Citation: Tianyuan Xu, Shanming Ji, Chunhua Jin, Ming Mei, Jingxue Yin. EARLY AND LATE STAGE PROFILES FOR A CHEMOTAXIS MODEL WITH DENSITY-DEPENDENT JUMP PROBABILITY[J]. Mathematical Biosciences and Engineering, 2018, 15(6): 1345-1385. doi: 10.3934/mbe.2018062
[1] | [ N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. |
[2] | [ A. A. Blumberg, Logistic growth rate functions, J. Theor. Biol., 21 (1968), 42-44. |
[3] | [ H. M. Byrne, Dissecting cancer through mathematics: from the cell to the animal model, Nature Reviews Cancer, 10 (2010), 221-230. |
[4] | [ M. A. Chaplain and A. R. Anderson, Mathematical modelling of tissue invasion, in Cancer Model. Simul., Chapman and Hall/CRC, London, (2003), 269-297. |
[5] | [ Y. H. Du, F. Quirós and M. L. Zhou, Logarithmic corrections in Fisher-KPP type Porous Medium Equations, preprint, arXiv: 1806.02022. |
[6] | [ P. Friedl and K. Wolf, Tumour-cell invasion and migration: Diversity and escape mechanisms, Nature Reviews Cancer, 3 (2003), 362-374. |
[7] | [ K. Fujie, A. Ito, M. Winkler and T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Disc. Cont. Dyn. Syst., 36 (2016), 151-169. doi: |
[8] | [ R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745-5753. |
[9] | [ W. S. C. Gurney and R. M. Nisbet, The regulation of inhomogeneous population, J. Theors. Biol., 52 (1975), 441-457. |
[10] | [ M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49. |
[11] | [ T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301. |
[12] | [ T. Hillen and K. J. Painter, A user's guide to pde models in a chemotaxis, J. Math. Biology, 58 (2009), 183-217. |
[13] | [ C. H. Jin, Boundedness and global solvability to a chemotaxis model with nonlinear diffusion, J. Differential Equations, 263 (2017), 5759-5772. |
[14] | [ C. H. Jin, Boundedness and global solvability to a chemotaxis-haptotaixs model with slow and fast diffusion, Disc. Cont. Dyn. Syst., 23 (2018), 1675-1688. |
[15] | [ E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biology, 30 (1971), 225-234. |
[16] | [ R. D. Leek, The role of tumour associated macrophages in breast cancer angiogenesis, Ph.D thesis, Oxford Brookes University, Oxford, 1999. |
[17] | [ D. Li, C. Mu and P. Zheng, Boundedness and large time behavior in a quasilinear chemotaxis model for tumor invasion, Math. Models Methods Appl. Sci., 28 (2018), 1413-1451. |
[18] | [ J. Liu and Y. F. Wang, A quasilinear chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, Math. Methods Appl. Sci., 40 (2017), 2107-2121. |
[19] | [ Y. Lou and M. Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Part. Diff. Equ., 40 (2015), 1905-1941. |
[20] | [ P. Lu, V. Weaver and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression, J. Cell Biol., 196 (2012), 395-406. |
[21] | [ H. McAneney and S. F. C. O'Rourke, Investigation of various growth mechanisms of solid tumour growth within the linear quadratic model for radiotherapy, Phys. Med. Biol., 52 (2007), 1039-1054. |
[22] | [ M. Mei, H. Y. Peng and Z. A. Wang, Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis, J. Differential Equations, 259 (2015), 5168-5191. |
[23] | [ Y. Mimura, The variational formulation of the fully parabolic Keller-Segel system with degenerate diffusion, J. Differential Equations, 263 (2017), 1477-1521. |
[24] | [ J. D. Murry, Mathematical Biology I: An Introduction, Springer, New York, USA, 2002. |
[25] | [ A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer Science Business Media, 2013. |
[26] | [ M. E. Orme and M. A. J. Chaplain, A mathematical model of vascular tumour growth and invasion, Math. Comput. Modelling, 23 (1996), 43-60. |
[27] | [ M. R. Owen, H. M. Byrne and C. E. Lewis, Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites, J. Theor. Biol., 226 (2004), 377-391. |
[28] | [ K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Canadian Appl. Math. Quart., 10 (2002), 501-543. |
[29] | [ K. J. Painter and J. A. Sherratt, Modelling the movement of interacting cell populations, J. Theor. Biol., 225 (2003), 327-339. |
[30] | [ B. G. Sengers, C. P. Please and R. O. C. Oreffo, Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration, J. R. Soc. Interface, 4 (2007), 1107-1117. |
[31] | [ J. A. Sherratt, On the form of smooth-front travelling waves in a reaction-diffusion equation with degenerate nonlinear diffusion, Math. Model. Nat. Phenom, 5 (2010), 64-79. |
[32] | [ J. A. Sherratt and M. A. J. Chaplain, A new mathematical model for avascular tumour growth, J. Math. Biol., 43 (2001), 291-312. |
[33] | [ J. A. Sherratt and J. D. Murray, Models of epidermal wound healing, Proc. R. Soc. London B, 241 (1990), 29-35. |
[34] | [ M. J. Simpson, R. E. Baker and S. W. McCue, Models of collective cell spreading with variable cell aspect ratio: A motivation for degenerate diffusion models, Phys. Rev. E, 83 (2011), 021901. |
[35] | [ M. J. Simpson, D. C. Zhang, M. Mariani, K. A. Landman and D. F. Newgreen, Cell proliferation drives neural crest cell invasion of the intestine, Dev. Biol., 302 (2007), 553-568. |
[36] | [ A. Stevens and H. G. Othmer, Aggregation, blowup, and collapse: The abc's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (2001), 1044-1081. |
[37] | [ Z. Szymańska, C. M. Rodrigo, M. Lachowicz and M. A. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci., 19 (2009), 257-281. |
[38] | [ Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-705. |
[39] | [ Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 1901-1914. |
[40] | [ Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239. |
[41] | [ M. E. Turner, B. A. Blumenstein and J. L. Sebaugh, A generalization of the logistic law of growth, Biometrics, 25 (1969), 577-580. |
[42] | [ H. A. S. Van den Brenk, Studies in restorative growth processes in mammalian wound healing, Br. J. Surg., 43 (1956), 525-550. |
[43] | [ J. L. Vàzquez, The Porous Medium Equation: Mathematical Theory, Oxford Univ. Press, Oxford, 2007. |
[44] | [ L. Von Bertalanffy, Quantitative laws in metabolism and growth, Q. Rev. Biol., 32 (1957), 217-231. |
[45] | [ Y. F. Wang, Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Appl. Math. Lett., 59 (2016), 122-126. |
[46] | [ Y. F. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differential Equations, 260 (2016), 1975-1989. |
[47] | [ Y. F. Wang and Y. Y. Ke, Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher demensions, J. Differential Equations, 260 (2016), 6960-6988. |
[48] | [ Z. A. Wang, M. Winkler and D. Wrzosek, Singularity formation in chemotaxis systems with volume-filling effect, Nonlinearity, 24 (2011), 3279-3297. |
[49] | [ Z. A. Wang, Z. Y. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258. |
[50] | [ Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in chemotaxis model with volume-filling effect and degenerate diffusion, SIAM J. Math. Anal., 44 (2012), 3502-3525. |
[51] | [ M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Analysis, 72 (2010), 1044-1064. |
[52] | [ M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differential Equations, 264 (2018), 6109-6151, arXiv: 1704.05648. |
[53] | [ M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differential Equations, 54 (2015), 3789-3828. |
[54] | [ M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. |
[55] | [ T. P. Witelski, Segregation and mixing in degenerate diffusion in population dynamics, J. Math. Biol., 35 (1997), 695-712. |
[56] | [ Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear Diffusion Equations, World Scientific Publishing Co. Pvt. Ltd., 2001. |
[57] | [ T. Y. Xu, S. M. Ji, M. Mei and J. X. Yin, Global existence of solutions to a chemotaxis-haptotaxis model with density-dependent jump probability and quorum-sensing mechanisms, Math. Meth. Appl. Sci., 41 (2018), 4208-4226. |
[58] | [ T. Y. Xu, S. M. Ji, M. Mei and J. X. Yin, Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion, J. Differential Equations, 265 (2018), 4442-4485. |
[59] | [ A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Z. Angew. Math. Phys., 67 (2016), 1-29. |