Processing math: 48%
Research article Special Issues

Aqueous monitoring of toxic mercury through a rhodamine-based fluorescent sensor

  • Mercury is a toxic heavy element, which contaminates air, land, and water, thus posing environment and human health-related threats to the ecological system. Considering the adverse ecological effects, there is an urgent need to design and develop strategic tools to detect a broader spectrum of toxic elements in different environments. The development of point-of-care tools, e.g., sensor-based devices offers a noteworthy solution to detect and monitor real-time generation or release of environmentally-related toxic elements from different sectors, even with or without partial treatments. For a first-hand estimate, a qualitative method (colorimetric) for detection of mercury could suffice. Benefiting from the colorimetric recognition methodology, herein, we developed a new system (2-(5-bromothiazol-2-yl)-3', 6'-bis(diethylamino)spiro[isoindoline-1, 9' xanthen]-3-one) for the detection of mercury ions. The newly developed chemical sensor is composed of a fluorescent part (rhodamine b) and a binding site (2-amino-5-bromothiazole). A highly selective and sensitive response accompanied by visual color change (colorless to pink) towards Hg2+ was observed among miscellaneous metal cations. This colorimetric change confirmed that the coordination complex exists as spirocyclic ring opened derivative of rhodamine moiety. Furthermore, the binding affinity and detection limit was also calculated from the absorbance and emission data. The calculated values are in the order of 4.72 × 104 M-1 and 6.9 μM, respectively. In addition, the results reveal that the complex between the chemical sensor (S) and Hg2+ is reversible in the presence of ethylenediaminetetraacetate (EDTA2-). Finally, the newly developed sensor S was employed to detect Hg2+ in the wastewater. The fluorescence intensity was measured at 583 nm with S followed by spiking with Hg2+ at different concentrations and related linearly. In summary, taken together all the properties suggest that the newly developed sensor might display great potential in the field of environmental monitoring of toxic elements.

    Citation: Tahir Rasheed, Faran Nabeel, Muhammad Bilal, Yuping Zhao, Muhammad Adeel, Hafiz. M. N. Iqbal. Aqueous monitoring of toxic mercury through a rhodamine-based fluorescent sensor[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 1861-1873. doi: 10.3934/mbe.2019090

    Related Papers:

    [1] Silogini Thanarajah, Hao Wang . Competition of motile and immotile bacterial strains in a petri dish. Mathematical Biosciences and Engineering, 2013, 10(2): 399-424. doi: 10.3934/mbe.2013.10.399
    [2] Dongxiu Wang, Fugeng Zeng, Lei Huang, Luxu Zhou . Persistence and boundedness in a two-species chemotaxis-competition system with singular sensitivity and indirect signal production. Mathematical Biosciences and Engineering, 2023, 20(12): 21382-21406. doi: 10.3934/mbe.2023946
    [3] Tianyuan Xu, Shanming Ji, Chunhua Jin, Ming Mei, Jingxue Yin . EARLY AND LATE STAGE PROFILES FOR A CHEMOTAXIS MODEL WITH DENSITY-DEPENDENT JUMP PROBABILITY. Mathematical Biosciences and Engineering, 2018, 15(6): 1345-1385. doi: 10.3934/mbe.2018062
    [4] Changwook Yoon, Sewoong Kim, Hyung Ju Hwang . Global well-posedness and pattern formations of the immune system induced by chemotaxis. Mathematical Biosciences and Engineering, 2020, 17(4): 3426-3449. doi: 10.3934/mbe.2020194
    [5] Tingfu Feng, Leyun Wu . Global dynamics and pattern formation for predator-prey system with density-dependent motion. Mathematical Biosciences and Engineering, 2023, 20(2): 2296-2320. doi: 10.3934/mbe.2023108
    [6] Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003
    [7] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [8] Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421
    [9] Chichia Chiu, Jui-Ling Yu . An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187
    [10] Andrzej Swierniak, Michal Krzeslak . Application of evolutionary games to modeling carcinogenesis. Mathematical Biosciences and Engineering, 2013, 10(3): 873-911. doi: 10.3934/mbe.2013.10.873
  • Mercury is a toxic heavy element, which contaminates air, land, and water, thus posing environment and human health-related threats to the ecological system. Considering the adverse ecological effects, there is an urgent need to design and develop strategic tools to detect a broader spectrum of toxic elements in different environments. The development of point-of-care tools, e.g., sensor-based devices offers a noteworthy solution to detect and monitor real-time generation or release of environmentally-related toxic elements from different sectors, even with or without partial treatments. For a first-hand estimate, a qualitative method (colorimetric) for detection of mercury could suffice. Benefiting from the colorimetric recognition methodology, herein, we developed a new system (2-(5-bromothiazol-2-yl)-3', 6'-bis(diethylamino)spiro[isoindoline-1, 9' xanthen]-3-one) for the detection of mercury ions. The newly developed chemical sensor is composed of a fluorescent part (rhodamine b) and a binding site (2-amino-5-bromothiazole). A highly selective and sensitive response accompanied by visual color change (colorless to pink) towards Hg2+ was observed among miscellaneous metal cations. This colorimetric change confirmed that the coordination complex exists as spirocyclic ring opened derivative of rhodamine moiety. Furthermore, the binding affinity and detection limit was also calculated from the absorbance and emission data. The calculated values are in the order of 4.72 × 104 M-1 and 6.9 μM, respectively. In addition, the results reveal that the complex between the chemical sensor (S) and Hg2+ is reversible in the presence of ethylenediaminetetraacetate (EDTA2-). Finally, the newly developed sensor S was employed to detect Hg2+ in the wastewater. The fluorescence intensity was measured at 583 nm with S followed by spiking with Hg2+ at different concentrations and related linearly. In summary, taken together all the properties suggest that the newly developed sensor might display great potential in the field of environmental monitoring of toxic elements.


    In a series of works [1,2], Kim and his collaborators introduced the following chemotaxis model

    {ut=(1w(uw)x)x,wt=dwxxκ(w)u, (1.1)

    where u is the bacterial density and w is the concentration of nutrient. d0 is the diffusion rate of nutrient. κ(w)0 is the consumption rate. Typical examples of κ(w) include κ(w)=wm with m0.

    System (1.1) is an alternative model to describe the propagation of traveling band of bacteria observed in the experiment of Adler [3]. Compared with the classical Keller-Segel system [4], this model is rigorously derived from the notion of "metric of food", and brings the theory of Riemannian geometry to the field of chemotaxis. Choi and Kim [1] have proved that system (1.1) with d=0 can generate traveling bands and traveling fronts under various assumptions on κ(w). They also generalized their results of [1] to the models with porous medium diffusion for the bacterial density, and showed that there exist compactly supported traveling waves for chemotaxis. Ahn, Choi and Yoo [5] proved the global existence of strong solutions of Cauchy problem of system (1.1) if the initial value of w has positive lower bound. Very recently, they [6] have generalized this result to the case where w, with infinite initial mass, can be zero at spatial infinity.

    In this paper, we are interested in the existence and stability of spiky patterns to system (1.1). We assume that the consumption rate is linear for simplicity, and write system (1.1) as

    {ut=(1w2(uxuwxw))x,wt=dwxxwu. (1.2)

    We shall consider the system in the half-space R+=[0,), with the following initial value

    (u,w)(x,0)=(u0(x),w0(x)), (1.3)

    and boundary conditions

    {(uxuwxw)(0,t)=0, w(0,t)=b,(u,w)(+,t)=(0,0). (1.4)

    where b>0 is a constant. That means we prescribe no-flux boundary condition for the bacterial density and saturated boundary condition for the oxygen. This kind of boundary conditions have also been used in a chemotaxis-fluid model to describe the formation of concentration patterns for aerobic bacteria observed in the experiment of [7].

    System (1.2) is actually a chemotaxis model with signal-suppressed motility. In other words, the diffusion rate of the bacterial density is monotonically decreasing as the concentration of the signal increases. There are several analytical works for the chemotaxis model of self-aggregation type with signal-suppressed motility in bounded domains. See [8,9] for the global existence of classical solutions if the motility function satisfies the power law, [10,11] for the existence of critical mass generating blowup if the motility is an exponential function, [12] for the formation of spiky patterns. In contrast, system (1.2) is of consumption type. That is the chemical signal w is consumed by the bacteria u. It turns out that such two types of chemotaxis model may exhibit different dynamics. Indeed, one can easily verify (following the argument of Proposition 2.1 of [13]) that if b=0 or w satisfies homogeneous Neumann boundary in the half space, then system (1.2) only has constant steady states, and no pattern exists. In other words, it is the nonhomogenous boundary condition that generates spiky patterns. Such phenomenon is quite different from the solution structures of chemotaxis model of self-aggregation type for which the intrinsic mechanics of chemotactic interaction generates spiky patterns (see [14,15]). Furthermore, Tao [16] showed that, under homogeneous Neumann boundary conditions in bounded domains, the multidimensional classical chemotaxis model of consumption type has a unique global bounded solutions under suitable assumptions on the initial data w0 and the chemotactic coefficient. In particular, the global existence or blow-up of solutions is independent of the initial data u0. This study indicates that the chemotaxis model of consumption type posses another different property from the one of self-aggregation type since the latter has the well-known critical mass on u0 for blow-up in dimension 2. This work subsequently led to various generalizations. Baghaei and Khelghati [17] improved the results of [16] to a larger set of w0 and chemotactic coefficient. Frassu and Viglialoro [18] further generalized the works of [16] to the models with indirect signal consumption. Recently, Li and Zhao [19] and Wang [20] proved that under homogeneous Neumann boundary conditions, the chemotaxis-consumption system with regular signal-dependent motility also has global bounded solutions under some assumptions on w0. It is worth mentioning that for the chemotaxis-consumption system with logarithmic sensitivity, Winkler [21,22] introduced the notion of renormalized solutions to handle the singularity in the study of global existence of large solutions.

    There are some studies on the dynamics of classical chemotaxis model of consumption type with nonhomogeneous boundary conditions. In the one dimensional case, Hong and Wang [23] studied the stability of steady state to the minimal model with Dirichlet boundary condition for the nutrient in bounded domains; Carrillo, Li and Wang [13] obtained the stability of steady state to the model with constant motility and logarithmic singular sensitivity in the half space. In the multidimensional case, Braukhoff and Lankeit [24] proved the existence and uniqueness of steady state to the minimal model with nonhomogeneous Robin boundary condition, while Lee, Wang and Yang [25] obtained similar results for the minimal model with Dirichlet boundary condition, and they further analyzed the boundary layer phenomena. Recently, Fuest, Lankeit and Mizukami [26] further showed the stability of steady state for the minimal parabolic-elliptic model on the base of the works on the steady state obtained in [24].

    One can observe from the boundary condition w(+,t)=0 that, in contrast with the models studied in the above mentioned works, system (1.2) is actually a chemotaxis model with singular sensitivity and singular motility. In this paper, we shall develop some new strategies to overcome analytical difficulties caused by the coupling of nonhomogenous boundary condition and singularities. And we obtain the following results:

    (1) system (1.2)–(1.4) admits a unique steady state (U,W), and Uλδ(x) as d0, where δ(x) is the Dirac function and λ is the initial bacterial density, i.e., λ=0u0(x)dx;

    (2) this spiky steady state (U,W) is asymptotically stable in the sense that if the initial data (u0,w0) is a small perturbation of (U,W) in some topology, then the solution (u,w) will converge to (U,W) time asymptotically.

    Following the argument of [13], one can easily show that result (1) holds. The aim of this paper is to show the nonlinear stability of steady state. The main difficulty of the problem is the presence of two types of singularities in the model: one is the logarithmic singularity of the sensitivity function, the other is the inverse square singularity of the signal-dependent motility. As in the arguments of [13,27,28,29], we relegate the former singularity by using the Cole-Hopf transformation to a nonlinear nonlocal term. However, this transformation is not powerful enough to settle the latter singularity. We shall develop new ideas to deal with the challenge of inverse square singularity of motility. Indeed, we first reformulate the problem in the perturbation variables using the method of anti-derivative, to classify the strength of singularity. Then we construct an appropriately approximate system, which retains some key structures of the original system, to establish the local well-posedness of the perturbation equations. In this step we will first prove that the approximate system is locally well-posed in a time interval [0,T], where T is independent of the artificial parameter ε; and then pass to the limit ε0+ by using the Aubin-Lions compactness lemma and a diagonal argument. Finally, to close the a priori estimate that is necessary to obtain the global well-posedness of the perturbation equations (or the asymptotic stability of steady state), we establish a new weighted elliptic estimate upon the weighted energy estimates where the weights are artfully chosen according to the nice structures of the equations.

    The paper is organized as follows. In Section 2, we present some elementary calculations and state the main results of this paper. In Section 3, we derive the perturbation equations, and establish the local well-posedness theory. Section 4 is devoted to the proof of nonlinear stability of the spiky steady state.

    In this section, we first show the existence of spiky steady state to the system (1.2)–(1.4). Then we present some elementary calculations and state the main results on the asymptotic stability of such spike profile.

    Owing to the zero-flux boundary condition for u, the mass of bacterial should be conserved. In other words,

    λ:=0u(x,t)dx=0u0(x)dx. (2.1)

    Thus, the steady state of (1.2) satisfies

    {(1W2(UxUWxW))x=0,dWxxWU=0,0U(x)dx=λ>0. (2.2)

    with boundary conditions

    (UxUWxW)(0)=0, W(0)=b, (U,W)(+)=(0,0). (2.3)

    Observe that when W>0, the steady state equations (2.2) and (2.3) is actually the m=χ=1 case of the chemotaxis model studied in [13]. Thus, according to Proposition 2.1 and Theorem 2.1 of [13], we have the following result.

    Proposition 2.1. (1) The system (2.2) and (2.3) has a unique smooth solution (U,W) satisfying U<0, W<0, and

    U(x)=λ26d(1+λ6dx)2, W(x)=b(1+λ6dx)2. (2.4)

    (2) U concentrates as a spike at x=0 as d0+, i.e.,

    U(x)λδ(x) in the sense of distribution as d0+.

    We next pay attention to the asymptotic stability of (U,W) to system (1.2)–(1.4). Because the chemical concentration w(x,t) has vacuum end state at x=+, there are two types of singularities in system (1.2): one is the singular sensitivity wxw, the other is the singular motility w2. To handle the former singularity, motivated by the works of [13,27,28,29], we employ the following Cole-Hopf type transformation

    v:=wxw, that is, (lnw)x=v, (2.5)

    which along with the boundary condition w(0,t)=b gives

    w(x,t)=bex0v(y,t)dy. (2.6)

    Hence we transform system (1.2) into a nonlocal system of viscous conservation laws as follows

    {ut=(w2(ux+uv))x,(x,t)R+×R+vt=dvxx(dv2u)x,(x,t)R+×R+w(x,t)=bex0v(y,t)dy,(u,v)(x,0)=(u0(x),v0(x)), (2.7)

    where v0=w0xw0. One may observe that the new system (2.7) still has singular motility near x=+ for the bacterial mass u. In this paper, we shall develop some novel ideas to solve this challenging problem.

    We next determine the boundary conditions of (2.7). The second equation of (1.2) gives (lnw)t=dvx+dv2u. Because b is a constant, for smooth solutions (lnw)t=0 at x=0, it then follows that

    dvx(dv2u)=0atx=0.

    Denote by (U,V)(x) the steady state of (2.7), where U(x) is given in (2.4). Then we have

    V(x)=WxW=λ3d(1+λ6dx)1.

    It is easy to see that

    V(x)0 as x.

    Because it is expected that v(x,t)V(x) as t, it is natural to impose v(+,t)=0. Therefore, the boundary conditions of (2.7) are

    {ux+uv=0, x=0dvx(dv2u)=0, x=0(u,v)(x,t)(0,0), x. (2.8)

    We also need some notation. Hk denotes the usual Sobolev space whose norm is abbreviated as f2k:=kj=0jxf2 with f:=fL2(R+), and Hkω is the weighted Sobolev space of measurable function f such that ωjxfL2(R+) with norm fω:=ωfL2(R+) and f2k,ω:=kj=0ωjxf2 for 0jk.

    We are now ready to state the main results.

    Theorem 2.1 (Local well-posedness). Let (U,V) be the steady state of (2.7) and (2.8). Assume that the initial perturbation around (U,V) satisfies ϕ0()=ψ0()=0, where

    (ϕ0,ψ0)(x)=x0(u0(y)U(y),v0(y)V(y))dy.

    Suppose that

    ϕ0H1(R+), ψ0L2(R+), ψ0xWL2(R+).

    Then there is a time T>0, such that the system (2.7) and (2.8) has a unique strong solution (u,v) on R+×(0,T), satisfying

    uUC([0,T];L2ω1)L2((0,T);H1ω2), vVC([0,T];L2ω2)L2((0,T);H1ω2),

    where ω1=U and ω2=1U.

    Theorem 2.2 (Global well-posedness). Assume that the conditions of Theorem 2.1 hold, and that there exists a constant δ0>0 such that,

    ψ02+ϕ02+ψ0x21,w2+ϕ0x2ω3+ϕ0xx2ω4δ0,

    where ω3=1U2 and ω4=1U3. Then the system (2.7) and (2.8) has a unique global solution (u,v)(x,t) satisfying

    {uUC([0,);H1)L2((0,);H2),vVC([0,);H1)L2((0,);H2). (2.9)

    Moreover, the following asymptotic convergence hold:

    supxR+|(u,v)(x,t)(U,V)(x)|0 as t+, (2.10)

    and

    u(,t)U()L1(R+)0 as t+. (2.11)

    Using the Cole-Hopf transformation (2.5), we transfer Theorem 2 to the original system (1.2)–(1.4).

    Theorem 2.3. Let (U,W) be the unique steady state of (1.2)–(1.4). Assume that the initial perturbation satisfies ϕ0()=ψ0()=0, where

    ϕ0(x)=x0(u0(y)U(y))dy, ψ0(x)=lnw0(x)+lnW(x).

    Suppose that there is a constant δ0>0 such that

    ψ02+ϕ02+ψ0x21,w2+ϕ0x2ω3+ϕ0xx2ω4δ0.

    Then the system (1.2)–(1.4) has a unique global solution (u,w)(x,t) satisfying

    {uUC([0,);H1)L2((0,);H2),wWC([0,);H1)L2((0,);H2).

    Moreover, we have the following asymptotic convergence:

    supxR+|(u,w)(x,t)(U,W)(x)|0 as t+,

    and

    (u,w)(,t)(U,W)()L1(R+)0 as t+.

    Remark 2.1. We provide both the pointwise convergence and L1 convergence for the solution. In contrast with the result of [6] where it is required infinite initial mass for w, our Theorem 2.3 implies that the chemical concentration w carries finite mass for all time.

    Remark 2.2. In view of its biological background, it is also interesting to study the stability of traveling waves to system (1.1). However, when we apply our argument to that problem, the perturbation equation involves several unfavorable terms which are sophisticated to estimate. We leave this problem for the future study.

    Remark 2.3. We shall remark that the steady state (U,W) obtained in Proposition 2.1 is a smooth solution of system (2.2) and (2.3), and it satisfies U(x)>0 and W(x)>0 for any x[0,+). In other words, U(x) only vanishes at the far field, and the singularity only happens at x=+. This fact enables us to take 1U as the key weight function, and derive the stability of steady state in specific weighted space.

    This section is devoted to proving Theorem 2.1, i.e., the local well-posedness of system (2.7) and (2.8). We first reformulate the problem in the perturbation variables using the method of anti-derivative. Because the perturbation system still has a singularity, we have to construct an appropriately approximate system. Then we prove that the approximate system is locally well-posed in a time interval [0,T] where T is independent of the artificial parameter ε. After establishing the uniqueness of solutions in weighted Sobolev space, we finally derive the local well-posedness of system (2.7) and (2.8) by the Aubin-Lions compactness lemma and a diagonal argument.

    The steady state (U,V) of system (2.7) and (2.8) satisfies

    {(W2(Ux+UV))x=0,dVxx(dV2U)x=0, (3.1)

    where the boundary conditions are given by

    (Ux+UV)(0)=(dVx(dV2U))(0)=0, (U,V)(+)=(0,0). (3.2)

    Integrating (3.1) in x, we have

    {Ux+UV=0,dVxdV2+U=0. (3.3)

    Observing that (u,v) satisfies the zero-flux boundary condition, the perturbation around (U,V) should have the conservation of mass. That is

    0(u(x,t)U(x),v(x,t)V(x))dx=0(u0(x)U(x),v0(x)V(x))dx=(0,0). (3.4)

    Then we could adopt the method of anti-derivative to decompose the solution (u,v) as

    (ϕ,ψ)(x,t)=x0(u(y,t)U(y),v(y,t)V(y))dy,

    which implies

    ϕx=uU, ψx=vV. (3.5)

    Substituting (3.5) into (2.7), integrating the equations in x, noting w=eψW, and using (3.1), we have

    {ϕt=W2e2ψ(ϕxx+ϕxψx+Uψx+Vϕx),ψt=dψxx2dVψxdψ2x+ϕx,

    which is equivalent to

    {W2ϕt=e2ψ(ϕxx+ϕxψx+Uψx+Vϕx),ψt=dψxx2dVψxdψ2x+ϕx. (3.6)

    The initial value of (ϕ,ψ) is given by

    (ϕ0,ψ0)(x):=(ϕ,ψ)(x,0)=x0(u0(y)U(y),v0(y)V(y))dy, (3.7)

    with

    (ϕ0,ψ0)(+)=(0,0), (3.8)

    and the boundary condition satisfies

    (ϕ,ψ)(0,t)=(0,0), (ϕ,ψ)(+,t)=(0,0). (3.9)

    We shall remark that the anti-derivative for v could remove the nonlocality of the problem, but it can not handle the singularity of the motility. Indeed, to overcome the difficulties caused by the singular motility (or degenerate relaxation), we construct an approximate system of (3.6) as

    {W2εϕt=e2ψ(ϕxx+ϕxψx+Uψx+Vεϕx),ψt=dψxx2dVεψxdψ2x+ϕx, (3.10)

    where ε>0 is a constant, Wε=W+ε and Vε=WWεV. Here we also approximate V by Vε so that system (3.10) retains the key structure of system (3.6):

    VεWε(1Wε)x=0. (3.11)

    Indeed, recalling that V=WxW, a direct calculation leads to

    VεWε(1Wε)x=VεWε+WεxW2ε=VW+WxW2ε=0.

    Employing the principle of contraction mapping (e.g., see [30]), one could easily get the local well-posedness for the approximate system on a time interval that may depend on ε.

    Proposition 3.1. Assume that the initial data (ϕ0,ψ0) satisfies

    ϕ0H1(R+), ψ0H1(R+).

    Then, there exists a constant T>0 depending on ε, ϕ0H1 and ψ0H1 such that the approximate system (3.10) with (3.7)–(3.9) has a unique local strong solution on R+×[0,T] satisfying

    (ϕ,ψ)C([0,T];H1)L2((0,T);H2).

    Proof.

    By Proposition 3.1, there exists a time T1>0 such that the system (3.10) with (3.7)–(3.9) has a unique solution (ϕ,ψ) on (0,T1) that satisfies ϕC([0,T];H1)L2((0,T);H2). Starting at T1, applying Proposition 3.1 again, we can extend the solution (ϕ,ψ) to another time T2=T1+t1, where t1>0 depends on ε, ϕ(T1)H1 and ψ(T1)H1. Continuing this procedure, we get two sequences {tj}j=1 and {Tj}j=1, where tj depends on ε, ϕ(Tj)H1 and ψ(Tj)H1, such that the solution (ϕ,ψ) exists on the time interval (0,Tj), and satisfies

    (ϕ,ψ)C([0,Tj];H1)L2((0,Tj);H2).

    Take the maximal existing time T as T=T1+j=1tj. Then the solution can be extended to (0,T) and satisfies

    (ϕ,ψ)C([0,T];H1)L2((0,T);H2),

    for any T(0,T). Clearly, if T<, then

    ¯limtT(ϕ(t)H1+ψ(t)H1)=. (3.12)

    However, one can not use Proposition 3.1 to derive the local well-posedness of system (3.6) by directly passing to the limit ε0, since the time interval [0,T] obtained in Proposition 3.1 depends on ε. In the following, we have to establish appropriate a priori estimates that are independent of ε.

    Proposition 3.2. Assume that (ϕ0,ψ0) satisfies

    ϕ0H1(R+), ψ0L2(R+), ψ0xWL2(R+). (3.13)

    Then there exists a constant T0>0 independent of ε, such that the approximate system (3.10) with (3.7)–(3.9) has a unique solution on R+×[0,T0], which satisfies

    supt[0,T0]0(Wεϕ2+ψ2+Wεϕ2x+ψ2xWε)dx20(Wεϕ20+ψ20+Wεϕ20x+ψ20xWε)dx, (3.14)

    and

    T000(ϕ2xWε+ϕ2xxWε+ψ2x+ψ2xxWε)C(T0). (3.15)

    Proof. Thanks to (3.12), it suffices to establish a priori estimate in the weighted Sobolev space that is independent of ε. To achieve this, we multiply the first equation of (3.10) by ϕWε, and integrate the resultant equation over (0,t)×(0,+) to get

    120Wεϕ2=t00e2ψ(VεWεϕϕx+ϕϕxxWε+ϕϕxψxWε+UWεϕψx)+120Wεϕ20=t00[VεWε(1Wε)x]e2ψϕϕxt00e2ψϕ2xWεt00e2ψϕϕxψxWε+t00UWεe2ψϕψx+120Wεϕ20. (3.16)

    By (3.11) we have

    120Wεϕ2+t00e2ψϕ2xWε=t00UWεe2ψϕψxt00e2ψϕϕxψxWε+120Wεϕ20.

    It follows from Young's inequality that

    |0UWεe2ψϕψxdx|Ce2ψL0Wεϕ2dx+Ce2ψL0ψ2xWεdx. (3.17)

    Using the inequality

    ϕ2(x,t)=2xϕϕx(y,t)dy2(0Wεϕ2)12(0ϕ2xWε)12, (3.18)

    we get

    |0e2ψϕϕxψxWεdx|CeψLϕL(R+)|0eψϕxψxWεdx|CeψLWεϕ12L2(R+)ϕxWε12L2(R+)eψϕxWεL2(R+)ψxWεL2(R+)Ce32ψLWεϕ12L2(R+)ψxWεL2(R+)eψϕxWε32L2(R+)Ce6ψLWεϕ2L2(R+)ψxWε4L2(R+)+18eψϕxWε2L2(R+)Ce6ψLWεϕ6L2(R+)+Ce6ψLψxWε6L2(R+)+18eψϕxWε2L2(R+). (3.19)

    Combining (3.17) and (3.19), one obtains

    120Wεϕ2+78t00e2ψϕ2xWεCt0e2ψL0(Wεϕ2+ψ2xWε)+Ct0e6ψL(0Wεϕ2dx+0ψ2xWεdx)3+120Wεϕ20. (3.20)

    Multiplying the second equation of (3.10) by ψ, we get

    120ψ2+dt00ψ2x=2dt00Vεψψx+t00ϕxψdt00ψψ2x+120ψ20. (3.21)

    By Young's inequality, we have

    |2d0Vεψψxdx|d40ψ2xdx+C0ψ2dx, (3.22)

    and

    |0ϕxψdx|Ce2ψL0ψ2dx+180e2ψϕ2xWεdx.

    Moreover, using (3.18) yields

    |d0ψψ2xdx|CψL(R+)0ψ2xdxCψ12L2(R+)ψx52L2Cψ2L2(R+)+Cψx103L2(R+). (3.23)

    Now substituting (3.22) and (3.23) into (3.21), we have

    120ψ2+d4t00ψ2xCt0(1+e2ψL)0ψ2+18t00e2ψϕ2xWε+Ct0(0ψ2xdx)53+120ψ20. (3.24)

    Combining (3.20) with (3.24) yields

    120(Wεϕ2+ψ2)dx+34t00e2ψϕ2xWεdxdτ+d4t00ψ2xdxdτCt0e2ψL0Wεϕ2dxdτ+Ct0e6ψL(0Wεϕ2dx)3dτ+Ct0(1+e2ψL)0ψ2dxdτ+Ct0e2ψL0ψ2xdxdτ+Ct0e6ψL(0ψ2xWεdx)3dτ+Ct0(0ψ2xdx)53dτ+120(Wεϕ20+ψ20)dx. (3.25)

    Multiplying the first equation of (3.10) by ϕxxWε, one gets

    120Wεϕ2x+t00e2ψϕ2xxWε=t00(e2ψVεWεϕxϕxx+e2ψϕxϕxxψxWε+e2ψUWεϕxxψx+Wxϕtϕx)+120Wεϕ20x=t00[e2ψ(VεWε+WxW2ε)ϕxϕxx+e2ψϕxϕxxψxWε+e2ψUWεϕxxψx]t00e2ψWxW2ε(Uϕxψx+ϕ2xψx+Vεϕ2x)+120Wεϕ20x, (3.26)

    where we have used the first equation of (3.10) in the second equality. As in (3.19),

    |0e2ψϕxϕxxψxWεdx|180e2ψϕ2xxWεdx+Ce6ψL(0Wεϕ2xdx)3+Ce6ψL(0ψ2xWεdx)3. (3.27)

    From Young's inequality, it follows that

    |0e2ψUWεϕxxψxdx|Ce2ψL0ψ2xdx+180e2ψϕ2xxWεdx, (3.28)
    |0e2ψWxW2εUϕxψxdx|Ce2ψL0Wεϕ2xdx+Ce2ψL0ψ2xWεdx, (3.29)

    and

    |0WxW2εe2ψϕ2xψxdx|CeψLϕxL(R+)0eψ|ϕxψx|WεdxCe32ψLWεϕx12L2(R+)eψϕxxWε12L2(R+)eψϕxWεL2(R+)ψxL2(R+)180e2ψϕ2xWεdx+Ce3ψLWεϕxL2(R+)eψϕxxWεL2(R+)ψx2L2(R+)180e2ψϕ2xWεdx+180e2ψϕ2xxWεdx+Ce6ψLWεϕx2L2(R+)ψx4L2(R+)180e2ψϕ2xWεdx+180e2ψϕ2xxWεdx+Ce6ψL(Wεϕx6L2+ψx6L2). (3.30)

    Substituting (3.27)–(3.30) into (3.26) leads to

    120Wεϕ2xdx+12t00e2ψϕ2xxWεdxdτCt00e2ψϕ2xWεdxdτ+Ct0e2ψL(0ψ2xdx+0Wεϕ2xdx)dτ+Ct0e6ψL(0Wεϕ2xdx+0ψ2xdx)3dτ+120Wεϕ20xdx. (3.31)

    Multiplying the second equation of (3.10) by ψxxWε, one gets

    120ψ2xWε+t00dψ2xxWε=t00(2dVεWεψxψxxϕxψxxWε+dψ2xψxxWε(1Wε)xψtψx)+120ψ20xWε. (3.32)

    By Young's inequality,

    |02dVεWεψxψxxdx|C0ψ2xWεdx+d80ψ2xxWεdx.

    Moreover, integration by parts leads to

    |0ϕxψxxWεdx|=|0ϕxxψxWεdx0(1Wε)xϕxψxdx+ϕxψxb+ε|x=0|180e2ψϕ2xWεdx+180e2ψϕ2xxWεdx+Ce2ψL0ψ2xWεdx+|ϕxψxb+ε|x=0|.

    The boundary term can be estimated as

    |ϕxψxb+ε|x=0|12(b+ε)ϕ2x|x=0+12(b+ε)ψ2x|x=0=1b+ε0ϕxϕxxdx1b+ε0ψxψxxdxδ0e2ψϕ2xxWεdx+Ce2ψL0Wεϕ2x+δ0ψ2xxWεdx+C0ψ2xWεdx,

    where δ is a small constant. It follows from (3.18) that

    |0dψ2xψxxWεdx|CψxL0ψxψxxWεdxCψx12L2(R+)ψxx12L2(R+)ψxWεL2(R+)ψxxWεL2(R+)CψxxWε32L2(R+)ψxWε32L2(R+)d80ψ2xxWεdx+C(0ψ2xWεdx)3.

    In view of the second equation of (3.10), it holds:

    0(1Wε)xψtψxdx=02dVε(1Wε)xψ2xdx0d(1Wε)xψxxψxdx0(1Wε)xϕxψxdx+0d(1Wε)xψ3xdx,

    where

    |02dVε(1Wε)xψ2xdx|C0ψ2xWεdx,
    |0d(1Wε)xψxxψxdx|C0ψ2xWεdx+d80ψ2xxWεdx,
    |0(1Wε)xϕxψxdx|180e2ψϕ2xWεdx+Ce2ψL0ψ2xWεdx,

    and by (3.18),

    |0d(1Wε)xψ3xdx|Cψx12L2(R+)ψxx12L2(R+)ψxWε2L2(R+)d80ψ2xxWεdx+C(0ψ2xWεdx)53.

    Then choosing δ1, by (3.31), we get

    120ψ2xWε+d4t00ψ2xxWεCt0(1+e2ψL)0ψ2xWε+14t00e2ψϕ2xxWε+Ct00e2ψϕ2xWε+Ct0[(0ψ2xWεdx)53+(0ψ2xWεdx)3]+Ct0e2ψL0Wεϕ2x+120ψ20xWε. (3.33)

    Combining (3.31) with (3.33), we have

    120(Wεϕ2x+ψ2xWε)+14t00(e2ψϕ2xxWε+dψ2xxWε)Ct00e2ψϕ2xWε+Ct0e6ψL(0Wεϕ2xdx)3+Ct0e2ψL0Wεϕ2x+Ct0(1+e6ψL)(0ψ2xWεdx)3+Ct0(1+e2ψL)0ψ2xWε+Ct0(0ψ2xWεdx)53+120(Wεϕ20x+ψ20xWε). (3.34)

    Multiplying (3.25) by K1 and combing the resultant inequality with (3.34), we have

    0(Wεϕ2+ψ2+Wεϕ2x+ψ2xWε)+t00(e2ψϕ2xWε+e2ψϕ2xxWε+ψ2x+ψ2xxWε)Ct0e2ψL0(Wεϕ2+Wεϕ2x)+Ct0e6ψL((0Wεϕ2)3+(0Wεϕ2x)3)+Ct0(1+e2ψL)0(ψ2+ψ2xWε)+Ct0(1+e6ψL)(0ψ2xWεdx)3+0(Wεϕ20+ψ20+Wεϕ20x+ψ20xWε), (3.35)

    which further gives

    0(Wεϕ2+ψ2+Wεϕ2x+ψ2xWε)dxCt0(1+[0(Wεϕ2+ψ2+Wεϕ2x+ψ2xWε)dx]3e6ψL)+0(Wεϕ20+ψ20+Wεϕ20x+ψ20xWε).

    Set H(t):=0(Wεϕ2+ψ2+Wεϕ2x+ψ2xWε)dx. Noting

    ez>1forz>0 andψ2L0(ψ2+ψ2x)dx,

    we are led to

    H(t)Ct0(H+1)3e6H+H0,

    where H0=0(Wεϕ20+ψ20+Wεϕ20x+ψ20xWε)dx. It is easy to verify that when ¯T0 satisfies

    2Ce12H0(H0+1)2¯T0min{12,H02}, (3.36)

    then

    H(t)2H0fort(0,¯T0). (3.37)

    Indeed, consider

    (H(t)+1)Mt0(H+1)3+(H0+1),

    where M=Ce12H0, then

    H(t)(H0+1)(12M(H0+1)2t)121fortsmall.

    Since (1x)12<1+x for x(0,12), it holds

    H(t)(H0+1)(1+2M(H0+1)2t)1=H0+2M(H0+1)2tH0+2M(H0+1)2t

    for t small. Thus, when we take ¯T0 satisfying (3.36), we have (3.37).

    If we take

    H1=0W(ϕ20+ϕ20x)dx+0(ϕ20+ϕ20x)dx+0(ψ2+ψ20xW)dx,H2=0W(ϕ20+ϕ20x)dx+0(ψ2+ψ20xW)dx,

    then H1>H0 and H2<H0. Now we take T0 satisfying

    2Ce12H1(H1+1)2T0=min{12,H22}.

    Clearly, T0 is independent of ε, and

    H(t)2H0fort(0,T0). (3.38)

    Thanks to Proposition 3.1, (3.13) and (3.38), for any 0<ε<1, system (3.10) with (3.7)–(3.9) has a unique solution (ϕ,ψ) on R+×(0,T0) satisfying (3.14). The other desired estimate (3.15) follows from (3.38) and an integration of (3.35) in t.

    Let us now study the local well-posedness of (3.6)–(3.9). We start with the uniqueness of the solutions.

    Proposition 3.3. Let (ϕ1,ψ1) and (ϕ2,ψ2) be two solutions of system (3.6)–(3.9) satisfying

    WϕiL((0,T);H1),ϕixWL2((0,T);H1),ψiL((0,T);L2),ψixWL((0,T);L2),ψixxWL2((0,T);L2),

    for i=1,2. Then (ϕ1,ψ1)(ϕ2,ψ2) on R+×[0,T].

    Proof. Define (ϕ,ψ) by

    ϕ=ϕ1ϕ2, ψ=ψ1ψ2.

    Then (ϕ,ψ) satisfies

    {W2ϕt=e2ψ1ϕxx+(ψ1x+V)e2ψ1ϕx+(e2ψ1e2ψ2)ϕ2xx+(e2ψ1e2ψ2)ϕ2xψ1x+e2ψ2ϕ2xψx+V(e2ψ1e2ψ2)ϕ2x+Ue2ψ1ψx+U(e2ψ1e2ψ2)ψ2x,ψt=dψxx(2dV+dψ1x+dψ2x)ψx+ϕx. (3.39)

    Multiplying the first equation of (3.39) by ϕW, and the second one by ψ, summing the resultant equations up, one gets after an integration by parts that

    120(Wϕ2+ψ2)+t00(e2ψ1ϕ2xW+dψ2x)=t00(e2ψ1e2ψ2)ϕ2xψ1xϕW+t00e2ψ2ϕ2xϕψxW+t00UWe2ψ1ϕψx+t00UW(e2ψ1e2ψ2)ψ2xϕ+t00VW(e2ψ1e2ψ2)ϕ2xϕ+t00ϕxψt00(2dV+dψ1x+dψ2x)ψxψt00(ψ1xWVW+(1W)x)e2ψ1ϕϕx+t00(e2ψ1e2ψ2)ϕ2xxϕW+120(Wϕ20+ψ20). (3.40)

    By Young's inequality, we have

    |0(e2ψ1e2ψ2)ϕ2xψ1xϕWdx|C0|ψϕϕ2xψ1x|WdxCϕLψLϕ2xWL2ψ1xWL2CWϕL2ϕxWL2ϕ2xWL2+CψL2ψxL2ϕ2xWL2C(Wϕ2L2+ψ2L2)ϕ2xW2L2+δ(ϕxW2L2+ψx2L2), (3.41)
    |0e2ψ2ϕ2xϕψxWdx|CϕLϕ2xWL2ψxWL2CWϕL2ϕxWL2+ψxW2L2ϕ2xW2L2δϕxW2L2+CWϕ2L2+CψxW2L2ϕ2xW2L2, (3.42)
    |0UWe2ψ1ϕψxdx|CψxW2L2+CWϕ2L2, (3.43)
    |0UW(e2ψ1e2ψ2)ψ2xϕdx|C0|ψψ2xϕ|dxCϕLψL2ψ2xL2CWϕ12L2ϕxW12L2ψL2C(ψ2L2+Wϕ2L2)+δϕxW2L2, (3.44)
    |0VW(e2ψ1e2ψ2)ϕ2xϕdx|C0|ψϕ2xϕ|WdxδϕxW2L2+CWϕ2L2+Cϕ2xW2L2ψ2L2, (3.45)

    and

    |0ϕxψdx0(2dV+dψ1x+dψ2x)ψxψdx|δψx2L2+δϕx2L2+Cψ2L2,

    where δ>0 is a small constant. A direct calculation yields VW+(1W)x=0, and then we get

    |0(ψ1xWVW+(1W)x)e2ψ1ϕϕx|=|0e2ψ1ψ1xϕϕxW|δϕxW2L2+CWϕ2L2. (3.46)

    Integration by parts leads to

    |0(e2ψ1e2ψ2)ϕ2xxϕW|=|0(e2ψ1e2ψ2)xϕϕ2xW+0(e2ψ1e2ψ2)ϕxϕ2xW+0(e2ψ1e2ψ2)(1W)xϕϕ2x|=|02e2ψ1ψxϕϕ2xW+20(e2ψ1e2ψ2)ψ2xϕϕ2xW+0(e2ψ1e2ψ2)ϕxϕ2xW+0(e2ψ1e2ψ2)(1W)xϕϕ2x|.

    As in (3.42),

    |02e2ψ1ψxϕϕ2xW|δϕxW2L2+CWϕ2L2+CψxW2L2ϕ2xW2L2. (3.47)

    As in (3.41),

    |02(e2ψ1e2ψ2)ψ2xϕϕ2xW|C(Wϕ2L2+ψ2L2)ϕ2xW2L2+δ(ϕxW2L2+ψx2L2),
    |0(e2ψ1e2ψ2)ϕxϕ2xW|CψLϕxWL2ϕ2xWL2C(ψ2L2+ψx2L2)ϕ2xW2L2+δϕxW2L2,

    and

    |0(e2ψ1e2ψ2)(1W)xϕϕ2x|CϕLψL2ϕ2xWL2δϕxW2L2+CWϕ2L2+Cψ2L2ϕ2xW2L2. (3.48)

    Now substituting (3.41)–(3.48) into (3.40), we arrive at

    120(Wϕ2+ψ2)dx+t00[(e2ψ1Cδ)ϕ2xW+(dCδ)ψ2x]dxCt0(Wϕ2L2+ψ2L2+ψxW2L2)(1+ϕ2xW2L2). (3.49)

    We next present the estimate for \int_0^{\infty}\frac{\psi_x^2}{W}dx . Multiplying the second equation of (3.39) by \frac{\psi_{xx}}{W} , we get

    \begin{equation} \begin{split}&\frac{1}{2}\int_0^{\infty}\frac{\psi_x^2}{W} +\int_0^t\int_0^{\infty}d\frac{\psi_{xx}^2}{W}\\ & = -\int_0^t\int_0^{\infty}\left(\frac{1}{W}\right)_x\psi_x\psi_t +\int_0^t\int_0^{\infty}\frac{\psi_{xx}}{W}(2d V+d \psi_{1x}+d\psi_{2x})\psi_x+\int_0^t\int_0^{\infty}\frac{\psi_{xx}\phi_x}{W}. \end{split} \end{equation} (3.50)

    Using the second equation of (3.39), we get

    \int_0^{\infty}\psi_t^2\leq C\int_0^{\infty}(\psi_{xx}^2+\psi_x^2+(\psi_{1x}^2+\psi_{2x}^2)\psi_x^2+\phi_x^2),

    and

    \int_0^{\infty}(\psi_{1x}^2+\psi_{2x}^2)\psi_x^2\leq C\|\psi_x\|_{L^\infty}^2\leq C\|\psi_x\|_{L^2}^2+\|\psi_{xx}\|_{L^2}^2.

    Thus,

    \left|\int_0^{\infty}\left(\frac{1}{W}\right)_x\psi_x\psi_t\right|\leq C\int_0^{\infty}\frac{\psi_x^2}{W}+\delta\int_0^{\infty}\psi_t^2\leq C\int_0^{\infty}\frac{\psi_x^2}{W}+\delta\int_0^{\infty}(\psi_{xx}^2+\phi_x^2).

    Similarly,

    \left|\int_0^{\infty}\frac{\psi_{xx}}{W}(2d V+d \psi_{1x}+d\psi_{2x})\psi_x\right|\leq C\int_0^{\infty}\frac{\psi_x^2}{W}+\delta\int_0^{\infty}\frac{\psi_{xx}^2}{W},

    and

    \int_0^{\infty}\frac{|\psi_{xx}\phi_x|}{W} \leq\frac{d}{2}\int_0^{\infty}\frac{\psi_{xx}^2}{W}+C\int_0^{\infty}\frac{\phi_x^2}{W}.

    Substituting these inequalities into (3.50), we get

    \begin{equation} \begin{split}\frac{1}{2}\int_0^{\infty}\frac{\psi_x^2}{W} +\int_0^t\int_0^{\infty}(\frac{d}{2}-C\delta)\frac{\psi_{xx}^2}{W}\leq C\int_0^t\int_0^{\infty}\left(\frac{\psi_x^2}{W}+\frac{\phi_x^2}{W}\right). \end{split} \end{equation} (3.51)

    Multiplying (3.49) by K\gg 1 and combing the resultant inequality with (3.51), we have

    \int_0^{\infty}(W\phi^2+\psi^2+\frac{\psi_x^2}{W})dx \le C\int_0^t\left(\|\sqrt{W}\phi\|_{L^2}^2+\|\psi\|_{L^2}^2 +\|\frac{\psi_x}{\sqrt{W}}\|_{L^2}^2\right) \left(1+\|\frac{\phi_{2x}}{\sqrt{W}}\|_{L^2}^2\right).

    It then follows from the Gronwall's inequality that

    \begin{equation*} \int_0^{\infty}\left(W\phi^2+\frac{\psi^2}{W}+\frac{\psi_x^2}{W}\right)dx = 0. \end{equation*}

    Therefore, \phi\equiv0 and \psi\equiv0 . We complete the proof.

    We are now ready to prove the local existence of solutions to system (3.6)–(3.9).

    Proposition 3.4. Assume that (\phi_0, \psi_0) satisfies

    \begin{equation*} \phi_0\in H^1({\mathbb{R}}_+),\ \psi_0\in L^2({\mathbb{R}}_+), \ \frac{\psi_{0x}}{\sqrt{W}}\in L^2({\mathbb{R}}_+). \end{equation*}

    Then there exists a constant T > 0 , such that the system (3.6)–(3.9) has a unique solution (\phi, \psi) on {\mathbb{R}}_+ \times (0, T) , which satisfies

    \begin{equation} \begin{split} \sup\limits_{t\in[0,T]}\int_0^{\infty}\left(W\phi^2+\psi^2+W\phi_x^2 +\frac{\psi_x^2}{W}\right)dx \le C\int_0^{\infty}\left(W\phi_0^2+\psi_0^2+W\phi_{0x}^2 +\frac{\psi_{0x}^2}{W}\right)dx, \end{split} \end{equation} (3.52)

    where C is a constant independent of T .

    Proof. Owing to Proposition 3.2, there exists a constant T > 0 independent of \varepsilon > 0 such that the approximate system (3.10), subject to (3.7)–(3.9), has a unique solution (\phi_{\epsilon}, \psi_{\epsilon}) satisfying

    \begin{equation} \begin{split} \sup\limits_{t\in[0,T]}\int_0^{\infty}\left(W_\varepsilon\phi_\varepsilon^2 +\psi_\varepsilon^2+W_\varepsilon\phi_{\varepsilon x}^2 +\frac{\psi_{\varepsilon x}^2}{W_\varepsilon}\right)dx &\le 2\int_0^{\infty}\left(W_\varepsilon\phi_0^2+\psi_0^2+W_\varepsilon\phi_{0x}^2 +\frac{\psi_{0x}^2}{W_\varepsilon}\right)dx\\ &\leq C\int_0^{\infty}(\phi_0^2+\phi_{0x}^2+\psi_0^2+\frac{\psi_{0x}^2}{W}), \end{split} \end{equation} (3.53)

    where C is a constant independent of \varepsilon . Owing to (3.53) and (3.15), passing to the limit \varepsilon\rightarrow0^+ , applying the Banach-Alaoglu theorem and the diagonal argument, we know that there is a subsequence, still denoted by (\phi_{\varepsilon}, \psi_{\varepsilon}) , such that for any r\in(0, \infty)

    \begin{equation*} \begin{split} \psi_{\varepsilon t}\rightarrow \psi_t \ \ &{\mathrm {weakly \ in}}\ \ L^2((0,T); L^2(0,r)),\\ \phi_{\varepsilon t}\rightarrow \phi_t \ \ &{\mathrm {weakly \ in}} \ \ L^2((0,T); L^2(0,r)),\\ \psi_{\varepsilon}\to \psi \ \ &{\mathrm {weakly \ in}} \ \ L^2((0,T); H^2{(0,r)}),\\ \phi_{\varepsilon}\to \phi \ \ &{\mathrm {weakly \ in}} \ \ L^2((0,T); H^2{(0,r)}). \end{split} \end{equation*}

    Noting H^2(0, r) and H^1(0, r) compactly embed into H^1(0, r) and L^\infty(0, r) , respectively, for any r > 0 , we obtain from the Aubin-Lions compactness lemma that

    \begin{equation*} \begin{split} \psi_{\varepsilon}\to \psi \ \ &{\mathrm {strongly \ in}} \ \ L^2((0,T); H^1{(0,r)})\cap C([0,T];L^\infty(0,r)),\\ \phi_{\varepsilon}\to \phi \ \ &{\mathrm {strongly \ in}} \ \ L^2((0,T); H^1{(0,r)}). \end{split} \end{equation*}

    Observing that W_\varepsilon\rightarrow W and V_\varepsilon\rightarrow V in C[0, r] , one can see that the nonlinear terms in (3.10), e^{2\psi_{\varepsilon}}\phi_{\varepsilon x}\psi_{\varepsilon x} and d\psi_{\varepsilon x}^2 converge strongly in L^2((0, T); L^2(0, r)) to e^{2\psi}\phi_x\psi_x and d \psi_{x}^2 , respectively. Then one can take the limit as \varepsilon \to 0 in (3.10) to derive that (\phi, \psi) satisfies (3.6) in the sense of distribution. Moreover, it follows from the weakly lower semi-continuity of the norms, the first inequality of (3.53) that

    \begin{split} &\|\sqrt{W}\phi\|_{L^\infty((0,T); H^1{(0,r)}}^2+\|\psi\|_{L^\infty((0,T); L^2{(0,r)}}^2+\|\frac{\psi_x}{\sqrt{W}}\|_{L^\infty((0,T); L^2{(0,r)}}^2\\ &\leq \underset{\varepsilon\rightarrow0}{\underline{\lim}} (\|\sqrt{W_\varepsilon}\phi_\varepsilon\|_{L^\infty((0,T); H^1{(0,r)}}^2+\|\psi_\varepsilon\|_{L^\infty((0,T); L^2{(0,r)}}^2+\|\frac{\psi_{\varepsilon x}}{\sqrt{W_\varepsilon}}\|_{L^\infty((0,T); L^2{(0,r)}}^2)\\ &\leq 2\underset{\varepsilon\rightarrow0}{\underline{\lim}} (\|\sqrt{W_\varepsilon}\phi_0\|_{L^\infty((0,T); H^1{(0,r)}}^2+\|\psi_0\|_{L^\infty((0,T); L^2{(0,r)}}^2+\|\frac{\psi_{0 x}}{\sqrt{W_\varepsilon}}\|_{L^\infty((0,T); L^2{(0,r)}}^2)\\ & = 2(\|\sqrt{W}\phi_0\|_{L^\infty((0,T); H^1{(0,r)}}^2+\|\psi_0\|_{L^\infty((0,T); L^2{(0,r)}}^2+\|\frac{\psi_{0 x}}{\sqrt{W}}\|_{L^\infty((0,T); L^2{(0,r)}}^2). \end{split}

    Therefore, (3.52) holds, and the proof is complete.

    Proof. [Proof of Theorem 2.1] It is a consequence of Propositions 3.3 and 3.4.

    In this section, we prove the global well-posedness of strong solutions to the system (3.6)–(3.9), which also implies the nonlinear stability of spiky steady state to the original chemotaxis system (1.2)–(1.4). We construct global solutions of system (3.6)–(3.9) in the more regular space:

    \begin{equation*} \begin{split} X(0,T): = \{&(\phi,\psi)(x,t)|\phi \in C([0,T]; H^2), \phi_x\in C([0,T]; L^2_{\omega_3})\cap L^2((0,T);H^2_{\omega_2}),\\ &\phi_{xx} \in C([0,T];L_{\omega_4}^2), \psi \in C([0,T];H^2), \psi_x \in C([0,T];H^1_{\omega_2})\cap L^2((0,T);H^2_{\omega_2}). \end{split} \end{equation*}

    for T\in (0, +\infty] , where \omega_2 = \frac{1}{U} , \omega_3 = \frac{1}{U^2} and \omega_4 = \frac{1}{U^3} . Set

    \begin{equation*} N^2(t): = \sup\limits_{\tau\in [0,t]}( \|\phi(\cdot, \tau)\|^2 +\|\psi(\cdot, \tau)\|^2 +\|\phi_x(\cdot, \tau)\|^2_{\omega_3} +\|\psi_x(\cdot, \tau)\|^2_{1, \omega_2} +\|\phi_{xx}(\cdot, \tau)\|^2_{\omega_4} ). \end{equation*}

    Since U(x)\le \frac{\lambda^2}{6d} , the Sobolev embedding theorem implies

    \begin{equation*} \sup\limits_{\tau \in [0,t]}\{\|\phi(\cdot,\tau)\|_{L^{\infty}} ,\|\psi(\cdot,\tau)\|_{L^{\infty}}\} \le N(t). \end{equation*}

    Moreover, noting

    \begin{equation} \begin{split} \frac{\psi_x^2}{U}(x,t) = -\int_x^{\infty}(\frac{\psi_x^2}{U})_xdx = &-\int_x^{\infty}2\frac{\psi_x\psi_{xx}}{U}dx-\int_x^{\infty}\left(\frac{1}{U}\right)_x\psi_x^2dx\\ \le &C\int_0^{\infty}\frac{\psi_x^2}{U}dx+C\int_0^{\infty}\frac{\psi_{xx}^2}{U}dx, \end{split} \end{equation} (4.1)

    we have

    \begin{equation} \left\|\frac{\psi_x(\cdot,t)}{\sqrt{U}}\right\|_{L^{\infty}} \le C N(t). \end{equation} (4.2)

    Similarly,

    \begin{equation} \begin{split} \frac{\phi_x^2}{U}(x,t) = -\int_x^{\infty}(\frac{\phi_x^2}{U})_xdx = &-\int_x^{\infty}2\frac{\phi_x\phi_{xx}}{U}dx-\int_x^{\infty}(\frac{1}{U})_x\phi_x^2dx\\ \le &C\int_0^{\infty}\frac{\phi_x^2}{U}dx+C\int_0^{\infty}\frac{\phi_{xx}^2}{U}dx, \end{split} \end{equation} (4.3)

    which implies

    \begin{equation} \left\|\frac{\phi_x(\cdot,t)}{\sqrt{U}}\right\|_{L^{\infty}} \le CN(t). \end{equation} (4.4)

    For system (3.6)–(3.9), we have the following results.

    Proposition 4.1. There exists a constant \delta_1 > 0 , such that if N(0)\le \delta_1 , then the system (3.6)–(3.9) has a unique global solution (\phi, \psi)\in X(0, \infty) satisfying

    \begin{equation} \begin{split} &\|\phi(\cdot, \tau)\|^2 +\|\psi(\cdot, \tau)\|^2 +\|\phi_x(\cdot, \tau)\|^2_{\omega_3} +\|\psi_x(\cdot, \tau)\|^2_{1, \omega_2} +\|\phi_{xx}(\cdot, \tau)\|^2_{\omega_4}\\ &+\int_0^t(\|\phi_x(\tau)\|^2_{2,\omega_2}+\|\psi_x(\tau)\|^2_{2,\omega_2} +\|\phi_{xx}(\tau)\|^2_{\omega_3})d{\tau}\le CN^2(0) \end{split} \end{equation} (4.5)

    for any t\in [0, \infty) .

    Thanks to the local well-posedness established in Propositions 3.3 and 3.4, we only need to derive the following a priori estimates to prove Proposition 4.1.

    Proposition 4.2. Assume that the conditions of Proposition 4.1 hold, and that (\phi, \psi)\in X(0, T) is a solution of system (3.6)–(3.9) for some constant T > 0 . Then there is a constant \varepsilon > 0 , independent of T, such that if N(t)\le \varepsilon for any 0 < t\le T , then (\phi, \psi) satisfies (4.5) for any 0\le t\le T .

    To establish the a priori estimate, we need the following Hardy inequality (see Lemma 3.4 of [13] for the proof).

    Lemma 4.1. (Hardy inequality) If f\in H_0^1(0, \infty) , then for j\not = -1 , it holds that

    \begin{equation} \int_0^{\infty} (1+kx)^j f^2 (x)dx\le \frac{4}{(j+1)^2 k^2}\int_0^{\infty} (1+kx)^{j+2} f_x^2(x)dx. \end{equation} (4.6)

    where k > 0 is a constant.

    We start with the L^2 estimate.

    Lemma 4.2. If N(t)\ll 1 , then there exists a constant C > 0 such that

    \begin{equation} \begin{split} &\int_0^{\infty} (U \phi^2+\psi^2)dx+\int_0^t \int_0^{\infty} (\phi^2+U\psi^2)dxd \tau+ \int_0^t \int_0^{\infty}\left(\frac{\phi_x^2}{U}+\psi_x^2\right)dxd\tau\\ &\le C\int_0^{\infty} (U\phi_0^2 +\psi_0^2)dx. \end{split} \end{equation} (4.7)

    Proof. We rewrite (3.6) as

    \begin{equation} \begin{cases} W^2 \phi_t = \phi_{xx}+V \phi_x+U \psi_x+\phi_x \psi_x+ (e^{2\psi}-1)(\phi_{xx}+V \phi_x+U \psi_x+\phi_x \psi_x),\\ \psi_t = d \psi_{xx}-2d V \psi_x-d \psi_x^2 +\phi_x. \end{cases} \end{equation} (4.8)

    Multiplying the first equation of (4.8) by \frac{\phi}{U} , the second one by \psi , and integrating the resulting equations on (0, t)\times(0, +\infty) , we have

    \begin{equation} \begin{split} &{\quad} \frac{1}{2} \int_0^{\infty}\left(\frac{W^2}{U} \phi^2+\psi^2\right)dx +\int_0^t\int_0^{\infty}\frac{\phi_x^2}{U}dxd\tau +d\int_0^t\int_0^{\infty}\psi_x^2 dxd\tau+d\int_0^{\infty} |V_x|\psi_x^2 dxd\tau\\ & = \int_0^t\int_0^{\infty}\frac{1}{2}\left[\left(\frac{1}{U}\right)_{xx} -\left(\frac{V}{U}\right)_x\right] \phi^2 dxd\tau +\int_0^t\int_0^{\infty} \frac{\phi \phi_x \psi_x}{U}dxd\tau -\int_0^t\int_0^{\infty}d\psi \psi_x^2dxd\tau\\ &{\quad}+\int_0^t\int_0^{\infty} (e^{2\psi}-1)\frac{\phi}{U}(\phi_{xx}+\phi_x \psi_x+U\psi_x+V\phi_x) dxd\tau+\frac{1}{2} \int_0^{\infty}\left(\frac{W^2}{U} \phi_0^2+\psi_0^2\right)dx. \end{split} \end{equation} (4.9)

    By (2.4) and Hardy inequality, we get

    \begin{equation} \frac{1}{2}\int_0^{\infty} \frac{\phi_x^2}{U}dx = \int_0^{\infty} \frac{3d}{\lambda^2} (1+\frac{\lambda}{6d}x)^2 \phi_x^2 dx \ge\frac{1}{48d}\int_0^{\infty} \phi^2 dx. \end{equation} (4.10)

    Owing to (3.3), it is easy to compute that

    \begin{equation} \left(\frac{1}{U}\right)_{xx}-\left(\frac{V}{U}\right)_x = 0, \end{equation} (4.11)

    which gives

    \begin{equation*} \int_0^{\infty}\frac{1}{2} \left[\left(\frac{1}{U}\right)_{xx}-\left(\frac{V}{U}\right)_x\right]\phi^2 dx = 0. \end{equation*}

    By (4.2) and Young's inequality, we derive that

    \begin{equation} \Big{|}\int_0^{\infty}\frac{\phi \phi_x \psi_x}{U}dx\Big{|} \le CN(t)\int_0^{\infty}\frac{|\phi \phi_x|}{\sqrt{U}}dx \le CN(t)\int_0^{\infty}\frac{\phi_x^2}{U}dx+CN(t)\int_0^{\infty}\phi^2dx. \end{equation} (4.12)

    Similarly, since \|\psi (\cdot, t)\|_{L^{\infty}} \le N(t) and

    \begin{equation} V = \sqrt{\frac{2U}{3d}}, \end{equation} (4.13)

    we have

    \begin{equation} \Big{|}\int_0^{\infty}d \psi\psi_x^2dx\Big{|} \le dN(t)\int_0^{\infty}\psi_x^2dx, \end{equation} (4.14)

    and

    \begin{equation} \begin{split} &\int_0^{\infty}(e^{2\psi}-1)\frac{\phi}{U}(\phi_{xx}+\phi_x\psi_x+U\psi_x+V\phi_x)\\ & = -2\int_0^{\infty}e^{2\psi}\psi_x\frac{\phi\phi_x}{U} -\int_0^{\infty}(e^{2\psi}-1)\left(\frac{\phi}{U}\right)_x\phi_x +\int_0^{\infty}(e^{2\psi}-1)\frac{\phi}{U}(\phi_x\psi_x+U\psi_x+V\phi_x)\\ &\leq C\left\|\frac{\psi_x(\cdot,t)}{\sqrt{U}}\right\|_{L^{\infty}} \int_0^{\infty}\frac{|\phi\phi_x|}{\sqrt{U}} +C\int_0^{\infty}|\psi|\left(\frac{\phi_x^2}{U}+\frac{|U_x\phi\phi_x|}{U^2}\right)\\ &\quad+C\int_0^{\infty}\frac{1}{U}\left|\phi\psi(\phi_x\psi_x+U\psi_x+V\phi_x)\right|\\ &\le CN(t)\int_0^{\infty}(\phi^2+\frac{\phi_x^2}{U}+\psi_x^2), \end{split} \end{equation} (4.15)

    where we have used the Taylor expansion

    \begin{equation} \begin{split} \Big{|}e^{2\psi}-1\Big{|}& = \Big{|}2\psi+\sum\limits_{n = 2}^{\infty} \frac{2^n \psi^n}{n!}\Big{|}\\ &\le 2|\psi|+2\Big{|}\psi \sum\limits_{n = 2}^{\infty} \frac{2^{n-1} \psi^{n-1}}{n!}\Big{|}\\ &\le 2|\psi|+2|\psi| \sum\limits_{n = 2}^{\infty} 2^{n-1} (\frac{1}{2})^{n-1}\\ &\le C|\psi|. \end{split} \end{equation} (4.16)

    Now substituting (4.10)–(4.15) into (4.9), noting V_x < 0 , and using Hardy inequality, we get

    \begin{equation*} \begin{split} &\int_0^{\infty} (U\phi^2 +\psi^2)dx +\int_0^t\int_0^{\infty}\left(\frac{\phi_x^2}{U}+\psi_x^2\right)dxd\tau +\int_0^t\int_0^{\infty}(\phi^2+U\psi^2)dxd\tau\\& \le CN(t)\int_0^t\int_0^{\infty}\left(\phi^2+\frac{\phi_x^2}{U}+\psi_x^2\right)dxd\tau+\int_0^{\infty} (U\phi_0^2 +\psi_0^2)dx. \end{split} \end{equation*}

    Thus, we obtain (4.7) provided N(t)\ll 1 .

    We next establish the H^1 estimate.

    Lemma 4.3. If N(t)\ll 1 , then the solution of (3.6)–(3.9) satisfies

    \begin{equation} \begin{split} &\int_0^{\infty} \left(\phi_x^2+\frac{\psi_x^2}{U}\right)dx+\int_0^t \int_0^{\infty} \left(\frac{\phi_{xx}^2}{U^2}+\frac{\psi_{xx}^2}{U}\right)dxd\tau\\ &\le C\int_0^{\infty}\left(\phi_{0x}^2+\frac{\psi_{0x}^2}{U}+U\phi_0^2+\psi_0^2\right)dx. \end{split} \end{equation} (4.17)

    Proof. Multiplying the first equation of (4.8) by \frac{\phi_{xx}}{W^2} , we get

    \begin{equation} \begin{split} &\frac{1}{2}\int_0^{\infty}\phi_x^2 +\int_0^t\int_0^{\infty}\frac{\phi_{xx}^2}{W^2}\\ = & -\int_0^t\int_0^{\infty}\frac{U}{W^2}\phi_{xx}\psi_x -\int_0^t\int_0^{\infty}\frac{V}{W^2}\phi_x \phi_{xx} -\int_0^t\int_0^{\infty}\frac{\phi_x \phi_{xx}\psi_x}{W^2}\\ &-\int_0^t\int_0^{\infty}(e^{2\psi}-1)\frac{\phi_{xx}}{W^2}(\phi_{xx}+\phi_x \psi_x+U\psi_x+V\phi_x)+\frac{1}{2}\int_0^{\infty}\phi_{0x}^2. \end{split} \end{equation} (4.18)

    In view of (2.4), it holds

    \begin{equation} U(x) = \frac{\lambda^2}{6d b} W(x). \end{equation} (4.19)

    It then follows from Young's inequality that

    \begin{equation} \int_0^{\infty}\frac{U}{W^2}|\phi_{xx}\psi_x|dx \le C\int_0^{\infty} \frac{|\phi_{xx}\psi_x|}{W}dx \le \frac{1}{4}\int_0^{\infty}\frac{\phi_{xx}^2}{W^2}dx+C\int_0^{\infty}\psi_x^2 dx. \end{equation} (4.20)

    Moreover, by (4.13),

    \begin{equation} \begin{split} \Big{|}\int_0^{\infty}\frac{V}{W^2}\phi_x \phi_{xx}dx\Big{|} &\le \frac{1}{2}\int_0^{\infty}\frac{\phi_{xx}^2}{W^2}dx +\frac{1}{2}\int_0^{\infty}\frac{V^2}{W^2}\phi_x^2dx\\ &\le \frac{1}{2}\int_0^{\infty}\frac{\phi_{xx}^2}{W^2}dx +C\int_0^{\infty}\frac{\phi_x^2}{W}dx. \end{split} \end{equation} (4.21)

    Using (4.2), it is easy to see that

    \begin{equation} \begin{split} \Big{|} \int_0^{\infty} \frac{\phi_x \phi_{xx}\psi_x}{W^2}dx| \le &C N(t)\int_0^{\infty}\frac{|\phi_x \phi_{xx}|}{W^{\frac{3}{2}}}dx \\ \le &C N(t)\int_0^{\infty}\frac{\phi_x^2}{W}dx +C N(t)\int_0^{\infty}\frac{\phi_{xx}^2}{W^2}dx. \end{split} \end{equation} (4.22)

    By (4.16), the fact that \|\psi(\cdot, t)\|_{L^{\infty}} \le N(t) and (4.2) again, one has

    \begin{equation} \begin{split} \int_0^{\infty}\Big{|}(e^{2\psi}-1)\frac{\phi_{xx}}{W^2}(\phi_{xx}+\phi_x \psi_x+U\psi_x+V\phi_x)\Big{|}dx &\le CN(t)\int_0^{\infty}\left(\frac{\phi_x^2}{W}+\frac{\phi_{xx}^2}{W^2}+\psi_x^2\right)dx. \end{split} \end{equation} (4.23)

    Substituting (4.20)–(4.23) into (4.18), we get

    \begin{equation*} \begin{split} &{\quad}\frac{1}{2}\int_0^{\infty}\phi_x^2 +\Big{(}\frac{1}{4}-CN(t)\Big{)}\int_0^t\int_0^{\infty}\frac{\phi_{xx}^2}{W^2}\\ &\le (C+CN(t))\int_0^t\int_0^{\infty}\frac{\phi_x^2}{W} +(C+CN(t))\int_0^t\int_0^{\infty}\psi_x^2+\frac{1}{2}\int_0^{\infty}\phi_{0x}^2. \end{split} \end{equation*}

    Thus, by (4.19) and Lemma 4.2, when N(t)\ll1 , we arrive at

    \begin{equation} \int_0^{\infty} \phi_x^2dx+\int_0^t\int_0^{\infty}\frac{\phi_{xx}^2}{U^2}dxd\tau \le \int_0^{\infty} \phi_{0x}^2dx+ C\int_0^{\infty}(U\phi_0^2+\psi_0^2)dx. \end{equation} (4.24)

    Multiplying the second equation of (4.8) by \frac{\psi_{xx}}{U} , we have

    \begin{equation} \begin{split} \frac{1}{2}\int_0^{\infty}\frac{\psi_x^2}{U} +d\int_0^t\int_0^{\infty}\frac{\psi_{xx}^2}{U} = &-\int_0^t\int_0^{\infty}\frac{\phi_x \psi_{xx}}{U} +2d\int_0^t\int_0^{\infty} \frac{V}{U}\psi_x \psi_{xx}\\& -\int_0^t\int_0^{\infty}\left(\frac{1}{U}\right)_x \psi_t \psi_x +\int_0^t\int_0^{\infty}\frac{d}{U}\psi_x^2 \psi_{xx}+\frac{1}{2}\int_0^{\infty}\frac{\psi_{0x}^2}{U}. \end{split} \end{equation} (4.25)

    By Young's inequality,

    \begin{equation} \Big{|}\int_0^{\infty}\frac{\phi_x\psi_{xx}}{U}dx\Big{|} \le \frac{1}{2d}\int_0^{\infty} \frac{\phi_x^2}{U}dx+\frac{d}{2}\int_0^{\infty} \frac{\psi_{xx}^2}{U}dx. \end{equation} (4.26)

    Moreover, (4.13) gives

    \begin{equation} \begin{split} \Big{|}2d\int_0^{\infty} \frac{V}{U}\psi_x \psi_{xx}dx\Big{|} &\le C\int_0^{\infty}\frac{1}{\sqrt{U}}|\psi_x \psi_{xx}|dx\\ &\le C\int_0^{\infty}\psi_x^2dx+\frac{d}{4}\int_0^{\infty}\frac{\psi_{xx}^2}{U}dx. \end{split} \end{equation} (4.27)

    By (3.3) and (4.13),

    \begin{equation} \left|\left(\frac{1}{U}\right)_x \right| = \frac{|U_x|}{U^2} = \frac{V}{U} = \sqrt{\frac{2}{3d}}\cdot\frac{1}{\sqrt{U}}, \end{equation} (4.28)

    which in combination with (4.2) leads to

    \begin{equation} \begin{split} &\Big{|}\int_0^{\infty}\left(\frac{1}{U}\right)_x \psi_t\psi_xdx\Big{|}\\ \leq&\int_0^{\infty}\left| \left(\frac{1}{U}\right)_x (d \psi_{xx}-2d V \psi_x-d \psi_x^2 +\phi_x)\psi_x\right|dx\\ \le &C\int_0^{\infty} \left|\frac{\psi_x \psi_{xx}}{\sqrt{U}}\right|dx +C\int_0^{\infty} \frac{V}{\sqrt{U}}\psi_x^2dx +C\int_0^{\infty}\frac{\left|\psi_x^3\right|}{\sqrt{U}}dx +C\int_0^{\infty}\left|\frac{\phi_x \psi_x}{\sqrt{U}}\right|dx \\ \le &C\int_0^{\infty}\frac{\phi_x^2}{U}dx +\Big{(}C+C N(t)\Big{)}\int_0^{\infty}\psi_x^2 dx +\frac{d}{8}\int_0^{\infty}\frac{\psi_{xx}^2}{U}dx, \end{split} \end{equation} (4.29)

    and

    \begin{equation} \Big{|}\int_0^{\infty} \frac{d}{U}\psi_x^2 \psi_{xx}dx\Big{|} \le C N(t)\int_0^{\infty}\Big{|}\frac{\psi_{xx}\psi_x }{\sqrt{U}}\Big{|}dx \le C N(t)\int_0^{\infty}\frac{\psi_{xx}^2}{U}dx+C N(t)\int_0^{\infty} \psi_x^2 dx. \end{equation} (4.30)

    Now substituting (4.26)–(4.30) into (4.25), we derive that

    \begin{equation*} \begin{split} \frac{1}{2}\int_0^{\infty}\frac{\psi_x^2}{U}+\int_0^t\int_0^{\infty}\Big{(}\frac{d}{8} -CN(t)\Big{)}\frac{\psi_{xx}^2}{U} \le&\Big{(}C+C N(t)\Big{)}\int_0^t\int_0^{\infty}\psi_x^2 +C\int_0^t\int_0^{\infty}\frac{\phi_x^2}{U}\\&+\frac{1}{2}\int_0^{\infty}\frac{\psi_{0x}^2}{U}. \end{split} \end{equation*}

    Then by Lemma 4.2, when N(t)\ll1 , we have

    \begin{equation} \begin{split} \int_0^{\infty}\frac{\psi_x^2}{U}dx+\int_0^t\int_0^{\infty}\frac{\psi_{xx}^2}{U}dxd\tau \le&\int_0^{\infty}\frac{\psi_{0x}^2}{U}dx+ C\int_0^{\infty}(U\phi_0^2+\psi_0^2)dx. \end{split} \end{equation} (4.31)

    Combining (4.31) and (4.24), we get (4.17).

    The H^2 estimate is as follows.

    Lemma 4.4. If N(t)\ll 1 , then it holds

    \begin{equation} \begin{split} &\int_0^{\infty}\left(U\phi_t^2+\frac{\psi_t^2}{U} +\frac{\phi_{xx}^2}{U}+\frac{\psi_{xx}^2}{U}\right) +\int_0^t \int_0^{\infty} \left(\frac{\phi_{tx}^2}{U} +\frac{\psi_{tx}^2}{U}+\frac{\phi_{xxx}^2}{U} +\frac{\psi_{xxx}^2}{U}\right)\\ &\le C\int_0^{\infty}\left(U\phi_0^2+\psi_0^2+\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U} +\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U}\right). \end{split} \end{equation} (4.32)

    Proof. Differentiating the first equation of (4.8) with respect to t leads to

    \begin{equation} \begin{split} W^2\phi_{tt} = &\phi_{txx}+\phi_{tx}\psi_x+\phi_x\psi_{tx}+U\psi_{tx}+V\phi_{tx}\\ &+(e^{2\psi}-1)(\phi_{txx}+\phi_{tx}\psi_x+\phi_x\psi_{tx}+U\psi_{tx}+V\phi_{tx})\\ &+2e^{2\psi}\psi_t(\phi_{xx}+\phi_x \psi_x+U\psi_x+V\phi_x). \end{split} \end{equation} (4.33)

    Multiplying (4.33) by \frac{\phi_{t}}{U} and integrating it in x and t , we get

    \begin{equation} \begin{split} &\frac{1}{2}\int_0^{\infty}\frac{W^2}{U}\phi_t^2 +\int_0^t\int_0^{\infty}\frac{\phi_{tx}^2}{U} -\frac{1}{2}\int_0^t\int_0^{\infty}\left[\left(\frac{1}{U}\right)_{xx}-\left(\frac{V}{U}\right)_x\right] \phi_t^2 \\ &\leq\int_0^t\int_0^{\infty}\frac{\phi_t\phi_{tx}\psi_x}{U} +\int_0^t\int_0^{\infty}\frac{\phi_t \phi_x \psi_{tx}}{U} +\int_0^t\int_0^{\infty}\phi_t \psi_{tx} \\&\quad+\int_0^t\int_0^{\infty}(e^{2\psi}-1) \phi_{txx}\frac{\phi_t}{U}+\int_0^t\int_0^{\infty}(e^{2\psi}-1) (\phi_{tx}\psi_x+\phi_x\psi_{tx}+U\psi_{tx}+V\phi_{tx})\frac{\phi_t}{U}\\ &\quad+\int_0^t\int_0^{\infty}2e^{2\psi}\frac{\psi_t\phi_t}{U}\phi_{xx} +\int_0^t\int_0^{\infty}2e^{2\psi}\frac{\psi_t\phi_t}{U}(\phi_x \psi_x+U\psi_x+V\phi_x)\\ &\quad+C\int_0^{\infty}\left(\frac{\phi_{0xx}^2}{U^3} +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U}\right), \end{split} \end{equation} (4.34)

    where we have used

    \begin{equation*} U\phi_t^2\big{|}_{t = 0} \le C\left(\frac{\phi_{0xx}^2}{U^3}+\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U}\right). \end{equation*}

    By Young's inequality, Hardy's inequality, (4.2) and (4.4), we get

    \begin{equation} \begin{split} \Big{|}\int_0^{\infty}\frac{\phi_t\phi_{tx}\psi_x}{U}dx\Big{|} &\le \frac{N(t)}{2}\int_0^{\infty}\frac{\phi_{tx}^2}{U}dx+\frac{N(t)}{2}\int_0^{\infty}\phi_t^2 dx\\ &\le C N(t)\int_0^{\infty}\frac{\phi_{tx}^2}{U}dx, \end{split} \end{equation} (4.35)

    and

    \begin{equation} \begin{split} \Big{|}\int_0^{\infty}\frac{\phi_t\phi_x\psi_{tx}}{U}dx\Big{|} &\le CN(t)\int_0^{\infty}\frac{\psi_{tx}^2}{U}dx+CN(t)\int_0^{\infty}\phi_t^2 dx\\ &\le CN(t)\int_0^{\infty}\frac{\psi_{tx}^2}{U}dx+C N(t) \int_0^{\infty}\frac{\phi_{tx}^2}{U}dx. \end{split} \end{equation} (4.36)

    Moreover, integration by parts leads to

    \begin{equation} \begin{split} \Big{|}\int_0^{\infty}\phi_t \psi_{tx}dx\Big{|} = \Big{|}\int_0^{\infty}\psi_t \phi_{tx}dx\Big{|}\le \frac{1}{4}\int_0^{\infty}\frac{\phi_{tx}^2}{U}dx+C\int_0^{\infty}\frac{\psi_t^2}{U} dx. \end{split} \end{equation} (4.37)

    Using (4.16), (4.2) and (4.4) again, a simple calculation yields

    \begin{equation} \begin{split} \left|\int_{0}^{\infty} (e^{2\psi}-1)\phi_{txx}\frac{\phi_t}{U}dx\right| = &\left|\int_{0}^{\infty}\left[ (e^{2\psi}-1)\left(\frac{\phi_{tx}^2}{U}+\phi_{tx}\phi_{t}(\frac{1}{U})_x\right) +2e^{2\psi}\psi_x\phi_{tx}\frac{\phi_t}{U}\right]dx\right|\\ \le &CN(t)\int_0^{\infty} \left(\frac{\phi_{tx}^2}{U}+\phi_t^2\right)dx\\ \le &CN(t)\int_0^{\infty} \frac{\phi_{tx}^2}{U}dx, \end{split} \end{equation} (4.38)

    and

    \begin{equation} \begin{split} &\Big{|}\int_{0}^{\infty} (e^{2\psi}-1)(\phi_{tx}\psi_x+\phi_x \psi_{tx}+U\psi_{tx}+V\phi_{tx})\frac{\phi_t}{U}dx\Big{|}\\ &\le C N(t)\int_0^{\infty} \left|\frac{\phi_t}{U}(\phi_{tx}\psi_x+\phi_x \psi_{tx}+U\psi_{tx}+V\phi_{tx})\right|dx\\ &\le CN(t)\int_0^{\infty} \frac{\phi_{tx}^2}{U}dx+CN(t)\int_0^{\infty} \frac{\psi_{tx}^2}{U}dx+CN(t)\int_0^{\infty} \frac{\psi_t^2}{U}dx. \end{split} \end{equation} (4.39)

    Similarly,

    \begin{equation} \begin{split} \int_{0}^{\infty} 2e^{2\psi}\frac{\phi_t\psi_t}{U}\phi_{xx}dx& = -\int_{0}^{\infty} 2\left(e^{2\psi}\frac{\phi_t\psi_t}{U}\right)_x\phi_{x}dx\\ &\le CN(t)\int_0^{\infty}\left(\frac{\phi_{tx}^2}{U} +\frac{\psi_{tx}^2}{U}+\phi_{t}^2+\psi_{t}^2\right)dx\\& \le CN(t)\int_0^{\infty}\left(\frac{\phi_{tx}^2}{U} +\frac{\psi_{tx}^2}{U}\right)dx, \end{split} \end{equation} (4.40)

    and

    \begin{equation} \begin{split} \Big{|}\int_{0}^{\infty} 2e^{2\psi}\frac{\phi_t\psi_t}{U}(\phi_x \psi_x+U\psi_x+V\phi_x)dx\Big{|}\le CN(t)\int_0^{\infty}(\frac{\phi_{tx}^2}{U}+\frac{\psi_{tx}^2}{U})dx. \end{split} \end{equation} (4.41)

    Now substituting (4.35)–(4.41) into (4.34), we arrive at

    \begin{equation} \begin{split} \frac{1}{2}\int_0^{\infty}U\phi_t^2 +\Big{(}\frac{3}{4}-CN(t)\Big{)}\int_0^t\int_0^{\infty}\frac{\phi_{tx}^2}{U} \le& C N(t)\int_0^t\int_0^{\infty}\frac{\psi_{tx}^2}{U} +C\int_0^t\int_0^{\infty}\frac{\psi_t^2}{U}\\ &+C\int_0^{\infty}\left(\frac{\phi_{0xx}^2}{U^3}+\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U}\right). \end{split} \end{equation} (4.42)

    By (4.2), (3.6), and Lemmas 4.2 and 4.3, we estimate the last term of (4.42) as

    \begin{equation} \begin{split} \int_0^t \int_0^{\infty}\frac{\psi_t^2}{U} dxd\tau \le &C\int_0^t \int_0^{\infty}\left(\frac{\psi_{xx}^2}{U}+ \frac{V^2}{U}\psi_x^2+\frac{1}{U}\psi_x^4+\frac{\phi_x^2}{U}\right) dx d\tau\\ \le & C\int_0^t \int_0^{\infty}\left(\frac{\psi_{xx}^2}{U} +(1+N^2(t))\psi_x^2+\frac{\phi_x^2}{U}\right)dxd\tau\\ \le &C\int_0^{\infty}(\phi_{0x}^2+\frac{\psi_{0x}^2}{U}+U\phi_0^2+\psi_0^2)dx. \end{split} \end{equation} (4.43)

    We next estimate \int_0^t\int_0^{\infty}\frac{\psi_{tx}^2}{U} . Differentiating the second equation of (3.6) with respect to t leads to

    \begin{equation} \psi_{tt} = d\psi_{txx}-2d V\psi_{tx}-2d\psi_x \psi_{tx}+\phi_{tx}. \end{equation} (4.44)

    Multiplying (4.44) by \frac{\psi_t}{U} , we have

    \begin{equation} \begin{split} \frac{1}{2}\int_0^{\infty}\frac{\psi_t^2}{U} +\int_0^t\int_0^{\infty}d\frac{\psi_{tx}^2}{U} = &\int_0^t\int_0^{\infty}\frac{\phi_{tx}\psi_t}{U} -\int_0^t\int_0^{\infty}d(\frac{1}{U})_x \psi_{tx}\psi_t\\ &-\int_0^t\int_0^{\infty}2d \frac{1}{U}\left(V\psi_t \psi_{tx}+\psi_x \psi_t \psi_{tx}\right)+\frac{1}{2}\int_0^{\infty}\frac{\psi_t^2}{U}\big{|}_{t = 0}. \end{split} \end{equation} (4.45)

    Owing to Young's inequality, we have

    \begin{equation} \Big{|}\int_0^{\infty}\frac{\phi_{tx}\psi_t}{U}dx\Big{|} \le\frac{1}{2}\int_0^{\infty}\frac{\phi_{tx}^2}{U}dx +\frac{1}{2}\int_0^{\infty}\frac{\psi_t^2}{U}dx \end{equation} (4.46)

    and

    \begin{equation} \begin{split} \Big{|}\int_0^{\infty}d (\frac{1}{U})_x \psi_{tx}\psi_t dx\Big{|} &\le C\Big{|}\int_0^{\infty}\frac{\psi_{tx}\psi_t}{\sqrt{U}} dx\Big{|}\\ &\le \frac{d}{4}\int_0^{\infty}\frac{\psi_{tx}^2}{U}dx +C\int_0^{\infty} \frac{\psi_t^2}{U}dx. \end{split} \end{equation} (4.47)

    By the boundedness of U(x) and V(x) , we arrive that

    \begin{equation} \Big{|}\int_0^{\infty}2d \frac{V}{U}\psi_t \psi_{tx}dx\Big{|} \le C\int_0^{\infty}\frac{1}{U}|\psi_t\psi_{tx}|dx \le C\int_0^{\infty}\frac{\psi_t^2}{U}dx +\frac{d}{4}\int_0^{\infty} \frac{\psi_{tx}^2}{U}dx. \end{equation} (4.48)

    Moreover, the fact that \|\psi_x(\cdot, t)\|_{L^{\infty}}\le C N(t) leads to

    \begin{equation} \begin{split} \Big{|}\int_0^{\infty}2d \frac{\psi_x \psi_t \psi_{tx}}{U}dx\Big{|} \le CN(t)\int_0^{\infty}\frac{\psi_{tx}^2}{U}dx +C N(t)\int_0^{\infty}\frac{\psi_t^2}{U}dx. \end{split} \end{equation} (4.49)

    Substituting (4.46)–(4.49) into (4.45) gives

    \begin{equation} \begin{split} &\frac{1}{2}\int_0^{\infty}\frac{\psi_t^2}{U}+ \Big{(}\frac{d}{2}-CN(t)\Big{)}\int_0^t\int_0^{\infty} \frac{\psi_{tx}^2}{U}\\ \le &(C+CN(t))\int_0^t\int_0^{\infty}\frac{\psi_t^2}{U} +\frac{1}{2}\int_0^t\int_0^{\infty}\frac{\phi_{tx}^2}{U} +\frac{1}{2}\int_0^{\infty}\frac{\psi_t^2}{U}\big{|}_{t = 0}. \end{split} \end{equation} (4.50)

    Combing (4.42) and (4.50), by (4.43), we get

    \begin{equation} \begin{split} &{\quad}\int_0^{\infty}U\phi_t^2dx +\int_0^{\infty}\frac{\psi_t^2}{U}dx +\int_0^t \int_0^{\infty} \frac{\phi_{tx}^2}{U}dxd\tau +\int_0^t \int_0^{\infty} \frac{\psi_{tx}^2}{U}dxd\tau\\ &\le C\int_0^{\infty}\left(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U} +\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U}\right)dx. \end{split} \end{equation} (4.51)

    Squaring (3.6) and multiplying the resultant equations by \frac{1}{U} , owing to (4.51) and Lemma 4.3, we obtain

    \begin{equation} \begin{split} \int_0^{\infty}\frac{\phi_{xx}^2}{U} dx \le &C\int_0^{\infty}\left(\frac{W^4}{U} e^{-4\psi} \phi_t^2+\frac{\phi_x^2\psi_x^2}{U}+U\psi_x^2+\frac{V^2}{U}\phi_x^2\right)dx\\ \le &C\int_0^{\infty}\left(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U}+\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U}\right)dx, \end{split} \end{equation} (4.52)

    and

    \begin{equation} \begin{split} \int_0^{\infty} \frac{\psi_{xx}^2}{U}dx \le &C \int_0^{\infty}\left(\frac{\psi_t^2}{U}+ \frac{V^2}{U}\psi_x^2+\frac{\psi_x^4}{U}+\frac{\phi_x^2}{U}\right)dx\\ \le &C\int_0^{\infty}\left(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U}+\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U}\right)dx. \end{split} \end{equation} (4.53)

    Differentiating the first equation of (3.6) in x yields

    \begin{equation} \begin{split} \phi_{xxx} = &-\phi_{xx}\psi_x-\phi_x\psi_{xx}-U_x\psi_x -U\psi_{xx}-V_x\phi_x-V\phi_{xx}+W^2\phi_{tx}+2WW_x\phi_t\\ &-[(e^{2\psi}-1)(\phi_{xx}+\phi_x\psi_x+U\psi_x+V\phi_x)]_x. \end{split} \end{equation} (4.54)

    Squaring (4.54) and multiplying the resultant equations by \frac{1}{U} lead to

    \begin{equation} \begin{split} &\int_0^t \int_0^{\infty}\frac{\phi_{xxx}^2}{U} dx d\tau\\& \le C\int_0^t \int_0^{\infty}(\frac{\phi_{xx}^2\psi_x^2}{U} +\frac{\phi_x^2\psi_{xx}^2}{U} +\frac{U_x^2}{U}\psi_x^2 +U\psi_{xx}^2 +\frac{V_x^2}{U}\phi_x^2 +\frac{V^2}{U}\phi_{xx}^2+\frac{W^4}{U}\phi_{tx}^2)\\& \quad+C\int_0^t \int_0^{\infty}\frac{W^2W_x^2}{U}\phi_t^2+C\int_0^t\int_0^{\infty} \frac{1}{U}\left|\left((e^{2\psi}-1)(\phi_{xx}+\phi_x\psi_x+U\psi_x +V\phi_x)\right)_x\right|^2. \end{split} \end{equation} (4.55)

    By (2.4), (4.51), the boundedness of U(x) , and Hardy inequality, we have

    \begin{equation} \begin{split} \Big{|}\int_0^t\int_0^{\infty}4\frac{W^2 W_x^2}{U}\phi_t^2 dxd\tau\Big{|} \le &C\int_0^t\int_0^{\infty}\frac{\phi_{tx}^2}{U} dxd\tau\\ \le &C\int_0^{\infty}(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U}+\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U})dx, \end{split} \end{equation} (4.56)

    and

    \begin{equation} \begin{split} \int_0^t\int_0^{\infty}\frac{W^4}{U} \phi_{tx}^2 dxd\tau \le &C\int_0^t\int_0^{\infty}\frac{\phi_{tx}^2}{U}dxd\tau\\ \le &C\int_0^{\infty}(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U}+\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U})dx. \end{split} \end{equation} (4.57)

    Using (4.16) and Lemmas 4.2 and 4.3, with the fact that \|\psi(\cdot, t)\|_{L^\infty} \le N(t) , we get

    \begin{equation} \begin{split} &\int_0^t\int_0^{\infty}\frac{1}{U} \left|((e^{2\psi}-1)(\phi_{xx}+\phi_x\psi_x+U\psi_x+V\phi_x))_x\right|^2\\ \le&C\int_0^t\int_0^{\infty} \frac{\psi^2}{U}|\phi_{xxx}+\phi_{xx}\psi_x+\phi_x\psi_{xx} +U_x\psi_x+U\psi_{xx}+V_x\phi_x+V\phi_{xx}|^2\\ &+C\int_0^t\int_0^{\infty}\frac{e^{4\psi}}{U}[\psi_x (\phi_{xx}+\phi_x \psi_x+U\psi_x+V\phi_x)]^2\\ \le &CN(t)\int_0^{\infty}\left(\phi_{0x}^2+\frac{\psi_{0x}^2}{U}+U\phi_0^2+\psi_0^2\right) +CN(t)\int_0^t \int_0^{\infty}\frac{\phi_{xxx}^2}{U} . \end{split} \end{equation} (4.58)

    Substituting (4.56)–(4.58) into (4.55), and using (4.52) and (4.53), when N(t)\ll1 , one gets

    \begin{equation} \int_0^t \int_0^{\infty}\frac{\phi_{xxx}^2}{U} dx d\tau \le C\int_0^{\infty}\left(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U}+\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U}\right)dx. \end{equation} (4.59)

    Similarly, differentiating the second equation of (3.6) in x yields

    \begin{equation} d\psi_{xxx} = \psi_{tx}+2d V_x\psi_x +2d V\psi_{xx}+2d\psi_x\psi_{xx}-\phi_{xx}. \end{equation} (4.60)

    Then squaring (4.60), multiplying the resultant equations by \frac{1}{U} , using (4.51) and Lemmas 4.2 and 4.3, we arrive at

    \begin{equation} \begin{split} \int_0^t\int_0^{\infty} \frac{\psi_{xxx}^2}{U} dx d\tau \le&C\int_0^t \int_0^{\infty}\left(\frac{\psi_{tx}^2}{U} +\frac{V_x^2}{U}\psi_x^2 +\frac{V^2}{U}\psi_{xx}^2 +\frac{\psi_x^2 \psi_{xx}^2}{U} +\frac{\phi_{xx}^2}{U}\right)dxd\tau\\ \le &C\int_0^{\infty}\left(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2} +\frac{\psi_{0x}^2}{U} +\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U}\right)dx. \end{split} \end{equation} (4.61)

    From (4.59), (4.61) and (4.51)–(4.53), we get the desired (4.32).

    Notice that the estimate (4.32) requires that the initial data satisfies \frac{\phi_{0x}^2}{U^2} +\frac{\phi_{0xx}^2}{U^3} < \infty . Hence, to guarantee the extension procedure works, we further need the following weighted elliptic estimate.

    Lemma 4.5. If N(t)\ll 1 , we have

    \begin{equation} \begin{split} &\left\|\frac{\phi_x(\cdot,t)}{\sqrt{U}}\right\|^2_{L^{\infty}} +\left\|\frac{\psi_x(\cdot,t)}{\sqrt{U}}\right\|^2_{L^{\infty}} +\int_0^{\infty}\phi^2dx +\int_0^{\infty}\frac{\phi_x^2}{U^2}dx +\int_0^{\infty}\frac{\phi_{xx}^2}{U^3}dx\\ &\le C\int_0^{\infty}\left(\phi_0^2+\psi_0^2+\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U} +\frac{\phi_{0xx}^2}{U^3}+\frac{\psi_{0xx}^2}{U}\right)dx. \end{split} \end{equation} (4.62)

    Proof. By (4.1), (4.17) and (4.53), we have

    \begin{equation} \|\frac{\psi_x(\cdot,t)}{\sqrt{U}}\|^2_{L^{\infty}} \le C\int_0^{\infty}(U\phi_0^2+\psi_0^2+\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U} +\frac{\phi_{0xx}^2}{U^3}+\frac{\psi_{0xx}^2}{U})dx. \end{equation} (4.63)

    We write the first equation of (4.8) as

    \begin{equation} \phi_{xx}+V\phi_x = W^2\phi_t-U\psi_x-\phi_x\psi_x -(e^{2\psi}-1)(\phi_{xx}+\phi_x\psi_x+U\psi_x+V\phi_x). \end{equation} (4.64)

    Multiplying (4.64) by -\frac{\phi_x}{U^2V} , noting

    \begin{equation*} \int_0^{\infty}\frac{\phi_x\phi_{xx}}{U^2V}dx = -U^{-2}V^{-1}\phi_{x}^2\big|_{x = 0} -\int_0^{\infty}(U^{-2}V^{-1})_x\phi_x^2dx, \end{equation*}
    \begin{split} \int_0^{\infty}\frac{(e^{2\psi}-1)}{U^2V}\phi_{xx}\phi_x dx = &-\int_0^{\infty}\phi_x^2\frac{e^{2\psi}\psi_x }{U^2V} dx-\int_0^{\infty}\frac{\phi_x^2 }{2}(e^{2\psi}-1)\left(\frac{1}{U^2V}\right)_xdx\\ &-\frac{(e^{2\psi}-1)}{2U^2V}\phi_{x}^2\Big|_{x = 0},\end{split}

    we get

    \begin{equation} \begin{split} &\frac{(e^{2\psi}+1)}{2U^2V}\phi_x^2\Big|_{x = 0} +\int_0^{\infty}\left(-U^{-2}+(U^{-2}V^{-1})_x\right)\phi_x^2dx\\ = &-\int_0^{\infty}\frac{W^2}{U^2V}\phi_x\phi_tdx +\int_0^{\infty}\frac{\phi_x\psi_x}{UV}dx +\int_0^{\infty}\frac{\phi_x^2\psi_x}{U^2V}dx -\int_0^{\infty}\phi_x^2\frac{e^{2\psi}\psi_x }{U^2V} dx\\ &\quad-\int_0^{\infty}\frac{\phi_x^2 }{2}(e^{2\psi}-1)\left(\frac{1}{U^2V}\right)_xdx +\int_0^{\infty}\frac{(e^{2\psi}-1)}{U^2V}\phi_x(\phi_x\psi_x+U\psi_x+V\phi_x)dx. \end{split} \end{equation} (4.65)

    A direct calculation by (3.3) gives

    \begin{equation*} -U^{-2}+(U^{-2}V^{-1})_x = \frac{1}{U^2}-\frac{V_x}{U^2V^2} > \frac{1}{U^2}. \end{equation*}

    Thus,

    \begin{equation} {\mathrm {LHS}} \ {\mathrm {of}} \ (4.65)\ge \int_0^{\infty}\frac{\phi_x^2}{U^2}dx. \end{equation} (4.66)

    We next estimate the RHS of (4.65). By (4.2),

    \begin{split} \left|\int_0^{\infty}\frac{\phi_x^2 }{2}\frac{e^{2\psi}\psi_x }{U^2V} dx\right|+\left|\int_0^{\infty}\frac{\phi_x^2 }{2}(e^{2\psi}-1)\left(\frac{1}{U^2V}\right)_xdx\right|\leq CN(t)\int_0^{\infty}\frac{\phi_x^2}{U^2}dx.\end{split}

    By (4.16),

    \begin{split} \int_0^{\infty}\frac{(e^{2\psi}-1)}{U^2V}\phi_x(\phi_x\psi_x+U\psi_x+V\phi_x)dx\leq CN(t)\int_0^{\infty}\left(\frac{\phi_x^2}{U^2}+\frac{|\phi_x\psi_x|}{UV}\right)dx.\end{split}

    Then we get from (4.13) and Young's inequality that

    \begin{equation} \begin{split} {\mathrm {RHS}} \ {\mathrm {of}} \ (4.65) \le &C\int_0^{\infty}\frac{|\phi_t\phi_x|}{\sqrt{U}} +C\int_0^{\infty}\frac{|\phi_x\psi_x|}{UV} +C\int_0^{\infty}\frac{|\phi_x^2\psi_x|}{U^2V} +CN(t)\int_0^{\infty}\frac{\phi_x^2}{U^2}dx\\ \le &\Big{(}\frac{1}{2}+CN(t)\Big{)} \int_0^{\infty}\frac{\phi_x^2}{U^2}dx +C\int_0^{\infty}U\phi_t^2dx +C\int_0^{\infty}\frac{\psi_x^2}{U}dx. \end{split} \end{equation} (4.67)

    Now substituting (4.66) and (4.67) into (4.65), by Lemmas 4.3 and 4.4, we have

    \begin{equation} \begin{split} \int_0^{\infty}\frac{\phi_x^2}{U^2}dx \le &C\int_0^{\infty}(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U} +\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U})dx, \end{split} \end{equation} (4.68)

    which along with Hardy inequality gives

    \begin{equation} \begin{split} \int_0^{\infty}\phi^2dx \le &C\int_0^{\infty}(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U} +\frac{\phi_{0xx}^2}{U^3} +\frac{\psi_{0xx}^2}{U})dx. \end{split} \end{equation} (4.69)

    We next write the first equation of (3.6) as

    \begin{equation*} \phi_{xx} = W^2e^{-2\psi}\phi_t-(V\phi_x+U\psi_x+\phi_x \psi_x). \end{equation*}

    Squaring this equation and multiplying the resultant equation by \frac{1}{U^3} , owing to (4.2) again, we obtain

    \begin{equation*} \begin{split} \int_0^{\infty}\frac{\phi_{xx}^2}{U^3}dx \le &C\int_0^{\infty}\left(U\phi_t^2+\frac{V^2}{U^3}\phi_x^2 +\frac{\psi_x^2}{U}+\frac{\phi_x^2\psi_x^2}{U^3}\right)dx\\ \le & C\Big{(}1+N(t)\Big{)}\int_0^{\infty}\frac{\phi_{x}^2}{U^2}dx +C\int_0^{\infty}U\phi_t^2dx +C\int_0^{\infty}\frac{\psi_{x}^2}{U}dx. \end{split} \end{equation*}

    Thus, by (4.68) and Lemma 4.4,

    \begin{equation} \int_0^{\infty}\frac{\phi_{xx}^2}{U^3}dx \le C\int_0^{\infty}(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U} +\frac{\phi_{0xx}^2}{U^3}+\frac{\psi_{0xx}^2}{U})dx. \end{equation} (4.70)

    Using (4.3), (4.68) and (4.70), we get

    \begin{equation} \begin{split} \left\|\frac{\phi_x(\cdot,t)}{\sqrt{U}}\right\|^2_{L^{\infty}} \le &\int_0^{\infty}\frac{\phi_x^2}{U}dx +\int_0^{\infty}\frac{\phi_{xx}^2}{U}dx\\ \le &C\int_0^{\infty}\left(U\phi_0^2+\psi_0^2 +\frac{\phi_{0x}^2}{U^2}+\frac{\psi_{0x}^2}{U} +\frac{\phi_{0xx}^2}{U^3}+\frac{\psi_{0xx}^2}{U}\right)dx. \end{split} \end{equation} (4.71)

    Therefore, (4.62) follows from (4.63) and (4.68)–(4.71). We complete the proof.

    Proof. [Proof of Proposition 4.2] It is a direct consequence of Lemmas 4.2–4.5.

    Proof. [Proof of Theorem 2.2] The a priori estimate (4.5) guarantees that if N(0) is small, then N(t) is small for all t > 0 . Thus, applying the standard extension argument, we obtain the global well-posedness of system (3.6)–(3.9) in X(0, \infty) . Owing to the transformation (3.5), system (2.7) and (2.8) has a unique global solution (u, v)(x, t) satisfying (2.9).

    We next prove the convergence (2.10). We first show that

    \begin{equation} \|\phi_x(\cdot,t)\|+\|\psi_x(\cdot,t)\|\to 0 \;{\rm{ as }}\; \ t\to \infty. \end{equation} (4.72)

    It suffices to prove that \|\phi_x(\cdot, t)\|^2\in W^{1, 1}(0, \infty) and \|\psi_x(\cdot, t)\|^2\in W^{1, 1}(0, \infty) . By Lemma 4.2, we get

    \begin{equation} \int_0^{\infty}\int_0^{\infty}\phi_x^2dxdt \le C \int_0^{\infty}\int_0^{\infty}\frac{\phi_x^2}{U}dxdt < \infty. \end{equation} (4.73)

    By Lemma 4.5, we have \|\psi(\cdot, t)\|_{L^{\infty}}\le C and \|\frac{\psi_x(\cdot, t)}{\sqrt{W}}\|_{L^{\infty}}\le C . In view of the first equation of (3.6), there exists a constant C such that

    \begin{equation} \begin{split} \left|\frac{d}{dt}\int_0^{\infty}\phi_x^2dx\right| = &2\left|\int_0^{\infty}\phi_{tx}\phi_xdx\right|\\ = &2\left|\int_0^{\infty}\phi_{xx}\phi_tdx\right|\\ = &2\left|\int_0^{\infty}W^{-2}\phi_{xx}e^{2\psi} (\phi_{xx}+\phi_x\psi_x+U\psi_x+V\phi_x)dx\right|\\ \le &C\|e^{\psi}\|^2_{L^{\infty}}\left(\int_0^{\infty}\frac{\phi_{xx}^2}{W^2}dx +C(1+\|\frac{\psi_x}{\sqrt{W}}\|^2_{L^{\infty}}) \int_0^{\infty}\frac{\phi_x^2}{W}dx+\int_0^{\infty}\psi_x^2dx\right), \end{split} \end{equation} (4.74)

    where we have used (4.13) and (4.19). Then integrating (4.74) with respect to t and using (4.5), we get

    \begin{equation*} \begin{split} \int_0^{\infty}\Big{|}\frac{d}{dt}\int_0^{\infty}\phi_x^2dx\Big{|}dt < \infty, \end{split} \end{equation*}

    which, along with (4.73) leads to \|\phi_x(\cdot, t)\|^2\in W^{1, 1}(0, \infty) . Thus

    \begin{equation} \|\phi_x(\cdot,t)\|\to 0 \;{\rm{ as }}\; t\to \infty. \end{equation} (4.75)

    Similarly, one has

    \begin{equation} \int_0^{\infty}\int_0^{\infty}\psi_x^2dxdt < \infty. \end{equation} (4.76)

    Using the second equation of (3.6), there is a constant C > 0 such that

    \begin{equation} \begin{split} \left|\frac{d}{dt}\int_0^{\infty}\psi_x^2dx\right| = &2\left|\int_0^{\infty}\psi_{xx}\psi_tdx\right|\\ = &2\left|\int_0^{\infty}\psi_{xx}(d \psi_{xx}-2dV \psi_x -d \psi_x^2+\phi_x)dx\right|\\ \le &C(1+\|\psi_x\|^2_{L^{\infty}})\int_0^{\infty}\psi_{xx}^2dx +C\int_0^{\infty}\psi_x^2dx +C\int_0^{\infty}\phi_x^2dx. \end{split} \end{equation} (4.77)

    Then we integrate (4.77) with respect to t and make use of (4.5) to get

    \begin{equation*} \begin{split} \int_0^{\infty}\Big{|}\frac{d}{dt}\int_0^{\infty}\psi_x^2dx\Big{|}dt < \infty, \end{split} \end{equation*}

    which, along with (4.76) implies \|\psi_x(\cdot, t)\|^2\in W^{1, 1}(0, \infty) . Thus

    \begin{equation} \|\psi_x(\cdot,t)\|\to 0 \;{\rm{ as }}\; t\to \infty. \end{equation} (4.78)

    (4.72) then follows from (4.75) and (4.78). By Cauchy-Schwarz inequality and (4.5), we get

    \begin{equation*} \begin{split} \phi_x^2(x,t) = -2\int_x^\infty \phi_x\phi_{xx}(y,t)dy &\le 2\Big{(}\int_0^{\infty}\phi_x^2dy\Big{)}^{\frac{1}{2}} \Big{(}\int_0^{\infty}\phi_{xx}^2dy\Big{)}^{\frac{1}{2}}\\ &\leq C\|\phi_x(\cdot,t)\|\\& \to 0 \;{\rm{ as }}\; t\to +\infty. \end{split} \end{equation*}

    This implies

    \sup\limits_{x\in {\mathbb{R}}_+}|\phi_x(x,t)|\to 0 \;{\rm{ as }}\;t \to +\infty.

    Similarly, we have

    \sup\limits_{x\in {\mathbb{R}}_+}|\psi_x(x,t)|\to 0\;{\rm{ as }}\;t \to +\infty.

    Thus, (2.10) holds.

    Finally, we prove the L^1 convergence. By Lemmas 4.2 and 4.4, we get

    \begin{equation} \int_0^\infty \int_0^{\infty} \frac{\phi_{x}^2}{U}\leq C \ \;{\rm{ and }}\;\ \int_0^\infty \int_0^{\infty}\frac{\phi_{tx}^2}{U}\leq C. \end{equation} (4.79)

    A simple calculation gives

    \begin{equation} \begin{split} \left|\frac{d}{dt}\int_0^{\infty}\frac{\phi_{x}^2}{U}dx\right|dt = 2\left|\int_0^{\infty}\frac{\phi_{tx}\phi_x}{U}dx\right| \le \int_0^{\infty}\frac{\phi_{x}^2}{U}dx+\int_0^{\infty}\frac{\phi_{tx}^2}{U}dx.\end{split} \end{equation} (4.80)

    Integrating (4.80) with respect to t and using (4.79), we obtain

    \begin{equation*} \begin{split} \int_0^{\infty}\left|\frac{d}{dt}\int_0^{\infty}\frac{\phi_{x}^2}{U}dx\right|dt < \infty, \end{split} \end{equation*}

    which, along with the first inequality (4.79) yields \int_0^{\infty}\frac{\phi_{x}^2(x, t)}{U}dx\in W^{1, 1}(0, \infty) . And then

    \begin{equation*} \int_0^{\infty}\frac{\phi_{x}^2(x,t)}{U}dx\to 0 \;{\rm{ as }}\; t\to \infty. \end{equation*}

    Thus, from Hölder inequality and the fact that \int_0^{\infty}Udx < \infty , it follows that

    \begin{equation*} \int_0^{\infty}|\phi_{x}(x,t)|dx \leq\left(\int_0^{\infty}\frac{\phi_{x}^2(x,t)}{U}dx\right)^{\frac{1}{2}} \left(\int_0^{\infty}Udx\right)^{\frac{1}{2}}\to 0 \;{\rm{ as }}\; t\to \infty. \end{equation*}

    This yields the convergence (2.11).

    Proof. [Proof of Theorem 2.3.] We just need to pass the results from v to w to complete the proof of Theorem 2.3. The transformation (3.5) and Theorem 2.2 give the regularity of \frac{w_x}{w}-\frac{W_x}{W} .

    Next, we derive the results of w-W . Let \xi: = w-W . Owing to (2.5) and (3.5), it is easy to calculate that

    \begin{equation*} w(x,t) = be^{-\int_0^x v(y,t)dy} = be^{-\int_0^x (\psi_x+V)dy} = e^{-\psi}W. \end{equation*}

    Thus, \xi = W(e^{-\psi}-1) and \xi_x = W_x(e^{-\psi}-1)-We^{-\psi}\psi_x , which gives the regularity of w-W .

    It is left to show the convergence. By Cauchy-Schwarz inequality and (4.5), we get

    \begin{equation*} \psi^2(x,t) = 2\int_0^x \psi\psi_{x}(y,t)dy \le 2\Big{(}\int_0^{\infty}\psi^2dy\Big{)}^{\frac{1}{2}} \Big{(}\int_0^{\infty}\psi_{x}^2dy\Big{)}^{\frac{1}{2}} \leq C\|\psi_x(\cdot,t)\|. \end{equation*}

    Noting \|\psi(\cdot, t)\|_{L^{\infty}}\le N(t)\ll 1 , the Taylor expansion gives

    \begin{equation*} |1-e^{-\psi}| = \Big{|}\psi-\sum\limits_{n = 2}^{\infty}\frac{(-1)^n\psi^n}{n!}\Big{|} \le C|\psi|. \end{equation*}

    Therefore, by (4.78), we get

    \begin{equation*} \sup\limits_{x\in {\mathbb{R}}_+}|\xi(x,t)|\le C \sup\limits_{x\in {\mathbb{R}}_+}|\psi(x,t)|\leq C\|\psi_x(\cdot,t)\|^{\frac{1}{2}}\to 0 \ {\mathrm {as}} \ t\to \infty. \end{equation*}

    For the L^1 convergence, noting \int_0^\infty W(x)dx < \infty , it follows from Hölder inequality and Hardy inequality that

    \begin{split} \int_0^\infty|\xi(x,t)|dx\leq C\int_0^\infty W|\psi(x,t)|dx&\leq C\left(\int_0^\infty W^2dx\right)^{\frac{1}{2}}\left(\int_0^\infty W^2\psi^2(x,t)dx\right)^{\frac{1}{2}}\\&\leq C\|\psi_x(\cdot,t)\|\\&\to 0 \ {\mathrm {as}} \ t\to \infty.\end{split}

    We complete the proof of Theorem 2.3.

    We are concerned with the existence and stability of spiky patterns to the chemotaxis model (1.1) proposed by Kim and his collaborators [1,2]. This model was derived from the notion of "metric of food" which measures the amount of food. It avoids the mysterious assumption that the microscopic scale bacteria sense the macroscopic scale gradient of food. Moreover, this model also admits two types of traveling waves: traveling band and traveling front, under suitable assumptions on the consumption rates. Hence, it can be viewed as an alternative model to describe the propagation of traveling bands of bacteria observed in the experiment of Adler [3]. However, since the traveling wave of oxygen W vanishes at far field, one has to encounter the challenge of presence of two types of singularities in the study of stability of traveling waves. As the first step we investigate instead the stability of stationary waves to the model in the half space. In this case the model remains singular at the far field. We successfully find an effective strategy to handle the two types of singularities. In the following studies, we will apply the strategy of this paper to study the stability of traveling waves of the model by modifying some estimates.

    The potential biological application of our results is the explanation of formation of a plume pattern for aerobic bacteria observed in the experiment of [7], where the bacteria consume oxygen in a water drop. We conjecture that this plume pattern is a superposition of series of one dimensional spikes. However, owing to the lack of effective mathematical tools to handle the stability of biological patterns to a chemotaxis-fluid model, we consider a simplified fluid free chemotaxis model. And we expect that our argument is effective for more general chemotaxis models and even some chemotaxis-fluid models.

    The authors are grateful to the three referees for their insightful comments and suggestions, which lead to great improvements of our original manuscript. This work is supported by the Natural Science Foundation of Jilin Province (20210101144JC).

    The authors declare there is no conflict of interest.

    Proof. [Proof of Proposition 3.1] The local existence can be proved using the principle of contraction mapping. Set

    \begin{equation*} \begin{split} \mathcal{Y}_{T}: = \{(f, g)|(f, g)\in L^{\infty}((0,T);H^1), (f_x,g_x)\in L^2((0,T);H^1) \} \end{split} \end{equation*}

    equipped with norm

    \begin{equation*} \begin{split} \|(f,g)\|_{\mathcal{Y}_{T}} : = \|(f,g)\|_{L^{\infty}((0,T);H^1)} +\|(f_{x},g_{x})\|_{L^2((0,T);H^1)}. \end{split} \end{equation*}

    Define a mapping \mathcal{Z} : (\hat{\phi}, \hat{\psi})\in \mathcal{Y}_T \mapsto \mathcal{Z}(\hat{\phi}, \hat{\psi}) such that (\phi, \psi) = \mathcal{Z}(\hat{\phi}, \hat{\psi}) is a solution of

    \begin{equation} \begin{cases} W_\varepsilon^2\phi_t = e^{2\psi}(\phi_{xx}+\hat{\phi}_x\hat{\psi}_x+U\hat{\psi}_x +V_\varepsilon\hat{\phi}_x),\\ \psi_t = d \psi_{xx}-2d V_\varepsilon\hat{\psi}_x-d{\hat{\psi}_x}^2+\hat{\phi}_x, \end{cases} \end{equation} (A1)

    with the initial and boundary conditions (3.7)–(3.9). Taking a ball

    B_{M,T}: = \{(\hat{\phi},\hat{\psi}): \|(\hat{\phi},\hat{\psi})\|_{{\mathcal{Y}}_{T}} \le M\},

    where M is a constant to be determined later. We shall show that there are M and T such that (i) \mathcal{Z} maps B_{M, T} into itself; (ii) \mathcal{Z} is a contraction in B_{M, T} .

    We first show (i). According to the standard linear parabolic theory, for any (\hat{\phi}, \hat{\psi})\in \mathcal{Y}_T , the second equation of (A1) has a unique strong solution \psi . Substituting \psi into the first equation, we obtain the existence of strong solution \phi . Hence the mapping \mathcal{Z} is well-defined.

    We next derive the estimates for (\phi, \psi) . Multiplying the second equation of (A1) by \psi gives

    \begin{equation*} \begin{split} \frac{1}{2}\int_0^{\infty}\psi^2+d\int_0^t\int_0^{\infty}\psi_{x}^2 \leq \frac{1}{2}\int_0^t\int_0^{\infty}\psi^2+C\int_0^t\int_0^{\infty}(\hat{\psi}_x^2+\hat{\phi}_x^2) +d\int_0^t\int_0^{\infty}\hat{\psi}_x^2|\psi|+\frac{1}{2}\int_0^{\infty}\psi_0^2, \end{split} \end{equation*}

    where

    d\int_0^{\infty}\hat{\psi}_x^2|\psi|\leq d\|\psi\|_{L^\infty}\int_0^{\infty}\hat{\psi}_x^2\leq dM^2\|\psi\|_{L^2}^{\frac{1}{2}}\|\psi_x\|_{L^2}^{\frac{1}{2}} \leq\frac{d}{2}\int_0^{\infty}\psi_{x}^2+\int_0^{\infty}\psi^2+CM^4.

    Then choosing T\leq\frac{1}{2} , we get

    \begin{equation} \sup\limits_{0\le t\le T}\int_0^{\infty}\psi^2dx +\int_0^T\int_0^{\infty}\psi_x^2dxdt \leq C(M^2+M^4)T+2\int_0^{\infty}\psi_{0}^2dx. \end{equation} (A2)

    Similarly, multiplying the second equation of (A1) by \psi_{xx} leads to

    \begin{equation} \begin{split}\sup\limits_{0\le t\le T}\int_0^{\infty}\psi_x^2dx +\int_0^T\int_0^{\infty}\psi_{xx}^2dxdt &\leq CM^2T+CM^3T^{\frac{1}{2}} \left(\int_0^T\int_0^{\infty}\hat{\psi}_{xx}^2\right)^{\frac{1}{2}} +\int_0^{\infty}\psi_{0x}^2dx\\ &\leq CM^2T+CM^4T^{\frac{1}{2}}+\int_0^{\infty}\psi_{0x}^2dx, \end{split} \end{equation} (A3)

    where we have used

    \int_0^{\infty}\hat{\psi}_x^4\leq M^2\|\hat{\psi}_x\|_{L^\infty}^2 \leq M^2\|\hat{\psi}_x\|_{L^2}\|\hat{\psi}_{xx}\|_{L^2}\leq M^3\|\hat{\psi}_{xx}\|_{L^2}.

    By (A2) and (A3), if we take M^2\geq2\int_0^{\infty}(\psi_{0}^2+\psi_{0x}^2) and chose T small enough, then

    \begin{equation} \|\psi\|_{L^{\infty}((0,T);H^1)}^2\leq M^2. \end{equation} (A4)

    Multiplying the first equation of (A1) by \phi gives

    \begin{equation} \begin{split} &\frac{1}{2}\int_0^{\infty}W_\varepsilon^2\phi^2 +\int_0^t\int_0^{\infty}e^{2\psi}\phi_x^2\\& = -2\int_0^t\int_0^{\infty}e^{2\psi}\psi_x\phi_x\phi+\int_0^t\int_0^{\infty}e^{2\psi} (\hat{\phi}_x\hat{\psi}_x+U\hat{\psi}_x +V_\varepsilon\hat{\phi}_x)\phi+\frac{1}{2}\int_0^{\infty}W_\varepsilon^2\phi_0^2, \end{split} \end{equation} (A5)

    where

    \begin{split} 2\int_0^{\infty}e^{2\psi}|\psi_x\phi_x\phi| &\leq2 e^{2M}\|e^{2\psi}\phi_x\|_{L^2}^{\frac{3}{2}} \|\phi\|_{L^2}^{\frac{1}{2}}\|\psi_x\|_{L^2}\\ &\leq \frac{1}{2}\int_0^{\infty}e^{2\psi}\phi_x^2+e^{4M}M^4\int_0^{\infty}\phi^2, \end{split}
    \begin{split} \int_0^{\infty}e^{2\psi} |\hat{\phi}_x\hat{\psi}_x\phi|&\leq \int_0^{\infty}\phi^2+e^{4M}\|\hat{\phi}_x\|^2_{L^{\infty}} \|\hat{\psi}_x\|^2_{L^2}\\ &\leq\int_0^{\infty}\phi^2+e^{4M}M^3\|\hat{\psi}_{xx}\|_{L^2}, \end{split}

    and

    \int_0^{\infty}e^{2\psi} |(U\hat{\psi}_x +V_\varepsilon\hat{\phi}_x)\phi|\leq\int_0^{\infty}\phi^2+e^{4M}M^2.

    If e^{4M}M^4T\leq\frac{\varepsilon^2}{2} , we get from (A5) that

    \begin{equation} \begin{split} \sup\limits_{0\le t\le T}\int_0^{\infty}\phi^2 +\int_0^T\int_0^{\infty}e^{2\psi}\phi_x^2\le Ce^{4M}M^4T^{\frac{1}{2}}\varepsilon^{-2} +C\varepsilon^{-2}\int_0^{\infty}\phi_0^2. \end{split} \end{equation} (A6)

    Similarly, multiplying the first equation of (A1) by \phi_{xx} gives

    \begin{equation*} \begin{split} &\frac{1}{2}\int_0^{\infty}W_\varepsilon^2\phi_x^2 +\frac{1}{2}\int_0^t\int_0^{\infty}e^{2\psi}\phi_{xx}^2\\ &\leq\int_0^t\int_0^{\infty}e^{2\psi} |(\hat{\phi}_x\hat{\psi}_x+U\hat{\psi}_x +V_\varepsilon\hat{\phi}_x)\phi_{xx}|+2\int_0^t\int_0^{\infty}W_\varepsilon |W_{\varepsilon x}\phi_x\phi_t|+\frac{1}{2}\int_0^{\infty}W_\varepsilon^2\phi_{0x}^2\\ &\triangleq \int_0^t(I+II)+\frac{1}{2}\int_0^{\infty}W_\varepsilon^2\phi_{0x}^2, \end{split} \end{equation*}

    where

    \begin{split} I\leq e^{2M}M^3\|\hat{\psi}_{xx}\|_{L^2}+e^{2M}M^2,\ II\leq\frac{1}{4}\int_0^{\infty}e^{2\psi}\phi_{xx}^2 +Ce^{2M}M^4+\int_0^{\infty}\phi_{x}^2.\end{split}

    Then choosing T\leq\frac{\varepsilon^{2}}{2} , we have

    \begin{equation} \begin{split} \sup\limits_{0\le t\le T}\int_0^{\infty}\phi_x^2 +\int_0^T\int_0^{\infty}e^{2\psi}\phi_{xx}^2\le C\varepsilon^{-2}e^{2M}M^4T^{\frac{1}{2}} +C\varepsilon^{-2}\int_0^{\infty}\phi_{0x}^2. \end{split} \end{equation} (A7)

    In view of (A2), (A3), (A6) and (A7), we choose M and T satisfying

    M = 4\int_0^{\infty}(\psi_{0}^2+\psi_{0x}^2) +4C\varepsilon^{-2}\int_0^{\infty}(\phi_{0}^2+\phi_{0x}^2)+1, \ 8C(M+M^3)T^{\frac{1}{2}}+8Ce^{4M}M^4\varepsilon^{-2}T^{\frac{1}{2}}\leq1,

    then \|(\phi, \psi)\|_{{\mathcal{Y}}_{T}}\le M , which verifies (i).

    We proceed to show (ii). For any (\hat{\phi}_1, \hat{\psi}_1) , (\hat{\phi}_2, \hat{\psi}_2)\in B_{M, T} , set (\phi_1, \psi_1) = \mathcal{Z}(\hat{\phi}_1, \hat{\psi}_1) , (\phi_2, \psi_2) = \mathcal{Z}(\hat{\phi}_2, \hat{\psi}_2) and (\bar{\phi}, \bar{\psi}): = (\phi_1, \psi_1) -(\phi_2, \psi_2) . Then (\bar{\phi}, \bar{\psi}) satisfies

    \begin{equation} \begin{cases} \begin{aligned} W_\varepsilon^2\bar{\phi}_t = &e^{2\psi_1}\bar{\phi}_{xx}+(e^{2\psi_1}-e^{2\psi_2})\phi_{2xx} +(e^{2\psi_1}-e^{2\psi_2})\hat{\phi}_{1x}\hat{\psi}_{1x}\\&+ e^{2\psi_2}(\hat{\phi}_{1x}-\hat{\phi}_{2x})\hat{\psi}_{1x} +e^{2\psi_2}\hat{\phi}_{2x}(\hat{\psi}_{1x}-\hat{\psi}_{2x})\\ &+U(e^{2\psi_1}-e^{2\psi_2})\hat{\psi}_{1x} +Ue^{2\hat{\psi}_2}(\hat{\psi}_{1x}-\hat{\psi}_{2x})\\& +V_\varepsilon(e^{2\psi_1}-e^{2\psi_2})\hat{\phi}_{1x} +V_\varepsilon e^{2\psi_2}(\hat{\phi}_{1x}-\hat{\phi}_{2x}),\\ \bar{\psi}_t = &d \bar{\psi}_{xx}-2d V_\varepsilon(\hat{\psi}_1-\hat{\psi}_2)_x -d(\hat{\psi}_1-\hat{\psi}_2)_x(\hat{\psi}_{1x}+\hat{\psi}_{2x}) +(\hat{\phi}_1-\hat{\phi}_2)_x \end{aligned} \end{cases} \end{equation} (A8)

    with zero initial-boundary conditions. Multiplying the second equation of (A8) by \bar{\psi} gives

    \int_0^{\infty}\bar{\psi}^2+d\int_0^T\int_0^{\infty}\bar{\psi}_x^2 \leq(C+M^2)\int_0^T\int_0^{\infty}|(\hat{\psi}_1-\hat{\psi}_2)_x|^2 +\int_0^T\int_0^{\infty}(\bar{\psi}^2 +C|(\hat{\phi}_1-\hat{\phi}_2)_x|^2).

    Thus, choosing T\leq\frac{1}{2} , we get

    \begin{split} \|\bar{\psi}\|_{L^{\infty}((0,T);L^2)}^2+\|\bar{\psi}_x\|_{L^2((0,T);L^2)}^2\leq& C(1+M^2)T\|(\hat{\psi}_1-\hat{\psi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2\\& +CT\|(\hat{\phi}_1-\hat{\phi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2. \end{split}

    Multiplying the second equation of (A8) by \bar{\psi}_{xx} , and noting

    \begin{split} \int_0^T\int_0^{\infty}|(\hat{\psi}_1+\hat{\psi}_2)_x|^2 |(\hat{\psi}_1-\hat{\psi}_2)_x|^2 &\leq M\|(\hat{\psi}_1-\hat{\psi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2 \int_0^T\|(\hat{\psi}_1+\hat{\psi}_2)_{xx}\|_{L^2}\\ &\leq M^2T^{\frac{1}{2}}\|(\hat{\psi}_1-\hat{\psi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2, \end{split}

    we get after choosing T\leq\frac{1}{2} that

    \begin{equation} \begin{split} &\|\bar{\psi}_x\|_{L^{\infty}((0,T);L^2)}^2+\|\bar{\psi}_{xx}\|_{L^2((0,T);L^2)}^2\\ &\leq CM^2T^{\frac{1}{2}}\|(\hat{\psi}_1-\hat{\psi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2 +CT\|(\hat{\phi}_1-\hat{\phi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2. \end{split} \end{equation} (A9)

    This also implies

    \begin{equation} \begin{split} \|\bar{\psi}\|_{L^{\infty}((0,T);L^\infty)}^2\leq CM^2T^{\frac{1}{2}}\|(\hat{\psi}_1-\hat{\psi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2 +CT\|(\hat{\phi}_1-\hat{\phi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2. \end{split} \end{equation} (A10)

    Multiplying the first equation of (A8) by \bar{\phi} , noting

    \begin{split} \int_0^T\int_0^\infty|(e^{2\psi_1}-e^{2\psi_2})\phi_{2xx}\bar{\phi}|&\leq \int_0^T\|\bar{\psi}\|_{L^{\infty}}\|\phi_{2xx}\|_{L^{2}}\|\bar{\phi}\|_{L^{2}}\\ &\leq T\|\bar{\phi}\|_{L^{\infty}((0,T);L^2)}^2 +M^2\|\bar{\psi}\|_{L^{\infty}((0,T);L^\infty)}^2,\end{split}

    we have

    \begin{split} &\varepsilon^2\|\bar{\phi}\|_{L^{\infty}((0,T);L^2)}^2 +\|\bar{\phi}_x\|_{L^{2}((0,T);L^2)}^2\\ &\leq C(M)T\left(\|\bar{\phi}\|_{L^{\infty}((0,T);L^2)}^2 +\|\bar{\psi}\|_{L^{\infty}((0,T);L^\infty)}^2\right)\\&\quad +C(M)T\left(\|(\hat{\psi}_1-\hat{\psi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2 +\|(\hat{\phi}_1-\hat{\phi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2\right).\end{split}

    Multiplying the first equation of (A8) by \bar{\phi}_{xx} , noting

    \begin{split} \int_0^T\int_0^\infty|(e^{2\psi_1}-e^{2\psi_2}) \phi_{2xx}\bar{\phi}_{xx}|&\leq \frac{1}{2}\int_0^T\int_0^\infty\bar{\phi}_{xx}^2+ C\int_0^Te^{6M}\|\bar{\psi}\|_{L^{2}}\|\bar{\psi}_x\|_{L^{2}} \|\phi_{2xx}\|_{L^{2}}^2\\ &\leq \frac{1}{2}\int_0^T\int_0^\infty\bar{\phi}_{xx}^2+ C(M)\|\bar{\psi}\|_{L^{\infty}((0,T);L^2)} \|\bar{\psi}_x\|_{L^{\infty}((0,T);L^2)},\end{split}

    and

    \begin{split} &\int_0^T\int_0^\infty e^{2\psi_2}(\hat{\phi}_{1}-\hat{\phi}_{2})_x\hat{\psi}_{1x}\bar{\phi}_{xx}\\ &\leq \frac{1}{2}\int_0^T\int_0^\infty\bar{\phi}_{xx}^2+ C(M)\|(\hat{\phi}_1-\hat{\phi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2\int_0^T \|\hat{\psi}_{1xx}(\cdot,t)\|_{L^{2}}\\ &\leq \frac{1}{2}\int_0^T\int_0^\infty\bar{\phi}_{xx}^2+ C(M)T^{\frac{1}{2}}\|(\hat{\phi}_1-\hat{\phi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2, \end{split}

    we have

    \begin{split} &\varepsilon^2\|\bar{\phi}_x\|_{L^{\infty}((0,T);L^2)}^2 +\|\bar{\phi}_{xx}\|_{L^{2}((0,T);L^2)}^2\\& \leq C(M)\|\bar{\psi}\|_{L^{\infty}((0,T);L^2)} \|\bar{\psi}_x\|_{L^{\infty}((0,T);L^2)}\\&\quad +C(M)T\left(\|(\hat{\psi}_1-\hat{\psi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2 +\|(\hat{\phi}_1-\hat{\phi}_2)_x\|_{L^{\infty}((0,T);L^2)}^2\right).\end{split}

    Therefore, owing to (A9)–(A10), we can take T small enough to derive

    \begin{equation} \|(\bar{\phi},\bar{\psi})\|_{\mathcal{Y}_T}\le \frac{1}{2} \|(\hat{\phi}_1-\hat{\phi}_2, \hat{\psi}_1-\hat{\psi}_2)\|_{\mathcal{Y}_T}, \end{equation} (A11)

    which verifies (ii).

    Now we apply the contraction mapping principle to obtain that system (3.10) has a solution. The uniqueness follows from a similar argument as (A11) and the Gronwall's inequality.



    [1] M. Vendrell, D. Zhai, J. C. Er, et al., Combinatorial strategies in fluorescent probe development, Chem. Rev., 112 (2012), 4391–4420.
    [2] S. Erdemir and O. Kocyigit, Reversible "OFF–ON" fluorescent and colorimetric sensor based benzothiazole-bisphenol A for fluoride in MeCN, Sens. Actuat. B: Chem., 221 (2015), 900–905.
    [3] G. Hernandez-Vargas, J. E. Sosa-Hernández, S. Saldarriaga-Hernandez, et al., Electrochemical Biosensors: A solution to pollution detection with reference to environmental contaminants, Biosensors, 8 (2018), 29.
    [4] T. Rasheed, M. Bilal, F. Nabeel, et al., Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals, Sci. Total Environ., 615 (2018), 476–485.
    [5] T. Rasheed, C. Li, M. Bilal, et al., Potentially toxic elements and environmentally-related pollutants recognition using colorimetric and ratiometric fluorescent probes, Sci. Total Environ., 640 (2018), 174–193.
    [6] L. Ling, Y. Zhao, J. Du, et al., An optical sensor for mercuric ion based on immobilization of rhodamine B derivative in PVC membrane, Talanta, 91 (2012), 65–71.
    [7] G. D. Huy, M. Zhang, P. Zuo, et al., Multiplexed analysis of silver (I) and mercury (II) ions using oligonucletide–metal nanoparticle conjugates, Analyst, 136 (2011), 3289–3294.
    [8] A. Kaur, H. Sharma, S. Kaur, et al., A counterion displacement assay with a Biginelli product: a ratiometric sensor for Hg 2+ and the resultant complex as a sensor for Cl, RSC Adv., 3 (2013), 6160–6166.
    [9] S. Kraithong, P. Damrongsak, K. Suwatpipat, et al., Highly Hg 2+-sensitive and selective fluorescent sensors in aqueous solution and sensors-encapsulated polymeric membrane, RSC Adv., 6 (2016), 10401–10411.
    [10] S. Rodriguez-Mozaz, M. J. L. de Alda, D. Barceló, Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem., 386 (2006), 1025–1041.
    [11] D. Barceló and P. D. Hansen, Biosensors for the environmental monitoring of aquatic systems, In: Bioanalytical and chemical methods for endocrine disruptors, 5 (2008).
    [12] M. Taki, K. Akaoka, S. Iyoshi, et al., Rosamine-based fluorescent sensor with femtomolar affinity for the reversible detection of a mercury ion, Inorg. Chem., 51 (2012), 13075–13077.
    [13] M. Farré and D. Barceló, Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis, TrAC Trends Anal. Chem., 22 (2003), 299–310.
    [14] T. Rasheed, C. Li, F. Nabeel, et al., Self-assembly of alternating copolymer vesicles for the highly selective, sensitive and visual detection and quantification of aqueous Hg2+, Chem. Eng. J., 358 (2019), 101–109.
    [15] L. Xu, M. L. He, H. B. Yang, et al., A simple fluorescent probe for Cd2+ in aqueous solution with high selectivity and sensitivity, Dalt. Transact., 42 (2013), 8218–8222.
    [16] C. Bosch-Orea, M. Farré and D. Barceló, Biosensors and bioassays for environmental monitoring. In: Past, present and future challenges of biosensors and bioanalytical tools in analytical chemistry: A tribute to Professor Marco Mascini, Comprehen. Anal. Chem., 77 (2017), 337–373.
    [17] E. M. Nolan and S. J. Lippard, Tools and tactics for the optical detection of mercuric ion, Chem. Rev., 108 (2008), 3443–3480.
    [18] C. M. Carvalho, E. H. Chew, S. I. Hashemy, et al., Inhibition of the human thioredoxin system a molecular mechanism of mercury toxicity, J. Biol. Chem., 283 (2008), 11913–11923.
    [19] J. Wang and X. Qian, A series of polyamide receptor based PET fluorescent sensor molecules: positively cooperative Hg2+ ion binding with high sensitivity, Org. Lett., 8 (2006), 3721–3724.
    [20] K. A. Merritt and A. Amirbahman, Mercury methylation dynamics in estuarine and coastal marine environments-A critical review, Earth-Sci. Rev., 96 (2009), 54–66.
    [21] T. Zhang, B. Kim, C. Levard, et al., Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides, Environ. Sci. Technol., 46 (2012), 6950–6958.
    [22] World Health Organization, Guidelines for drinking-water quality, 3rd Ed., Vol. 1, Geneva, 2004.
    [23] T. Rasheed, C. Li, Y. Zhang, et al., Rhodamine-based multianalyte colorimetric probe with potentialities as on-site assay kit and in biological systems, Sens. Actuators. B., 258 (2018), 115–124.
    [24] T. Rasheed, C. Li, L. Fu, et al., Development and characterization of newly engineered chemosensor with intracellular monitoring potentialities and lowest detection of toxic elements, J. Mol. Liq., 272 (2018), 440–449.
    [25] Y. Cao, L. Ding, W. Hu, et al., Selective sensing of copper and mercury ions with pyrene-functionalized fluorescent film sensor containing a hydrophilic spacer, Appl. Surf. Sci., 273 (2013), 542–548.
    [26] N. Wanichacheva, N. Prapawattanapol, V. S. Lee, et al., Hg2+-induced self-assembly of a naphthalimide derivative by selective "turn-on" monomer/excimer emissions, J. Luminesce., 134 (2013), 686–690.
    [27] X. Chen, T. Pradhan, F. Wang, et al., Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev., 112 (2011), 1910–1956.
    [28] W. Zhu, X. Chai, B. Wang, et al., Spiroboronate Si-rhodamine as a near-infrared probe for imaging lysosomes based on the reversible ring-opening process, Chem. Commun., 51 (2015), 9608–9611.
    [29] X. Zhang and Y. Y. Zhu, A new fluorescent chemodosimeter for Hg2+-selective detection in aqueous solution based on Hg2+-promoted hydrolysis of rhodamine-glyoxylic acid conjugate, Sens. Actuat. B: Chem., 202 (2014), 609–614.
    [30] Y. Yuan, S. Sun, S. Liu, et al., Highly sensitive and selective turn-on fluorescent probes for Cu2+ based on rhodamine B, J. Mater. Chem. B., 3 (2015), 5261–5265.
    [31] W. Zhao, X. Liu, H. Lv, et al., A phenothiazine–rhodamine ratiometric fluorescent probe for Hg2+ based on FRET and ICT, Tetrahedr. Lett., 56 (2015), 4293–4298.
    [32] M. H. Lee, J. S. Wu, J. W. Lee, et al., Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore, Org. Lett., 9 (2007), 2501–2504.
    [33] J. Y. Kwon, Y. J. Jang, Y. J. Lee, et al., A highly selective fluorescent chemosensor for Pb2+, J. Am. Chem. Soc., 127 (2005), 10107–10111.
    [34] H. Lu, S. S. Zhang, H. Z. Liu, et al., Experimentation and theoretic calculation of a bodipy sensor based on photoinduced electron transfer for ions detection, J. Phy. Chem. A., 113 (2009), 14081–14086.
    [35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Inc., Wallingford CT, USA, (2013).
  • This article has been cited by:

    1. Xu Song, Jingyu Li, Tianbo Zhang, Nonlinear stability of spiky patterns to a chemotaxis-consumption model with signal-dependent motilities, 2024, 408, 00220396, 279, 10.1016/j.jde.2024.06.033
    2. Johannes Lankeit, Michael Winkler, Depleting the signal: Analysis of chemotaxis‐consumption models—A survey, 2023, 151, 0022-2526, 1197, 10.1111/sapm.12625
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5807) PDF downloads(815) Cited by(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog