisfied values in general. For example, in the experiment using Otsu method, MDA based method produces better results in 89 out of 90 cases (10 images and 9 compared algorithms) when compared with other existing methods. Besides, in the experiment using Kapur method, MDA based method gives satisfied results in 88 out of 90 cases when compared with other existing methods. Additionally, in the experiment using MCE method, MDA based method gives satisfied results in 88 out of 90 cases when compared with other existing methods. From the experimental results above it is evident that MDA based method not only obtains higher quality segmented images, but also verifies its superior performance in a statistically meaningful way.

    Table 17.  Statistical analysis for the results of experiments on three methods.
    Threshold Methods Images MDA vs DA MDA vs SSA MDA vs SCA MDA vs ALO MDA vs HSO MDA vs BA MDA vs PSO MDA vs BDE MDA vs EOFPA
    p h p h p h p h p h p h p h p h p h
    Otsu Bridge < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Building < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Cactus < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Cow < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Deer < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Diver < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Elephant < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Horse < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Kangaroo < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Lake < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 0.0540 0 < 0.05 1 < 0.05 1
    Kapur Bridge < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Building < 0.05 1 0.1496 0 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Cactus < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Cow < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 0.0740 0 < 0.05 1 < 0.05 1
    Deer < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Diver < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Elephant < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Horse < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Kangaroo < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Lake < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    MCE Bridge < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Building < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Cactus < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Cow < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Deer < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Diver < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Elephant < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Horse < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Kangaroo < 0.05 1 0.0731 0 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1
    Lake < 0.05 1 < 0.05 1 < 0.05 1 0.2401 0 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1 < 0.05 1

     | Show Table
    DownLoad: CSV

    In order to verify the performance of MDA based method using various thresholding techniques, we made a comparison between the Otsu's method, Kapur's entropy, and MCE using MDA algorithm. The optimal PSNR, SSIM, and FSIM values obtained by the three MDA based methods are given in Table 18. It can be found that PSNR values obtained by MDA based method using Otsu produces better result in 2 out of 50 cases (5 thresholds and 10 test images), the Kapur's entropy based method gives better result in 38 out of 50 cases, and the MCE based method gives better result in 10 out of 50 cases. On comparing the SSIM values, these three thresholding techniques give better results in 14 out of 50 cases, 21 out of 50 cases, and 15 out of 50 cases respectively. Additionally, it can be evidently seen that Otsu based method produces better result in 12 out of 50 cases, Kapur's entropy based method gives better result in 23 out of 50 cases, and MCE based method gives better result in 15 out of 50 cases. To sum up, the frequency of getting better results through these three thresholding methods are 28 out of 150 cases, 82 out of 150 cases, and 40 out of 150 cases respectively, which consider all performance measures above. From the analysis above, we can find that MDA based method using Kapur's entropy has comprehensively outperformed the MDA based method using Otsu and MCE in terms of PSNR, SSIM, and FSIM values. Just like the no free lunch (NFL) theorem states, the proposed method may obtain better results than other multilevel thresholding techniques on several segmentation problems which have not been solved yet [24,60]. Therefore, the application of MDA based method for various color image segmentation is potential and meaningful.

    Table 18.  Comparison of PSNR, SSIM and FSIM values obtained by MDA.
    Images Levels PSNR SSIM FSIM
    Otsu Kapur MCE Otsu Kapur MCE Otsu Kapur MCE
    Bridge 4 18.9590 20.3166 19.2861 0.7113 0.6942 0.7366 0.7972 0.7954 0.7948
    6 21.0920 24.3943 22.1149 0.8056 0.8170 0.8266 0.8669 0.8787 0.8652
    8 22.5471 25.9201 27.0817 0.8567 0.8558 0.8829 0.8995 0.9081 0.9101
    10 23.4904 28.8445 28.0991 0.8835 0.8984 0.9071 0.9183 0.9274 0.9293
    12 27.7081 32.1186 29.8725 0.9028 0.9379 0.9345 0.9378 0.9549 0.9501
    Building 4 17.4155 17.4224 17.4155 0.7372 0.7384 0.7553 0.7762 0.7776 0.7772
    6 19.8902 19.9023 19.9001 0.8052 0.8268 0.8221 0.8413 0.8574 0.8460
    8 22.6625 22.9857 22.7921 0.8389 0.8690 0.8521 0.8752 0.9017 0.8811
    10 27.1866 27.2576 27.2061 0.8737 0.8960 0.8820 0.9075 0.9283 0.9105
    12 27.1983 28.4124 27.4723 0.8826 0.9167 0.9048 0.9161 0.9444 0.9328
    Cactus 4 20.3428 17.2477 21.0442 0.5798 0.6220 0.4681 0.7771 0.7766 0.7340
    6 22.6678 25.9105 24.9529 0.6815 0.8041 0.6581 0.8458 0.8489 0.8110
    8 23.9827 28.7324 28.5911 0.7351 0.8772 0.7983 0.8812 0.8981 0.8765
    10 24.8346 30.6897 29.9778 0.7690 0.9072 0.8446 0.9012 0.9266 0.9094
    12 25.3709 32.4563 31.8637 0.7888 0.9187 0.8672 0.9133 0.9390 0.9270
    Cow 4 19.7023 19.3706 19.7030 0.7231 0.6847 0.7327 0.7983 0.7726 0.7975
    6 21.8735 24.6314 24.1672 0.8050 0.8151 0.8227 0.8698 0.8635 0.8715
    8 23.6239 27.9669 27.3862 0.8455 0.8684 0.8712 0.9022 0.9024 0.9066
    10 24.4648 30.8466 28.9123 0.8739 0.9059 0.8921 0.9212 0.9311 0.9263
    12 25.0056 32.6043 30.6430 0.8887 0.9252 0.9139 0.9329 0.9473 0.9424
    Deer 4 17.2462 21.9086 15.6122 0.6480 0.6468 0.6399 0.7449 0.7496 0.7485
    6 22.3158 25.8662 24.6247 0.8121 0.7928 0.8098 0.8517 0.8617 0.8607
    8 26.4239 29.1490 28.0177 0.8749 0.8663 0.8807 0.9086 0.9122 0.9119
    10 27.1472 30.9920 30.4749 0.9043 0.9069 0.9130 0.9346 0.9393 0.9376
    12 27.9602 32.9202 32.3489 0.9291 0.9338 0.9362 0.9481 0.9573 0.9478
    Diver 4 24.4620 21.6563 22.2354 0.3451 0.4393 0.1592 0.7798 0.7295 0.8083
    6 26.9548 23.8743 27.8765 0.4352 0.6108 0.2508 0.8331 0.7528 0.8422
    8 29.4786 27.2237 29.7961 0.5743 0.8221 0.5062 0.8648 0.8116 0.8815
    10 29.8856 29.4785 31.3786 0.6073 0.9111 0.6209 0.8877 0.8470 0.9033
    12 31.1721 29.5071 31.8544 0.6730 0.9183 0.6299 0.9114 0.8776 0.9100
    Elephant 4 18.4590 18.6558 18.3463 0.6080 0.5266 0.5256 0.7582 0.7151 0.7657
    6 20.9780 23.4967 22.1628 0.7149 0.6878 0.6787 0.8248 0.8016 0.8294
    8 24.6549 26.2198 24.7220 0.7957 0.8032 0.7902 0.8582 0.8543 0.8733
    10 25.7650 28.9322 26.9608 0.8447 0.8242 0.8189 0.8855 0.8813 0.8816
    12 28.5499 29.8636 29.3330 0.8776 0.8759 0.8670 0.9051 0.9057 0.9084
    Horse 4 18.5055 19.5685 20.1345 0.7462 0.7496 0.7878 0.8207 0.8264 0.8266
    6 22.6464 24.0011 24.6958 0.8736 0.8645 0.8841 0.8887 0.8900 0.8953
    8 25.8693 27.3558 27.2155 0.9207 0.9231 0.9249 0.9303 0.9355 0.9317
    10 28.6567 29.3890 28.8068 0.9475 0.9455 0.9413 0.9489 0.9558 0.9498
    12 30.1088 31.6166 31.2694 0.9552 0.9602 0.9601 0.9568 0.9707 0.9654
    Kangaroo 4 19.3419 19.3602 18.3519 0.7130 0.6355 0.7084 0.7456 0.7364 0.7364
    6 25.2386 25.3116 23.1569 0.8414 0.7745 0.8353 0.8534 0.8485 0.8423
    8 30.1938 30.2043 30.0907 0.9101 0.8555 0.8978 0.9214 0.9153 0.9212
    10 33.3271 33.3301 32.6099 0.9352 0.8983 0.9297 0.9522 0.9450 0.9469
    12 34.2483 34.2579 34.1968 0.9494 0.9235 0.9479 0.9685 0.9612 0.9623
    Lake 4 17.8079 18.2514 20.0431 0.6677 0.6625 0.6875 0.7694 0.7464 0.7765
    6 23.7148 23.6183 23.1596 0.7982 0.7980 0.7906 0.8582 0.8443 0.8451
    8 25.1894 27.4202 26.8396 0.8781 0.8682 0.8579 0.9063 0.8988 0.8945
    10 27.3522 31.8548 28.9053 0.8929 0.9156 0.8919 0.9137 0.9441 0.9134
    12 29.8302 33.5569 30.8523 0.9186 0.9390 0.9200 0.9399 0.9620 0.9370

     | Show Table
    DownLoad: CSV

    In this paper, MDA based multilevel thresholding method has been presented to determine the optimal thresholds values for color image segmentation. The proposed method is tested on the various color images from Berkley segmentation data set. The performance of proposed method is then compared with other nine algorithms.

    The main contributions of this paper are: (1) the improvement of standard DA through the techniques such as chaotic maps, EOBL strategy and DE algorithm. (2) the application of three MDA based multilevel thresholding techniques for color image segmentation, namely Kapur's entropy, MCE method and Otsu method. In order to verify the effectiveness of proposed method, a comprehensive set of experimental series have been performed through several measures such as, AM, STD, PSNR, SSIM, and FSIM. Meanwhile, a non-parametric Wilcoxon's rank sum test has also been conducted in the paper for statistical analysis. From the experimental results we can find that MDA based method performs better than the compared methods in general. Thus, these promising results motivate the utilization of MDA based entropy method to solve various image segmentation problems. In the future, the MDA based method will be investigated for plant canopy image segmentation using other multilevel thresholding techniques such as Tsallis entropy, fuzzy entropy, and Renyi's entropy.

    This research was supported by the Fundamental Research Funds for the Central Universities (No. 2572019BF04), the National Nature Science Foundation of China (No. 31470714), the Northeast Forestry University Horizontal Project (No. 43217002, No. 43217005, No. 43219002).

    The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.

    The authors declare no conflict of interest.



    [1] C. Jung, M. Jian, J. Liu, et al., Interactive image segmentation via kernel propagation, Pattern Recognit., 47 (2014), 2745–2755.
    [2] S. H. Lee, H. I. Koo and N. I. Cho, Image segmentation algorithms based on the machine learning of features, Pattern Recognit. Lett., 31 (2010), 2325–2336.
    [3] W. Chen, H. Yue, J. Wang, et al., An improved edge detection algorithm for depth map inpainting, Opt. Lasers Eng., 55 (2014), 69–77.
    [4] J. Ye, G. Fu and U. P. Poudel, High-accuracy edge detection with Blurred Edge Model, Image Vision Comput., 23 (2005), 453–467.
    [5] G. Zhang, H. Zhu and N. Xu, Flotation bubble image segmentation based on seed region boundary growing, Min. Sci. Technol., 21 (2011), 239–242.
    [6] K. Liu, L. Guo, H. Li, et al., Fusion of Infrared and Visible Light Images Based on Region Segmentation, Chin. J. Aeronaut., 22 (2009), 75–80.
    [7] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9 (1979), 62–66.
    [8] J. N. Kapur, P. K. Sahoo and A. K. C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vision Graphics Image Process., 29 (1985), 273–285.
    [9] C. H. Li and C. K. Lee, Minimum cross entropy thresholding, Pattern Recognit., 26 (1993), 617–625.
    [10] M. A. E. Aziz, A. A. Ewees and A. E. Hassanien, Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation, Expert Syst. Appl., 83 (2017), 242–256.
    [11] G. Sun, A. Zhang, Y. Yao, et al., Multilevel thresholding using grey wolf optimizer for image segmentation, Expert Syst. Appl., 86 (2017), 64–76.
    [12] E. Cuevas, D. Zaldivar and M. Pérez-cisneros, A novel multi-threshold segmentation approach based on differential evolution optimization, Expert Syst. Appl., 37 (2010), 5265–5271.
    [13] G. Sun, A. Zhang, Y. Yao, et al., A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding, Appl. Soft Comput., 46 (2016), 703–730.
    [14] A. K. Bhandari, V. K. Singh, A. Kumar, et al., Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy, Expert Syst. Appl., 41 (2014), 3538–3560.
    [15] A. K. Bhandari, V. K. Singh, A. Kumar, et al., A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging, Meas., 41 (2008), 1124–1134.
    [16] S. Ouadfel and A. Taleb-Ahmed, Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study, Expert Syst. Appl., 55 (2016), 566–584.
    [17] U. Mlakar, B. Potočnik and J. Brest, A hybrid differential evolution for optimal multilevel image thresholding, Expert Syst. Appl., 65(2016), 221–232.
    [18] P. D. Sathya and R. Kayalvizhi, Modified bacterial foraging algorithm based multilevel thresholding for image segmentation, Eng. Appl. Artif. Intell., 24 (2011), 595–615.
    [19] W. A. Hussein, S. Sahran and S. N. H. S. Abdullah, A fast scheme for multilevel thresholding based on a modified bees algorithm, Knowled. Based Syst., 101 (2016), 114–134.
    [20] H. S. Gill, B. S. Khehra, A. Singh, et al., Teaching-learning-based optimization algorithm to minimize cross entropy for Selecting multilevel threshold values, Egypt. Inform. J., (2018).
    [21] K. P. B. Resma and S. N. Madhu, Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm, J. King Saud Univ. Comput. Inf. Sci., (2018).
    [22] S. Pare, A. K. Bhandari, A. Kumar, et al., A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm, Comput. Electr. Eng., 70 (2018), 476–495.
    [23] R. A. Ibrahim, M. A. Elaziz and S. Lu, Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization, Expert Syst. Appl., 108 (2018), 1–27.
    [24] S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073.
    [25] F. Wilcoxon, Individual comparison by ranking methods, Biom. Bull., 1 (1945), 80–83.
    [26] C. Fan, H. Ouyang, Y. Zhang, et al., Optimal multilevel thresholding using molecular kinetic theory optimization algorithm, Appl. Math. Comput., 239 (2014), 391–408.
    [27] S. Manikandan, K. Ramar, M. W. Iruthayarajan, et al., Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm, Meas., 47 (2014), 558–568.
    [28] M. Horng, A multilevel image thresholding using the honey bee mating optimization, Appl. Math. Comput., 215 (2010), 3302–3310.
    [29] L. Cao, P. Bao and Z. Shi, The strongest schema learning GA and its application to multilevel thresholding, Image Vision Comput., 26 (2008), 716–724.
    [30] A. Bouaziz, A. Draa and S. Chikhi, Artificial bees for multilevel thresholding of iris images, Swarm Evol. Comput., 21 (2015), 32–40.
    [31] A. K. Bhandari, A. Kumar and G. K. Singh, Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms, Expert Syst. Appl., 42 (2015), 8707–8730.
    [32] S. Pare, A. Kumar, V. Bajaj, et al., An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy, Appl. Soft Comput., 61 (2017), 570–592.
    [33] K. Price, Differential evolution: A fast and simple numerical optimizer, Fuzzy Inf. Process. Soc., (1996), 524–527.
    [34] H. R. Tizhoosh, Opposition-based learning: A new scheme for machine intelligence, Int. Conf. Computat. Intell. Modell., 1 (2005), 695–701.
    [35] T. Xiang, X. Liao and K. Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Appl. Math. Comput., 190 (2007), 1637–1645.
    [36] G. Kaur and S. Arora, Chaotic whale optimization algorithm, J. Comput. Des. Eng., 5 (2018), 275–284.
    [37] M. Kohli and S. Arora, Chaotic grey wolf optimization algorithm for constrained optimization problems, J. Comput. Des. Eng., 5 (2018), 458–472.
    [38] H. Wang, Z. Wu, S. Rahnamayan, et al., Enhancing particle swarm optimization using generalized opposition-based learning, Inf. Sci., 181 (2011), 4699–4714.
    [39] H. Wang, Z. Wu and S. Rahnamayan, Enhanced opposition-based differential evolution for high-dimensional optimization problems, Soft Comput., 15 (2011), 2127–2140.
    [40] H. Wang, S. Rahnamayan, H. Sun, et al., Gaussian bare-bones differential evolution, IEEE Trans. Cybern., 43 (2013), 634–647.
    [41] H. Zorlu, Optimization of weighted myriad filters with differential evolution algorithm, AEU Int. J. Electron. Commun., 77 (2017), 1–9.
    [42] U. Yüzgeç and M. Eser, Chaotic based differential evolution algorithm for optimization of baker's yeast drying process, Egypt. Inf. J., 19 (2018), 151–163.
    [43] R. P. Parouha and K. N. Das, Economic load dispatch using memory based differential evolution, Int. J. Bioinspired. Comput., 11 (2018), 159–170.
    [44] H. Wang, Z. Wu and S. Rahnamayan, Differential evolution based on node strength, Int. J. Bioinspired. Comput., 11 (2018), 34–45.
    [45] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, et al., Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software., 14 (2017), 163–191.
    [46] S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowled. Based Syst., 96 (2016), 120–133.
    [47] N. Singh and S. B. Singh, A novel hybrid GWO-SCA approach for optimization problems, Eng. Sci. Technol. Int. J., 20 (2017), 1586–1601.
    [48] S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Software., 83(2015), 80–98.
    [49] E. Emary, H. M. Zawbaa and A. E. Hassanien, Binary ant lion approaches for feature selection, Neurocomput., 213 (2016), 54–65.
    [50] D. Manjarres, I. Landa-Torres, S. Gil-Lopez et al., A survey on applications of the harmony search algorithm, Eng. Appl. Artif. Intell., 26 (2013), 1818–1831.
    [51] A. H. Gandomi and X. Yang, Chaotic bat algorithm, Int. J. Comput. Sci. Eng. Int., 5 (2014), 224–232.
    [52] Z. Ye, M. Wang, W. Liu, et al., Fuzzy entropy based optimal thresholding using bat algorithm, Appl. Soft Comput., 31 (2015), 381–395.
    [53] N. S. M. Raja, S. A. Sukanya and Y. Nikita, Improved PSO based multi-level thresholding for cancer infected breast thermal images using otsu, Procedia Comput. Sci., 48 (2015), 524–529.
    [54] A. Chander, A. Chatterjee and P. Siarry, A new social and momentum component adaptive PSO algorithm for image segmentation, Expert Sys. Appl., 38 (2011), 4998–5004.
    [55] A. K. Bhandari, A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation, Neural Comput. Applic., (2018), 1–31. DOI:10.1007/s00521-018-3771-z.
    [56] M. Abdel-Baset, H. Wu, Y. Zhou, et al., Elite opposition-flower pollination algorithm for quadratic assignment problem, J. Intell. Fuzzy Syst., 33 (2017), 901–911. DOI: 10.3233/jifs-162141.
    [57] C. Li and A. C. Bovik, Content-partitioned structural similarity index for image quality assessment, Signal Process. Image Commun., 25 (2010), 517–526.
    [58] J. John, M. S. Nair, P. R. A. Kumar, et al., A novel approach for detection and delineation of cell nuclei using feature similarity index measure, Biocybern. Biomed. Eng., 36 (2016), 76–88.
    [59] S. Pare, A. K. Bhandari, A. Kumar, et al., An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix, Expert Syst. Appl., 87 (2017), 335–362.
    [60] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, Evol. Comput. IEEE Trans., 1 (1997), 67–82.
  • This article has been cited by:

    1. Jianjun Ni, Xiaotian Wang, Min Tang, Weidong Cao, Pengfei Shi, Simon X. Yang, An Improved Real-Time Path Planning Method Based on Dragonfly Algorithm for Heterogeneous Multi-Robot System, 2020, 8, 2169-3536, 140558, 10.1109/ACCESS.2020.3012886
    2. Wei Li, Wenyin Gong, Differential evolution with quasi-reflection-based mutation, 2021, 18, 1551-0018, 2425, 10.3934/mbe.2021123
    3. Yassine Meraihi, Amar Ramdane-Cherif, Dalila Acheli, Mohammed Mahseur, Dragonfly algorithm: a comprehensive review and applications, 2020, 32, 0941-0643, 16625, 10.1007/s00521-020-04866-y
    4. S. Jothi, A. Chandrasekar, An Efficient Modified Dragonfly Optimization Based MIMO-OFDM for Enhancing QoS in Wireless Multimedia Communication, 2022, 122, 0929-6212, 1043, 10.1007/s11277-021-08938-7
    5. Lei Liu, Dong Zhao, Fanhua Yu, Ali Asghar Heidari, Jintao Ru, Huiling Chen, Majdi Mafarja, Hamza Turabieh, Zhifang Pan, Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation, 2021, 138, 00104825, 104910, 10.1016/j.compbiomed.2021.104910
    6. Xiaowei Chen, Hui Huang, Ali Asghar Heidari, Chuanyin Sun, Yinqiu Lv, Wenyong Gui, Guoxi Liang, Zhiyang Gu, Huiling Chen, Chengye Li, Peirong Chen, An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: A real case with lupus nephritis images, 2022, 142, 00104825, 105179, 10.1016/j.compbiomed.2021.105179
    7. Bibi Aamirah Shafaa Emambocus, Muhammed Basheer Jasser, Aida Mustapha, Angela Amphawan, Dragonfly Algorithm and Its Hybrids: A Survey on Performance, Objectives and Applications, 2021, 21, 1424-8220, 7542, 10.3390/s21227542
    8. Hui Guo, Haiyang Chen, Tianlun Wu, MSDP-Net: A YOLOv5-Based Safflower Corolla Object Detection and Spatial Positioning Network, 2025, 15, 2077-0472, 855, 10.3390/agriculture15080855
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5739) PDF downloads(964) Cited by(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog