Optimal harvesting policy for the Beverton--Holt model

  • Received: 01 September 2015 Accepted: 29 June 2018 Published: 01 May 2016
  • MSC : Primary: 39A23, 92D25; Secondary: 39A30, 49K15.

  • In this paper, we establish the exploitation of a single population modeled by the Beverton--Holt difference equation with periodic coefficients. We begin our investigation with the harvesting of a single autonomous population with logistic growth and show that the harvested logistic equation with periodic coefficients has a unique positive periodic solution which globally attracts all its solutions. Further, we approach the investigation of the optimal harvesting policy that maximizes the annual sustainable yield in a novel and powerful way; it serves as a foundation for the analysis of the exploitation of the discrete population model. In the second part of the paper, we formulate the harvested Beverton--Holt model and derive the unique periodic solution, which globally attracts all its solutions. We continue our investigation by optimizing the sustainable yield with respect to the harvest effort. The results differ from the optimal harvesting policy for the continuous logistic model, which suggests a separate strategy for populations modeled by the Beverton--Holt difference equation.

    Citation: Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model[J]. Mathematical Biosciences and Engineering, 2016, 13(4): 673-695. doi: 10.3934/mbe.2016014

    Related Papers:

    [1] Yuanpei Xia, Weisong Zhou, Zhichun Yang . Global analysis and optimal harvesting for a hybrid stochastic phytoplankton-zooplankton-fish model with distributed delays. Mathematical Biosciences and Engineering, 2020, 17(5): 6149-6180. doi: 10.3934/mbe.2020326
    [2] Martin Bohner, Jaqueline Mesquita, Sabrina Streipert . The Beverton–Hold model on isolated time scales. Mathematical Biosciences and Engineering, 2022, 19(11): 11693-11716. doi: 10.3934/mbe.2022544
    [3] Fangfang Zhu, Xinzhu Meng, Tonghua Zhang . Optimal harvesting of a competitive n-species stochastic model with delayed diffusions. Mathematical Biosciences and Engineering, 2019, 16(3): 1554-1574. doi: 10.3934/mbe.2019074
    [4] Qianhong Zhang, Fubiao Lin, Xiaoying Zhong . On discrete time Beverton-Holt population model with fuzzy environment. Mathematical Biosciences and Engineering, 2019, 16(3): 1471-1488. doi: 10.3934/mbe.2019071
    [5] Sheng Wang, Lijuan Dong, Zeyan Yue . Optimal harvesting strategy for stochastic hybrid delay Lotka-Volterra systems with Lévy noise in a polluted environment. Mathematical Biosciences and Engineering, 2023, 20(4): 6084-6109. doi: 10.3934/mbe.2023263
    [6] Kunquan Lan, Wei Lin . Population models with quasi-constant-yield harvest rates. Mathematical Biosciences and Engineering, 2017, 14(2): 467-490. doi: 10.3934/mbe.2017029
    [7] Chanakarn Kiataramkul, Graeme Wake, Alona Ben-Tal, Yongwimon Lenbury . Optimal nutritional intake for fetal growth. Mathematical Biosciences and Engineering, 2011, 8(3): 723-732. doi: 10.3934/mbe.2011.8.723
    [8] Shengyu Huang, Hengguo Yu, Chuanjun Dai, Zengling Ma, Qi Wang, Min Zhao . Dynamics of a harvested cyanobacteria-fish model with modified Holling type Ⅳ functional response. Mathematical Biosciences and Engineering, 2023, 20(7): 12599-12624. doi: 10.3934/mbe.2023561
    [9] Tingting Zhao, Robert J. Smith? . Global dynamical analysis of plant-disease models with nonlinear impulsive cultural control strategy. Mathematical Biosciences and Engineering, 2019, 16(6): 7022-7056. doi: 10.3934/mbe.2019353
    [10] Xinyou Meng, Jie Li . Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting. Mathematical Biosciences and Engineering, 2020, 17(3): 1973-2002. doi: 10.3934/mbe.2020105
  • In this paper, we establish the exploitation of a single population modeled by the Beverton--Holt difference equation with periodic coefficients. We begin our investigation with the harvesting of a single autonomous population with logistic growth and show that the harvested logistic equation with periodic coefficients has a unique positive periodic solution which globally attracts all its solutions. Further, we approach the investigation of the optimal harvesting policy that maximizes the annual sustainable yield in a novel and powerful way; it serves as a foundation for the analysis of the exploitation of the discrete population model. In the second part of the paper, we formulate the harvested Beverton--Holt model and derive the unique periodic solution, which globally attracts all its solutions. We continue our investigation by optimizing the sustainable yield with respect to the harvest effort. The results differ from the optimal harvesting policy for the continuous logistic model, which suggests a separate strategy for populations modeled by the Beverton--Holt difference equation.


    [1] Appl. Math. Comput., 187 (2007), 873-882.
    [2] in Monographs in Inequalities, ELEMENT, Zagreb, Volume 9, 2015.
    [3] J. Differ. Equations Appl., 10 (2004), 851-868.
    [4] Fish & Fisheries Series, 1993.
    [5] Math. Biosci., 135 (1996), 111-127.
    [6] J. Biol. Dyn., 7 (2013), 86-95.
    [7] Birkhäuser Boston, Inc., Boston, MA, 2001.
    [8] Birkhäuser Boston, Inc., Boston, MA, 2003.
    [9] in Discrete dynamics and difference equations, World Sci. Publ., Hackensack, NJ, (2010), 189-193.
    [10] Int. J. Math. Comput., 26 (2015), 1-10.
    [11] in Difference equations, discrete dynamical systems, and applications, Springer-Verlag, Berlin-Heidelberg-New York, 150 (2015), 3-14.
    [12] Appl. Anal., 86 (2007), 1007-1015.
    [13] Nonlinear Anal., 71 (2009), e2173-e2181.
    [14] J. Math. Biol., 57 (2008), 413-434.
    [15] John Wiley & Sons, Inc., New York, 1990.
    [16] Appl. Math. Lett., 36 (2014), 19-24.
    [17] Math. Biosci., 152 (1998), 165-177.
    [18] Volume 8, Elsevier North-Holland, Inc., New York, NY, 1980.
    [19] Fisheries Research, 24 (1995), 3-8.
    [20] Academic Press, Inc., Boston, MA, 1991.
    [21] Int. J. Difference Equ., 7 (2012), 35-60.
    [22] J. Difference Equ. Appl., 11 (2005), 415-422.
    [23] J. Difference Equ. Appl., 20 (2014), 859-874.
    [24] Appl. Math. Optim., 31 (1995), 219-241.
    [25] Int. J. Difference Equ., 4 (2009), 115-136.
    [26] J. Math. Inequal., 5 (2011), 253-264.
    [27] Mar. Resour. Econ., 24 (2009), 147-169.
    [28] (Russian) (Chita) in Modeling of natural systems and optimal control problems, VO "Nauka'', Novosibirsk, (1993), 65-74.
    [29] Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1-42.
    [30] Adv. Dyn. Syst. Appl., 1 (2006), 113-120.
    [31] J. Math. Biol., 50 (2005), 663-682.
    [32] Nonlinear Anal. Real World Appl., 4 (2003), 639-651.
    [33] IEEE Trans. Automat. Cont., 40 (1995), 1779-1783.
  • This article has been cited by:

    1. Janusz Migda, Małgorzata Migda, Zenon Zba̧szyniak, Asymptotically periodic solutions of second order difference equations, 2019, 350, 00963003, 181, 10.1016/j.amc.2019.01.010
    2. Jerzy A. Filar, Zhihao Qiao, Sabrina Streipert, Risk sensitivity in Beverton–Holt fishery with multiplicative harvest, 2020, 33, 0890-8575, 10.1111/nrm.12257
    3. J. Belikov, V. Kaparin, Regions of exponential stability in coefficient space for linear systems on nonuniform discrete domains, 2017, 23, 1023-6198, 878, 10.1080/10236198.2017.1304931
    4. Alexandru Hening, Ky Quan Tran, Sergiu C. Ungureanu, The effects of random and seasonal environmental fluctuations on optimal harvesting and stocking, 2022, 84, 0303-6812, 10.1007/s00285-022-01750-2
    5. Sabrina H. Streipert, Gail S. K. Wolkowicz, Martin Bohner, Derivation and Analysis of a Discrete Predator–Prey Model, 2022, 84, 0092-8240, 10.1007/s11538-022-01016-4
    6. Jerzy Filar, Sabrina Streipert, Square root identities for harvested Beverton–Holt models, 2022, 549, 00225193, 111199, 10.1016/j.jtbi.2022.111199
    7. Qianhong Zhang, Miao Ouyang, Zhongni Zhang, On second-order fuzzy discrete population model, 2022, 20, 2391-5455, 125, 10.1515/math-2022-0018
    8. Mariem Mohamed Abdelahi, Mohamed Ahmed Sambe, Elkhomeini Moulay Ely, Existence results for some generalized Sigmoid Beverton-Holt models in time scales, 2023, 10, 2353-0626, 10.1515/msds-2022-0166
    9. Qianhong Zhang, Bairong Pan, Miao Ouyang, Fubiao Lin, Large time behavior of solution to second-order fractal difference equation with positive fuzzy parameters, 2023, 10641246, 1, 10.3233/JIFS-224099
    10. Jerzy A. Filar, Matthew H. Holden, Manuela Mendiolar, Sabrina H. Streipert, Overcoming the impossibility of age-balanced harvest, 2023, 00255564, 109111, 10.1016/j.mbs.2023.109111
    11. Marwa Khemis, Ahlème Bouakkaz, Rabah Khemis, Positive periodic solutions of a leukopoiesis model with iterative terms, 2024, 30, 1405-213X, 10.1007/s40590-023-00576-2
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2649) PDF downloads(829) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog