Research article

Determination of medical emergency via new intuitionistic fuzzy correlation measures based on Spearman's correlation coefficient

  • Received: 05 March 2024 Revised: 08 April 2024 Accepted: 15 April 2024 Published: 30 April 2024
  • MSC : 03E72, 20N20, 47S40

  • Uncertainty in medical diagnosis is the main challenge in medical emergencies (MEs) experienced by triage nurses and physicians in the emergency department (ED). The intuitionistic fuzzy correlation coefficient (IFCC) approach is used to analyze and interpret the relationship between variables in an uncertain environment. Assorted methods that involve applying a correlation coefficient under intuitionistic fuzzy sets (IFSs) were constructed based on Pearson's correlation model with various drawbacks. In this work, we construct two new intuitionistic fuzzy correlation measures (IFCMs) based on Spearman's correlation model. It is demonstrated that the Spearman-based IFCMs are appropriate for measuring correlation coefficients without any drawbacks. In addition, we show that the Spearman-based IFCMs overcome all the shortcomings of the associated IFCC methods. Equally, the Spearman-based IFCMs satisfy the maxims of the correlation coefficient that have been delineated in the classical case of correlation coefficient. Due to the challenges that uncertainty in medical diagnosis pose to MEs and the proficiency of the IFCC approach, we discuss the application of the constructed IFCMs in a triage process for an effective medical diagnosis during an ME. The medical data for the triage process are obtained via a knowledge-based approach. Finally, comparative analyses are carried out to ascertain the validity and authenticity of the developed Spearman-based IFCMs relative to other IFCC approaches.

    Citation: Paul Augustine Ejegwa, Nasreen Kausar, John Abah Agba, Francis Ugwuh, Emre Özbilge, Ebru Ozbilge. Determination of medical emergency via new intuitionistic fuzzy correlation measures based on Spearman's correlation coefficient[J]. AIMS Mathematics, 2024, 9(6): 15639-15670. doi: 10.3934/math.2024755

    Related Papers:

  • Uncertainty in medical diagnosis is the main challenge in medical emergencies (MEs) experienced by triage nurses and physicians in the emergency department (ED). The intuitionistic fuzzy correlation coefficient (IFCC) approach is used to analyze and interpret the relationship between variables in an uncertain environment. Assorted methods that involve applying a correlation coefficient under intuitionistic fuzzy sets (IFSs) were constructed based on Pearson's correlation model with various drawbacks. In this work, we construct two new intuitionistic fuzzy correlation measures (IFCMs) based on Spearman's correlation model. It is demonstrated that the Spearman-based IFCMs are appropriate for measuring correlation coefficients without any drawbacks. In addition, we show that the Spearman-based IFCMs overcome all the shortcomings of the associated IFCC methods. Equally, the Spearman-based IFCMs satisfy the maxims of the correlation coefficient that have been delineated in the classical case of correlation coefficient. Due to the challenges that uncertainty in medical diagnosis pose to MEs and the proficiency of the IFCC approach, we discuss the application of the constructed IFCMs in a triage process for an effective medical diagnosis during an ME. The medical data for the triage process are obtained via a knowledge-based approach. Finally, comparative analyses are carried out to ascertain the validity and authenticity of the developed Spearman-based IFCMs relative to other IFCC approaches.



    加载中


    [1] N. L. Caroline, Emergency care in the streets, Burlington: Jones and Bartlett Learning, 7 Eds., 2013.
    [2] T. H. Blackwell, Emergency medical services: overview and ground transport, In: Rosen's emergency medicine, concepts and clinical practice, 10 Eds., Philadelphia: Elsevier, 2023.
    [3] V. Bhise, S. S. Rajan, D. F. Sittig, R. O. Morgan, P. Chaudhary, H. Singh, Defining and measuring diagnostic uncertainty in medicine: a systematic review, J. Gen. Intern. Med., 33 (2018), 103–115. https://doi.org/10.1007/s11606-017-4164-1 doi: 10.1007/s11606-017-4164-1
    [4] A. N. D. Meyer, T. D. Giardina, L. Khawaja, H. Singh, Patient and clinician experiences of uncertainty in the diagnostic process: current understanding and future directions, Patient Educ. Couns., 104 (2021), 2606–2615. https://doi.org/10.1016/j.pec.2021.07.028 doi: 10.1016/j.pec.2021.07.028
    [5] D. P. Sklar, M. Hauswald, D. R. Johnson, Medical problem solving and uncertainty in the emergency department, Ann. Emerg. Med., 20 (1991), 987–991. https://doi.org/10.1016/s0196-0644(05)82977-4 doi: 10.1016/s0196-0644(05)82977-4
    [6] T. F. Platts-Mills, J. M. Nagurney, E. R. Melnick, Tolerance of uncertainty and the practice of emergency medicine, Ann. Emerg. Med., 75 (2020), 715–720. https://doi.org/10.1016/j.annemergmed.2019.10.015 doi: 10.1016/j.annemergmed.2019.10.015
    [7] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [8] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [9] S. Das, S. Kar, T. Pal, Robust decision making using intuitionistic fuzzy numbers, Granul. Comput., 2 (2017), 41–54. https://doi.org/10.1007/s41066-016-0024-3 doi: 10.1007/s41066-016-0024-3
    [10] M. R. Seikh, U. Manda, Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making, Granul. Comput., 6 (2021), 473–488. https://doi.org/10.1007/s41066-019-00209-y doi: 10.1007/s41066-019-00209-y
    [11] P. D. Liu, S. M. Chen, Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers, IEEE T. Cybernetics, 47 (2017), 2514–2530. https://doi.org/10.1109/TCYB.2016.2634599 doi: 10.1109/TCYB.2016.2634599
    [12] E. Szmidt, J. Kacprzyk, P. Bujnowski, Attribute selection via Hellwig's for Atanassov's intuitionistic fuzzy sets, In: Computational intelligence and mathematics for tackling complex problems, studies in computational intelligence, Cham: Springer, 2020, 81–90. https://doi.org/10.1007/978-3-030-16024-1_11
    [13] H. Zhang, J. Xie, Y. Song, J. Ge, Z. Zhang, A novel ranking method for intuitionistic fuzzy set based on information fusion and application to threat assessment, Iran. J. Fuzzy Syst., 17 (2020), 91–104. https://doi.org/10.22111/IJFS.2020.5113 doi: 10.22111/IJFS.2020.5113
    [14] W. Y. Zeng, H. S. Cui, Y. Q. Liu, Q. Yin, Z. S. Xu, Novel distance measure between intuitionistic fuzzy sets and its application in pattern recognition, Iran. J. Fuzzy Syst., 19 (2022), 127–137. https://doi.org/10.22111/IJFS.2022.6947 doi: 10.22111/IJFS.2022.6947
    [15] S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Set. Syst., 117 (2001), 209–213. https://doi.org/10.1016/S0165-0114(98)00235-8 doi: 10.1016/S0165-0114(98)00235-8
    [16] C. O. Nwokoro, U. G. Inyang, I. J. Eyoh, P. A. Ejegwa, Intuitionistic fuzzy approach for predicting maternal outcomes, In: Fuzzy optimization, decision-making and operations research, Cham: Springer, 2023,399–421. https://doi.org/10.1007/978-3-031-35668-1_18
    [17] P. A. Ejegwa, A. J. Akubo, O. M. Joshua, Intuitionistic fuzzy sets in career determination, Journal of Information and Computing Science, 9 (2014), 285–288.
    [18] B. Davvaz, E. H. Sadrabadi, An application of intuitionistic fuzzy sets in medicine, Int. J. Biomath., 9 (2016), 1650037. https://doi.org/10.1142/S1793524516500376 doi: 10.1142/S1793524516500376
    [19] P. A. Ejegwa, I. C. Onyeke, B. T. Terhemen, M. P. Onoja, A. Ogiji, C. U. Opeh, Modified Szmidt and Kacprzyk's intuitionistic fuzzy distances and their applications in decision-making, Journal of the Nigerian Society of Physical Sciences, 4 (2022), 174–182. https://doi.org/10.46481/jnsps.2022.530 doi: 10.46481/jnsps.2022.530
    [20] M. N. Iqba, U. Rizwan, Some applications of intuitionistic fuzzy sets using new similarity measure, J. Ambient Intell. Human. Comput., (2019). https://doi.org/10.1007/s12652-019-01516-7
    [21] Y. Zhou, P. A. Ejegwa, S. E. Johnny, Generalized similarity operator for intuitionistic fuzzy sets and its applications based on recognition principle and multiple criteria decision making technique, Int. J. Comput. Intell. Syst., 16 (2023), 85. https://doi.org/10.1007/s44196-023-00245-2 doi: 10.1007/s44196-023-00245-2
    [22] P. A. Ejegwa, S. Ahemen, Enhanced intuitionistic fuzzy similarity operator with applications in emergency management and pattern recognition, Granul. Comput., 8 (2023), 361–372. https://doi.org/10.1007/s41066-022-00334-1 doi: 10.1007/s41066-022-00334-1
    [23] T. D. Quynh, N. X. Thao, N. Q. Thuan, N. V. Dinh, A new similarity measure of IFSs and its applications, 2020 12th International Conference of Knowledge and Systems Engineering (KSE), Can Tho, Vietnam, 2020,242–246. https://doi.org/10.1109/KSE50997.2020.9287689
    [24] E. Szmidt, J. Kacprzyk, Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets, Eighth Int. Conf. on IFSs, 10 (2004), 61–69.
    [25] P. A. Ejegwa, J. M. Agbetayo, Similarity-distance decision-making technique and its applications via intuitionistic fuzzy pairs, Journal of Computational and Cognitive Engineering, 2 (2023), 68–74. https://doi.org/10.47852/bonviewJCCE512522514 doi: 10.47852/bonviewJCCE512522514
    [26] J. C. R. Alcantud, Multi-attribute group decision-making based on intuitionistic fuzzy aggregation operators defined by weighted geometric means, Granul. Comput., 8 (2023), 1857–1866. https://doi.org/10.1007/s41066-023-00406-w doi: 10.1007/s41066-023-00406-w
    [27] M. J. Khan, J. C. R. Alcantud, P. Kumam, W. Kumam, A. N. Al-Kenani, Intuitionistic fuzzy divergences: critical analysis and an application in figure skating, Neural Comput. Applic., 34 (2022), 9123–9146. https://doi.org/10.1007/s00521-022-06933-y doi: 10.1007/s00521-022-06933-y
    [28] T. Gerstenkorn, J. Manko, Correlation of intuitionistic fuzzy sets, Fuzzy Set. Syst., 44 (1991), 39–43. https://doi.org/10.1016/0165-0114(91)90031-K doi: 10.1016/0165-0114(91)90031-K
    [29] D. H. Hong, S. Y. Hwang, Correlation of intuitionistic fuzzy sets in probability spaces, Fuzzy Set. Syst., 75 (1995), 77–81. https://doi.org/10.1016/0165-0114(94)00330-A doi: 10.1016/0165-0114(94)00330-A
    [30] H. L. Huang, Y. T. Guo, An improved correlation coefficient of intuitionistic fuzzy sets, J. Intell. Syst., 28 (2019), 231–243. https://doi.org/10.1515/jisys-2017-0094 doi: 10.1515/jisys-2017-0094
    [31] W. L. Hung, Using statistical viewpoint in developing correlation of intuitionistic fuzzy sets, Int. J. Uncertain. Fuzz., 9 (2001), 509–516. https://doi.org/10.1142/S0218488501000910 doi: 10.1142/S0218488501000910
    [32] B. S. Liu, Y. H. Shen, L. L. Mu, X. H. Chen, L. W. Chen, A new correlation measure of the intuitionistic fuzzy sets, J. Intell. Fuzzy Syst., 30 (2016), 1019–1028. https://doi.org/10.3233/IFS-151824 doi: 10.3233/IFS-151824
    [33] J. H. Park, K. M. Lim, J. S. Park, Y. C. Kwun, Correlation coefficient between intuitionistic fuzzy sets, In: Fuzzy information and engineering volume 2, Berlin: Springer, 2009,601–610. https://doi.org/10.1007/978-3-642-03664-4_66
    [34] E. Szmidt, J. Kacprzyk, Correlation of intuitionistic fuzzy sets, In: Computational intelligence for knowledge-based systems design, Berlin: Springer, 2010,169–177. https://doi.org/10.1007/978-3-642-14049-5_18
    [35] N. X. Thao, M. Ali, F. Smarandache, An intuitionistic fuzzy clustering algorithm based on a new correlation coefficient with application in medical diagnosis, J. Intell. Fuzzy Syst., 36 (2019), 189–198. https://doi.org/10.3233/JIFS-181084 doi: 10.3233/JIFS-181084
    [36] Z. S. Xu, On correlation measures of intuitionistic fuzzy sets, In: Intelligent data engineering and automated learning, Berlin: Springer, 2006, 16–24. https://doi.org/10.1007/11875581_2
    [37] Z. S. Xu, X. Q. Cai, Correlation, distance and similarity measures of intuitionistic fuzzy sets, In: Intuitionistic fuzzy information aggregation, Berlin: Springer, 2012,151–188. https://doi.org/10.1007/978-3-642-29584-3_3
    [38] Z. S. Xu, J. Chen, J. J. Wu, Cluster algorithm for intuitionistic fuzzy sets, Inform. Sciences, 178 (2008), 3775–3790. https://doi.org/10.1016/j.ins.2008.06.008 doi: 10.1016/j.ins.2008.06.008
    [39] W. Y. Zeng, H. X. Li, Correlation coefficient of intuitionistic fuzzy sets, Journal of Industrial Engineering, International, 3 (2007), 33–40.
    [40] P. A. Ejegwa, C. F. Ajogwu, A. Sarkar, A hybridized correlation coefficient technique and its application in classification process under intuitionistic fuzzy setting, Iran. J. Fuzzy Syst., 20 (2023), 103–120. https://doi.org/10.22111/ijfs.2023.42888.7508 doi: 10.22111/ijfs.2023.42888.7508
    [41] J. Bajaj, S. Kumar, A new intuitionistic fuzzy correlation coefficient approach with applications in multi-criteria decision-making, Decision Analytics Journal, 9 (2023), 100340. https://doi.org/10.1016/j.dajour.2023.100340 doi: 10.1016/j.dajour.2023.100340
    [42] P. A. Ejegwa, I. C. Onyeke, Medical diagnostic analysis on some selected patients based on modified Thao et al.'s correlation coefficient of intuitionistic fuzzy sets via an algorithmic approach, Journal of Fuzzy Extension and Applications, 1 (2020), 122–132. https://doi.org/10.22105/jfea.2020.250108.1014 doi: 10.22105/jfea.2020.250108.1014
    [43] P. A. Ejegwa, Novel correlation coefficient for intuitionistic fuzzy sets and its application to multi-criteria decision-making problems, International Journal of Fuzzy System Applications, 10 (2021), 39–58. https://doi.org/10.4018/IJFSA.2021040103 doi: 10.4018/IJFSA.2021040103
    [44] H. Garg, R. Arora, TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information, AIMS Mathematics, 5 (2020), 2944–2966. https://doi.org/10.3934/math.2020190 doi: 10.3934/math.2020190
    [45] P. A. Ejegwa, I. C. Onyeke, A novel intuitionistic fuzzy correlation algorithm and its applications in pattern recognition and student admission process, International Journal of Fuzzy System Applications, 11 (2022), 285984. https://doi.org/10.4018/IJFSA.285984 doi: 10.4018/IJFSA.285984
    [46] H. Garg, K. Kumar, A novel correlation coefficient of intuitionistic fuzzy sets based on the connection number of set pair analysis and its application, Sci. Iran., 25 (2018), 2373–2388. https://doi.org/10.24200/SCI.2017.4454 doi: 10.24200/SCI.2017.4454
    [47] P. A. Ejegwa, I. C. Onyeke, N. Kausar, P. Kattel, A new partial correlation coefficient technique based on intuitionistic fuzzy information and its pattern recognition application, Int. J. Intell. Syst., 2023 (2023), 5540085. https://doi.org/10.1155/2023/5540085 doi: 10.1155/2023/5540085
    [48] M. W. Lin, C. Huang, R. Q. Chen, H. Fujita, X. Wang, Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis, Complex Intell. Syst., 7 (2021), 1025–1043. https://doi.org/10.1007/s40747-020-00261-1 doi: 10.1007/s40747-020-00261-1
    [49] P. A. Ejegwa, S. P. Wen, Y. M. Feng, W. Zhang, J. Chen, Some new Pythagorean fuzzy correlation techniques via statistical viewpoint with applications to decision-making problems, J. Intell. Fuzzy Syst., 40 (2021), 9873–9886. https://doi.org/10.3233/JIFS-202469 doi: 10.3233/JIFS-202469
    [50] M. W. Lin, C. Huang, Z. S. Xu, TOPSIS method based on correlation coefficient and entropy measure for linguistic Pythagorean fuzzy sets and its application to multiple attribute decision making, Complexity, 2019 (2019), 6967390. https://doi.org/10.1155/2019/6967390 doi: 10.1155/2019/6967390
    [51] M. W. Lin, H. B. Wang, Z. S. Xu, Z. Q. Yao, J. L. Huang, Clustering algorithms based on correlation coefficients for probabilistic linguistic term sets, Int. J. Intell. Syst., 33 (2018), 2402–2424. https://doi.org/10.1002/int.22040 doi: 10.1002/int.22040
    [52] P. A. Ejegwa, A. Sarkar, Novel correlation measure for generalized orthopair fuzzy sets and its decision-making applications, Operat. Res. Forum, 4 (2023), 32. https://doi.org/10.1007/s43069-023-00213-8 doi: 10.1007/s43069-023-00213-8
    [53] R. R. Yager, Pythagorean membership grades in multi-criteria decision-making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [54] T. Senapati, R. R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision-making, Informatica, 30 (2019), 391–412. https://doi.org/10.15388/Informatica.2019.211 doi: 10.15388/Informatica.2019.211
    [55] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [56] J. C. R. Alcantud, Complemental fuzzy sets: A semantic justification of q-rung orthopair fuzzy sets, IEEE T. Fuzzy Syst., 31 (2023), 4262–4270. https://doi.org/10.1109/TFUZZ.2023.3280221 doi: 10.1109/TFUZZ.2023.3280221
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(545) PDF downloads(29) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog