Research article Special Issues

Algorithmic generation of imprecise data from uniform and Weibull distributions

  • Received: 03 March 2024 Revised: 23 March 2024 Accepted: 29 March 2024 Published: 08 April 2024
  • MSC : 62A86

  • This paper introduced the neutrosophic uniform distribution and innovative simulation methods to generate random numbers from the neutrosophic uniform distribution and the neutrosophic Weibull distribution. We introduced simulation methods and algorithms designed to handle indeterminacy for both of these distributions. We provided random numbers generated from both distributions across a range of parameter values and degrees of indeterminacy. Furthermore, we conducted a comparative analysis between the classical simulation method in classical statistics and the neutrosophic simulation method. Our findings reveal that the proposed neutrosophic simulation method generates random numbers of smaller magnitudes compared to the classical simulation method under classical statistics. This observation forms the basis of our conclusion.

    Citation: Muhammad Aslam, Osama H. Arif. Algorithmic generation of imprecise data from uniform and Weibull distributions[J]. AIMS Mathematics, 2024, 9(5): 13087-13101. doi: 10.3934/math.2024639

    Related Papers:

  • This paper introduced the neutrosophic uniform distribution and innovative simulation methods to generate random numbers from the neutrosophic uniform distribution and the neutrosophic Weibull distribution. We introduced simulation methods and algorithms designed to handle indeterminacy for both of these distributions. We provided random numbers generated from both distributions across a range of parameter values and degrees of indeterminacy. Furthermore, we conducted a comparative analysis between the classical simulation method in classical statistics and the neutrosophic simulation method. Our findings reveal that the proposed neutrosophic simulation method generates random numbers of smaller magnitudes compared to the classical simulation method under classical statistics. This observation forms the basis of our conclusion.



    加载中


    [1] N. T. Thomopoulos, Essentials of Monte Carlo simulation: Statistical methods for building simulation models, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6022-0
    [2] J. W. Bang, R. E. Schumacker, P. L. Schlieve, Random-number generator validity in simulation studies: An investigation of normality, Educ. Psychol. Mea., 58 (1998), 430–450. https://doi.org/10.1177/0013164498058003005 doi: 10.1177/0013164498058003005
    [3] M. A. Schulz, B. Schmalbach, P. Brugger, K. Witt, Analysing humanly generated random number sequences: a pattern-based approach, PloS One, 7 (2012), e41531. https://doi.org/10.1371/journal.pone.0041531 doi: 10.1371/journal.pone.0041531
    [4] S. G. Tanyer, Random number generation with the method of uniform sampling: Very high goodness of fit and randomness, Eng. Let., 26 (2018), 23–31.
    [5] D. Kaya, S. A. Tuncer, Generating random numbers from biological signals in LabVIEW environment and statistical analysis, Trait. Signal, 36 (2019), 303–310. https://doi.org/10.18280/ts.360402 doi: 10.18280/ts.360402
    [6] I. Tanackov, F. Sinani, M. Stanković, V. Bogdanović1, Ž. Stević, M. Vidić, et al., Natural test for random numbers generator based on exponential distribution, Mathematics, 7 (2019), 920. https://doi.org/10.3390/math7100920 doi: 10.3390/math7100920
    [7] M. M. Jacak, P. Jóźwiak, J. Niemczuk. J. E. Jacak, Quantum generators of random numbers, Sci. Rep., 11 (2021), 16108. https://doi.org/10.1038/s41598-021-95388-7 doi: 10.1038/s41598-021-95388-7
    [8] M. S. Ridout, Generating random numbers from a distribution specified by its Laplace transform, Stat. Comput., 19 (2009), 439. https://doi.org/10.1007/s11222-008-9103-x doi: 10.1007/s11222-008-9103-x
    [9] W. Hörmann, J. Leydold, Generating generalized inverse Gaussian random variates, Stat. Comput., 24 (2014), 547–557. https://doi.org/10.1007/s11222-013-9387-3 doi: 10.1007/s11222-013-9387-3
    [10] N. B. Rached, A. Haji-Ali, G. Rubino, R. Tempone, Efficient importance sampling for large sums of independent and identically distributed random variables, Stat. Comput., 31 (2021), 79. https://doi.org/10.1007/s11222-021-10055-1 doi: 10.1007/s11222-021-10055-1
    [11] R. A. K. Sherwani, M. Aslam, M. A. Raza, M. Farooq, M. Abid, M. Tahir, Neutrosophic normal probability distribution—A spine of parametric neutrosophic statistical tests: aroperties and applications, In: Neutrosophic operational research, Cham: Springer, 2021,153–169. https://doi.org/10.1007/978-3-030-57197-9_8
    [12] W. Q. Duan, Z. Khan, M. Gulistan, A. Khurshid, Neutrosophic exponential distribution: Modeling and applications for complex data analysis, Complexity, 2021 (2021), 5970613. https://doi.org/10.1155/2021/5970613 doi: 10.1155/2021/5970613
    [13] R. A. Aliev, A. V. Alizadeh, O. H. Huseynov, K. I. Jabbarova, Z‐number‐based linear programming, Int. J. Intell. Syst., 30 (2015), 563–589. https://doi.org/10.1002/int.21709 doi: 10.1002/int.21709
    [14] R. Gao, D. A. Ralescu, Convergence in distribution for uncertain random variables, IEEE T. Fuzzy Syst., 26 (2018), 1427–1434. https://doi.org/10.1109/TFUZZ.2017.2724021 doi: 10.1109/TFUZZ.2017.2724021
    [15] S. Pirmuhammadi, T. Allahviranloo, M. Keshavarz, The parametric form of Z‐number and its application in Z‐number initial value problem, Int. J. Intell. Syst., 32 (2017), 1030–1061. https://doi.org/10.1002/int.21883 doi: 10.1002/int.21883
    [16] R. A. Aliev, W. Pedrycz, B. G. Guirimov, O. H. Huseynov, Acquisition of Z-number-valued clusters by using a new compound function, IEEE T. Fuzzy Syst., 30 (2020), 279–286. https://doi.org/10.1109/TFUZZ.2020.3037969 doi: 10.1109/TFUZZ.2020.3037969
    [17] S. D. Nguyen, V. S. T. Nguyen, N. T. Pham, Determination of the optimal number of clusters: A fuzzy-set based method, IEEE T. Fuzzy Syst., 30 (2022), 3514–3526. https://doi.org/10.1109/TFUZZ.2021.3118113 doi: 10.1109/TFUZZ.2021.3118113
    [18] P. Wang, W. Q. Chen, S. L. Lin, L. Y. Liu, Z. W. Sun, F. G. Zhang, Consensus algorithm based on verifiable quantum random numbers, Int. J. Intell. Syst., 37 (2022), 6857–6876.
    [19] M. Aslam, Truncated variable algorithm using DUS-neutrosophic Weibull distribution, Complex Intell. Syst., 9 (2023), 3107–3114. https://doi.org/10.1007/s40747-022-00912-5 doi: 10.1007/s40747-022-00912-5
    [20] M. Aslam, Simulating imprecise data: sine-cosine and convolution methods with neutrosophic normal distribution, J. Big Data, 10 (2023), 143. https://doi.org/10.1186/s40537-023-00822-4 doi: 10.1186/s40537-023-00822-4
    [21] M. Albassam, M. Ahsan-ul-Haq, M. Aslam, Weibull distribution under indeterminacy with applications, AIMS Mathematics, 8 (2023), 10745–10757. https://doi.org/10.3934/math.2023545 doi: 10.3934/math.2023545
    [22] M. Aslam, Testing average wind speed using sampling plan for Weibull distribution under indeterminacy, Sci. Rep., 11 (2021), 7532. https://doi.org/10.1038/s41598-021-87136-8 doi: 10.1038/s41598-021-87136-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(663) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog