Citation: Hyun Mo Yang, André Ricardo Ribas Freitas. Biological view of vaccination described by mathematical modellings: from rubella to dengue vaccines[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 3195-3214. doi: 10.3934/mbe.2019159
[1] | S. A. Plotkin, The history of rubella and rubella vaccination leading to elimination, Clin. Infect. Dis., 43 (2006), S164–168. |
[2] | G. Mandell, J. Bennett and R. Dolin, Mandell, Douglas and Bennett's Principles and Practices of Infectious Diseases, 6th edition, Elsevier Inc., Philadelphia, 2005. |
[3] | G. Strickland, Hunter's Tropical Medicine and Emerging Infectious Diseases, 8th edition, W.S. Saunders Co., Philadelphia, 2000. |
[4] | E. Massad, R.S. Azevedo Neto, M.N. Burattini, et al., Assessing the efficacy of s mixed vaccination strategy against rubella In São Paulo, Brazil, Int. J. Epidemiol., 24 (1995), 842–850. |
[5] | H. M. Yang, Modelling vaccination strategy against directly transmitted diseases using a series of pulses, J. Biol. Syst., 6 (1998), 187–212. |
[6] | X. Song, Y. Jiang and H. Wei, Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays, Appl. Math. Comput., 214 (2009), 381–390. |
[7] | M. De la Sen, R. P. Agarwal, A. Ibeas, et al., On a generalized time-varying SEIR epidemic model with mixed point and Distributed Time-Varying Delays and Combined Regular and Impulsive vaccination controls, Adv. Differ. Equ., 2010 (2010), 281612. |
[8] | M. De la Sen, R. P. Agarwal, R. Nistal1, et al., A switched multicontroller for an SEIADR epidemic model with monitored equilibrium points and supervised transients and vaccination costs, Adv. Differ. Equ., 2018 (2018), 390. |
[9] | H. Yang, Epidemiologia Matemática: Estudo dos Efeitos da Vacina¸cão em Doen¸cas de Transmissão Direta, Edunicamp & Fapesp, Campinas, 2001. |
[10] | L. Esteva and H. M. Yang, Assessing the effects of temperature and dengue virus load on dengue transmission, J. Biol. Syst., 23 (2015), 527–554. |
[11] | J. Arino, M. Connell and P. Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260–276. |
[12] | S. Chengjun and Y. Wei, Global results for an SIRS model with vaccination and isolation, Nonlinear Anal. Real World Appl., 11 (2010), 4223–4237. |
[13] | J. Dushoff, W. Huang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol., 36 (1998), 227–248. |
[14] | H. Jing and Z. Deming, Global stability and periodicity on SIS epidemic models with backward bifurcation, Comput. Math. Appl., 50 (2005), 1271–1290. |
[15] | C. M. Kribs-Zaleta and J. X. Velasco-Hernández, A simple vaccination model with multiple endemic states, Math. Biosci., 164 (2000), 183–201. |
[16] | J. Li, Z. Ma and Y. Zhou, Global analysis of SIS epidemic model with a simple vaccination and multiple endemic equilibria, Acta Math. Sci., 26B (2006), 83–93. |
[17] | M. A. Safi and A. B. Gumel, Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine, Comput. Mathe. Appl., 61 (2011), 3044–3070. |
[18] | O. Sharomi, C. N. Podder, A. B. Gumel, et al., Role of incidence function in vaccine-induced backward bifurcation in some HIV models, Math. Biosci., 210 (2007), 436–463. |
[19] | L. Freitas, Vacina¸cão de Doen¸cas Infecciosas de Transmissão Direta: Quantificando Condi¸cões de Controle Considerando Portadores, Ph.D thesis, State University at Campinas City (Brazil), 2018. |
[20] | H. M. Yang, Modeling directly transmitted infections in a routinely vaccinated population – the force of infection described by Volterra integral equation, Appl. Math. Comput., 122 (2001), 27– 58. |
[21] | H. M. Yang and S. M. Raimundo, Assessing the effects of multiple infections and long latency in the dynamics of tuberculosis, Theor. Biol. Med. Model., 7 (2010), 41. |
[22] | R. Anderson and R. May, Infectious Diseases of Human: Dynamics and Control, Oxford University Press, Oxford, New York, Tokyo, 1991. |
[23] | O. Zgorniak-Nowosielska, B. Zawillinska and S. Szostek, Rubella infection during pregnancy in the 1985-86 epidemic: follow-up after seven years, Eur. J. Epidemiol., 12 (1996), 303–308. |
[24] | S.W. Bart, H. C. Steller, S. R. Preblud, et al., Fetal risk associated with rubella vaccine: an update, Rev. Infect. Dis., 7 (1985), S95–102. |
[25] | C. Castillo-Solórzano, S. E. Feef, M. Morice, et al., Rubella vaccination of unknowingly pregnant women during mass campaigns for rubella and congenital rubella syndrome elimination, the Americas 2001-2008, J. Infect. Dis., 204 (2011), S713–717. |
[26] | E. Massad, M. N. Burattini, R. S. Azevedo Neto, et al., A model-based design of a vaccination strategy against rubella in a non-immunized community of São Paulo State, Brazil, Epidemiol. Infect., 112 (1994), 579–594. |
[27] | H. M. Yang, Directly transmitted infections modeling considering age-structured contact rate, Math. Comput. Model., 29 (1999), 39–48. |
[28] | H. M. Yang, Directly transmitted infections modeling considering age-structured contact rate – epidemiological analysis, Math. Comput. Model., 29 (1999), 11–30. |
[29] | R. S. Azevedo Neto, A. S. B. Silveira, D. J. Nokes, et al., Rubella seroepidemiology in a nonimmunized population of São Paulo State, Brazil, Epidemiol. Infect., 113 (1994), 161–173. |
[30] | X. Badilla, A. Morice, M. L. Avila-Aguero, et al., Fetal risk associated with rubella vaccination during pregnancy, Pediatr. Infect. Dis. J., 26 (2007), 830–835. |
[31] | A. M. Ergenoglu, A. O. Yeniel, N. Yildirim, et al., Rubella vaccination during the periconception period or in pregnancy and perinatal and fetal outcomes, Turk J. Pediatr., 54 (2012), 230–233. |
[32] | B. J. Freij, M. A. South and J. L. Sever, Maternal rubella and the congenital rubella syndrome, Clin. Perinatol., 15 (1988), 247–257. |
[33] | L. Minussi, R. Mohrdieck, M. Bercini, et al., Prospective evaluation of pregnant women vaccinated against rubella in southern Brazil, Reprod. Toxicol., 25 (2008), 120–123. |
[34] | M. H. Namae, M. Ziaee and N. Nasseh, Congenital rubella syndrome in infants of women vaccinated during or just before pregnancy with measles-rubella vaccine, Indian J. Med. Res., 127 (2008), 551–554. |
[35] | R. Nasiri, J. Yoseffi, M. Khaejedaloe, et al., Congenital rubella syndrome after rubella vaccination in 1-4 weeks periconceptional period, Indian J. Pediatr., 76 (2009), 279–282. |
[36] | H. K. Sato, A. T. Sanajotta, J. C. Moraes, et al., Rubella vaccination of unknowingly pregnant women: the São Paulo experience, 2001, J. Infect. Dis., 204 (2011), S734–744. |
[37] | G. R. da Silva e Sá, L. A. Camacho, M. S. Stavola, et al., Pregnancy outcomes following rubella vaccination: a prospective study in the state of Rio de Janeiro, Brazil, 2001-2002, J. Infect. Dis., 204 (2011), S722–728. |
[38] | R. C. Soares, M. M. Siqueira, C. M. Toscano, et al., Follow-up study of unknowingly pregnant women vaccinated against rubella in Brazil, 2001-2002, J. Infect. Dis., 204 (2011), S729–736. |
[39] | P. A. Tookey, G. Jones, B. H. Miller, et al., Rubella vaccination in pregnant, CDR (Lond. Engl. Rev.), 1 (1991), R86–88. |
[40] | D. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microb. Rev., 11 (1998), 480–496. |
[41] | S. B. Halstead, S. Mahalingam, M. A. Marovich, et al., Intrinsic antibody-dependent enhanced of microbial infection in macrophages: disease regulation by immune complexies, Lancet Infect. Dis., 10 (2010), 712–722. |
[42] | D. M. Morens, Antibody-dependent enhancement of infection and the pathogenesis of viral disease, Clin. Infect. Dis., 19 (1994), 500–512. |
[43] | WHO, Immunization, vaccines and biologicals, 2017. Available from: http://www.who.int/ immunization/research/development/dengue_vaccines/en/. |
[44] | L. Coudeville, N. Baurin and E. Vergu, Estimation of parameters related to vaccine efficacy and dengue transmission from two large phase III studies, Vaccine, 34 (2016), 6417–6425. |
[45] | S. Gailhardou, A. Skipetrova, G. H. Dayan, et al., Safety overview of a recombinant live-attenuated tetravalent dengue vaccine: pooled analysis of data from 18 clinical trials, Plos NTD, 10 (2016), 1–25. |
[46] | L. J. Scott, Tetravalent dengue vaccine: a review in the prevention of dengue disease, Drugs, 76 (2016), 1301–1312. |
[47] | L. Villar, G. H. Dayan, J. L. Arredondo-Garcia, et al., Efficacy of a tetravalent dengue vaccine in children in Latin America, N. Engl. J. Med., 372 (2015), 113–123. |
[48] | S. B. Halstead and P. K. Russell, Protective and immunological behavior of chimeric yellow fever dengue vaccine, Vaccine, 34 (2016), 1643–1647. |
[49] | S. R. S. Hadinegoro, J. L. Arredondo-Garcia, B. Guy, et al., Answer to the review from Healstead and Russell "Protective and immunological behavior of chimeric yellow fever dengue vaccine", Vaccine, 34 (2016), 4273–4274. |
[50] | Sanofi updates information on dengue vaccine, Nov. 29, 2017, Sanofi, 2017. Available from: http://mediaroom.sanofi.com/sanofi-updates-information-on-dengue-vaccine/. |
[51] | Philippines gripped by dengue vaccine fears, Feb. 3, 2018, BBC, 2017. Available from: http: //www.bbc.com/news/world-asia-42929255. |
[52] | L. Billings, I. B. Schwartz, L. B. Shaw, et al., Instabilities in multiserotype disease model with antibody-dependent enhancement, J. Theoret. Biol., 246 (2007), 18–27. |
[53] | L. Esteva and C. Vargas, Coexistence of different serotypes of dengue virus, J. Math. Biol., 46 (2003), 31–47. |
[54] | L. Coudeville and G. P. Garnett, Transmission dynamics of the four dengue serotypes in Southern Vietnam and the potential impact of vaccination, PlosOne, 7(12) (2012), e51244. |
[55] | H. M. Yang, M. L. Macoris, K. C. Galvani, et al., Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings, BioSystems, 103 (2011), 360–371. |
[56] | H. M. Yang, M. L. Macoris, K. C. Galvani, et al., Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol. Infect., 137 (2009), 1188–1202. |
[57] | N. Chotiwan, B. G. Andre, I. Sanchez-Vargas, et al., Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes, PLOS Pathog., 14 (2018), e1006853. |
[58] | H. M. Yang, J. L. Boldrini, A. C. Fassoni, et al., Fitting the incidence data from the City of Campinas, Brazil, based on dengue transmission modellings considering time-dependent entomological parameters, PLOS One, 11 (2016), 1–41. |
[59] | Vigilˆancia Sanitária, MG, Boletim epidemiológico de monitoramento dos casos de dengue, febre chikungunya e febre zika, Semana epidemiológica, 1 (2016), 01. |
[60] | M. C. Gomez and H. M. Yang, A simple mathematical model to describe antibody-dependent enhancement in heterologous secondary infection in dengue, Math. Med. Biol.: A Journ. IMA, (2016), DOI: 10.1093/imammb/dqy016. |
[61] | WHO, Dengue vaccine: WHO position paper – July 2016, Weekly epidemiological record, 30 (2016), 349–364. |
[62] | A. Ong, M. Sandar, M. I. Chen, et al., Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore, Int. J. Infect. Disease., 11 (2007), 263–267. |
[63] | H. M. Yang and C. P. Ferreira, Assessing the effects of vector control on dengue transmission, Appl. Math. Comput., 198 (2008), 401–413. |
[64] | H. M. Yang, The basic reproduction number obtained from Jacobian and next generation matrices – A case study of dengue transmission modelling, BioSystems, 126 (2014), 52–75. |
[65] | H. M. Yang and D. Greenhalgh, Proof of conjecture in: The basic reproduction number obtained from Jacobian and next generation matrices – A case study of dengue transmission modelling, Appl. Math. Comput., 265 (2015), 103–107. |