Citation: Chao Gao, Zhi Chen, Yu Cheng, Junkun Li, Xiaowei Huang, Liangyi Wei, FanHe, Zong-ping Luo, Hongtao Zhang, Jia Yu. Comparative anatomy of the mouse and human ankle joint using Micro-CT: Utility of a mouse model to study human ankle sprains[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2959-2972. doi: 10.3934/mbe.2019146
[1] | X. Li, D. Fong and K. M. Chan, Kinematic analysis of ankle eversion sprain in sports: two cases during the FIFA world cup, J. Orthop. Transl., 7 (2016), 135. |
[2] | J. M. Conn, J. L. Annest and J. Gilchrist, Sports and recreation related injury episodes in the US population, 1997-99, Inj. Prev., 9 (2003), 117. |
[3] | B. R. Waterman, B. D. Owens, S. Davey, et al., The epidemiology of ankle sprains in the United States., J. Bone Joint Surg. Am., 92 (2010), 2279. |
[4] | W. Niu, J. Yao, Z. W. Chu, et al., Effects of Ankle Eversion, Limb Laterality, and Ankle Stabilizers on Transient Postural Stability During Unipedal Standing, J. Med. Biol. Eng., 35 (2015), 69–75. |
[5] | R. Bahr, F. Pena, J. Shine, et al., Mechanics of the anterior drawer and talar tilt tests. A cadaveric study of lateral ligament injuries of the ankle, Acta Orthop. Scand., 68 (1997), 435. |
[6] | C. M. Gorehamvoss, T. O. Mckinley and T. D. Brown, A finite element exploration of cartilage stress near an articular incongruity during unstable motion, J. Biomech., 40 (2007), 3438–3447. |
[7] | F. Bonnel, E. Toullec and C. Mabit, Chronic ankle instability: Biomechanics and pathomechanics of ligaments injury and associated lesions, Orthop. Traumatol. Surg. Res., 96 (2010), 424–432. |
[8] | H. Fang and F. Beier, Mouse models of osteoarthritis: modelling risk factors and assessing outcomes, Nat. Rev. Rheumatol., 10 (2014), 413–421. |
[9] | K. Lampropoulouadamidou, P. Lelovas, E. V. Karadimas, et al., Papaioannou, Useful animal models for the research of osteoarthritis, Eur. J. Orthop. Surg. Traumatol., 24 (2014), 263–271. |
[10] | P. Fleckman, K. Jaeger, K. A. Silva, et al., Comparative anatomy of mouse and human nail units, Anat. Rec., 296 (2013), 521–532. |
[11] | T. Hubbard-Turner, E. A. Wikstrom, S. Guderian, et al., Acute ankle sprain in a mouse model, Med. Sci. Sports Exerc., 45 (2013), 1623–1628. |
[12] | S. H. Chang, T. Yasui, S. Taketomi, et al., Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability, Osteoarth. Cartil., 24 (2015), 688–697. |
[13] | H. Y. Kim, J. Wang, K. Chung, et al., A surgical ankle sprain pain model in the rat: Effects of morphine and indomethacin, Neurosci. Lett., 442 (2008),161–164. |
[14] | E. A. Wikstrom, T. Hubbardturner, S. Woods, et al., Developing a mouse model of chronic ankle instability, Med. Sci. Sports Exerc., 47 (2015), 866–872. |
[15] | A. Hayes, Y. Tochigi and C. L. Saltzman, Ankle morphometry on 3D-CT images, Iowa Orthop. J., 26 (2006), 1–4. |
[16] | K. I. Vadakkan, Y. H. Jia and M. Zhuo, A behavioral model of neuropathic pain induced by ligation of the common peroneal nerve in mice., J. Pain, 6 (2005), 747–756. |
[17] | M. H. Fessy, J. P. Carret and J. Béjui, Morphometry of the talocrural joint, Surg. Radiol. Anat., 19 (1997), 299–302. |
[18] | R. Stagni, A. Leardini, A. Ensini, et al., Ankle morphometry evaluated using a new semi-automated technique based on X-ray pictures, Clin. Biomech., 20 (2005), 307–311. |
[19] | W. D. Hazelton, G. Goodman, W. N. Rom, et al., Longitudinal multistage model for lung cancer incidence, mortality, and CT detected indolent and aggressive cancers, Math. Biosci., 240 (2012), 20–34. |
[20] | S. P. Chakrabarty, F. B. Hanson, Distributed parameters deterministic model for treatment of brain tumors using Galerkin finite element method, Math. Biosci., 219 (2009),129–141. |
[21] | C. C. Kuo, H. L. Lu, A. Leardini, et al., Three-dimensional computer graphics-based ankle morphometry with computerized tomography for total ankle replacement design and positioning, Clin. Anat., 27 (2014), 659. |
[22] | A. Lundberg, I. Goldie, B. Kalin, et al., Kinematics of the ankle/foot complex: plantarflexion and dorsiflexion, Foot Ankle, 9 (1989), 194. |
[23] | J. Yu, W. C. Wong, H. Zhang, et al., The influence of high-heeled shoes on strain and tension force of the anterior talofibular ligament and plantar fascia during balanced standing and walking, Med. Eng. Phys., 38 (2016), 1152–1156. |
[24] | J. P. Charles, O. Cappellari, A. J. Spence, et al., Musculoskeletal geometry, muscle architecture and functional specialisations of the mouse hindlimb, PLOS ONE, 11 (2016), e147669. |
[25] | A. Delaurier, N. Burton, M. Bennett, et al., The Mouse Limb Anatomy Atlas: an interactive 3D tool for studying embryonic limb patterning, BMC Dev. Biol., 8 (2008), 83. |
[26] | W. L. Johnson, D. L. Jindrich, R. R. Roy, et al., A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms, J. Biomech., 41 (2008), 610–619. |
[27] | T. R. Olson and M. R. Seidel, The evolutionary basis of some clinical disorders of the human foot: a comparative survey of the living primates, Foot Ankle, 3 (1983), 322. |
[28] | W. C. H. Parr, C. Soligo, J. Smaers, et al., Three-dimensional shape variation of talar surface morphology in hominoid primates, J. Anat., 225 (2014), 42–59. |
[29] | S. Duce, L. Madrigal, K. Schmidt, et al., Micro-magnetic resonance imaging and embryological analysis of wild-type and pma mutant mice with clubfoot, J. Anat., 216 (2010), 108. |
[30] | D. Youlatos and J. Meldrum, Locomotor diversification in new world monkeys: running, climbing, or clawing along evolutionary branches, Anat. Rec., 294 (2011), 1991–2012. |
[31] | Q. Huang, X. Huang, L. Liu, et al., A case-oriented web-based training system for breast cancer diagnosis, Comput. Meth. Prog. Bio. |
[32] | V. Kuhn, N. Ivanovic and W. Recheis, High resolution 3D-printing of trabecular bone based on micro-CT data, J. Orthop. Transl., 2 (2014), 238. |