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Abstract: This paper introduced the neutrosophic uniform distribution and innovative simulation 

methods to generate random numbers from the neutrosophic uniform distribution and the 

neutrosophic Weibull distribution. We introduced simulation methods and algorithms designed to 

handle indeterminacy for both of these distributions. We provided random numbers generated from 

both distributions across a range of parameter values and degrees of indeterminacy. Furthermore, we 

conducted a comparative analysis between the classical simulation method in classical statistics and 

the neutrosophic simulation method. Our findings reveal that the proposed neutrosophic simulation 

method generates random numbers of smaller magnitudes compared to the classical simulation 

method under classical statistics. This observation forms the basis of our conclusion. 
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1. Introduction 

Random numbers are very important in statistical, probability theory, and mathematical analysis 

in such complex cases, where the real numbers are difficult to record. The random numbers are 

generated from the uniform distribution when an interval is defined for their selection of random 

numbers. The random numbers are generated in sequence and depict the behavior of the real data. In 

addition, random data can be used for estimation and forecasting purposes. According to [1], “The 

method is based on running the model many times as in random sampling. For each sample, random 
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variates are generated on each input variable; computations are run through the model yielding 

random outcomes on each output variable. Since each input is random, the outcomes are random. In 

the same way, they generated thousands of such samples and achieved thousands of outcomes for 

each output variable. In order to carry out this method, a large stream of random numbers was 

needed”. To generate random numbers, a random generator is applied. The random numbers have no 

specific pattern and are generated from the chance process. Nowadays, the latest computer can be 

used to generate random numbers using a well-defined algorithm; see [1]. Bang et al. [2] investigated 

normality using random-number generating. Schulz et al. [3] presented a pattern-based approach. 

Tanyer [4] generated random numbers from uniform sampling. Kaya and Tuncer [5] proposed a 

method to generate biological random numbers. Tanackov et al. [6] presented a method to generate 

random numbers from the exponential distribution. Jacak et al. [7] presented the methods to generate 

pseudorandom numbers. More methods can be seen in [8–10]. 

The neutrosophic statistical distributions were found to be more efficient than the distributions 

under classical statistics. The neutrosophic distributions can be applied to analyze the data that is 

given in neutrosophic numbers. Sherwani et al. [11] proposed neutrosophic normal distribution. 

Duan et al. [12] worked on neutrosophic exponential distribution. Aliev et al. [13] generated 

Z-random numbers from linear programming. Gao and Ralescu [14] studied the convergence of 

random numbers generated under an uncertain environment. More information on random numbers 

generators can be seen in [15–18]. In recent works, Aslam [19] introduced a truncated variable 

algorithm for generating random variates from the neutrosophic DUS-Weibull distribution. 

Additionally, in another study [20], novel methods incorporating sine-cosine and convolution 

techniques were introduced to generate random numbers within the framework of neutrosophy. 

Albassam et al. [21] showcased probability/cumulative density function plots and elucidated the 

characteristics of the neutrosophic Weibull distribution as introduced by [22]. The estimation and 

application of the neutrosophic Weibull distribution was also presented by [21]. 

In [22], the Weibull distribution was introduced within the realm of neutrosophic statistics, 

offering a more inclusive perspective compared to its traditional counterpart in classical statistics. [21] 

further examined the properties of the neutrosophic Weibull distribution introduced by [22]. Despite an 

extensive review of existing literature, no prior research has been identified regarding the development 

of algorithms for generating random numbers using both the neutrosophic uniform and Weibull 

distributions. This paper aims to bridge this gap by presenting innovative random number generators 

tailored specifically for the neutrosophic uniform distribution and the neutrosophic Weibull 

distribution. The subsequent sections will provide detailed explanations of the algorithms devised to 

generate random numbers for these distributions. Additionally, the paper will feature multiple tables 

showcasing sets of random numbers across various degrees of indeterminacy. Upon thorough 

analysis, the results reveal a noticeable decline in random numbers as the degree of indeterminacy 

increases. 

2. Neutrosophic uniform distribution 

Let 𝑥𝑁𝑈 = 𝑥𝑁𝐿 + 𝑥𝑁𝑈𝐼𝑥𝑁𝑈
;  𝐼𝑥𝑁𝑈

𝜖[𝐼𝑥𝐿𝑈
, 𝐼𝑥𝑈𝑈

] be a neutrosophic random variable that follows 

the neutrosophic uniform distribution. Note that the first part 𝑥𝑁𝐿 denotes the determinate part,  

𝑥𝑁𝑈𝐼𝑥𝑁𝑈
 the indeterminate part, and 𝐼𝑥𝑁𝑈

𝜖[𝐼𝑥𝐿𝑈
, 𝐼𝑥𝑈𝑈

]  the degree of indeterminacy. Suppose 

𝑓(𝑥𝑁𝑈) = 𝑓(𝑥𝐿𝑈) + 𝑓(𝑥𝑈𝑈)𝐼𝑁𝑈;  𝐼𝑁𝑈𝜖[𝐼𝐿𝑈 , 𝐼𝑈𝑈]  presents the neutrosophic probability density 
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function (npdf) of neutrosophic uniform distribution (NUD). Note that the npdf of NUD is based on 

two parts. The first part 𝑥𝑁𝐿, 𝑓(𝑥𝐿𝑈) denotes the determinate part and presents the probability 

density function (pdf) of uniform distribution under classical statistics. The second part 𝑥𝑁𝑈𝐼𝑥𝑁𝑈
, 

𝑓(𝑥𝑈𝑈)𝐼𝑁𝑈 denotes the indeterminate part and 𝐼𝑥𝑁𝑈
𝜖[𝐼𝑥𝐿𝑈

, 𝐼𝑥𝑈𝑈
], 𝐼𝑁𝑈𝜖[𝐼𝐿𝑈, 𝐼𝑈𝑈] are the measures 

of indeterminacy associated with neutrosophic random variable and the uniform distribution. The 

npdf of the uniform distribution by following [22] is given as 

𝑓(𝑥𝑁𝑈) = (
1

(𝑏𝐿−𝑎𝐿)
) + (

1

(𝑏𝑈−𝑎𝑈)
) 𝐼𝑥𝑁𝑈

; 𝐼𝑥𝑁𝑈
𝜖[𝐼𝑥𝐿𝑈

, 𝐼𝑥𝑈𝑈
], 𝑎𝑁 ≤ 𝑥𝑁𝑈 ≤ 𝑏𝑁,         (1) 

where 𝑏𝑁𝜖[𝑏𝐿 , 𝑏𝑈] and 𝑎𝑁𝜖[𝑎𝐿 , 𝑎𝑈] are neutrosophic parameters of the NUD. The simplified form 

when 𝐿 = 𝑈 = 𝑆𝑈 of Eq (1) can be written as 

𝑓(𝑥𝑁𝑆𝑈
) = (

1

(𝑏𝑁𝑆−𝑎𝑁𝑆)
) (1 + 𝐼𝑥𝑁𝑆

); 𝐼𝑥𝑁𝑆
𝜖[𝐼𝑥𝐿𝑆

, 𝐼𝑥𝑈𝑆
], 𝑎𝑁 ≤ 𝑥𝑁𝑈 ≤ 𝑏𝑁.           (2) 

Note here that the npdf of uniform distribution is a generalization of pdf of the uniform 

distribution. The neutrosophic uniform distribution reduces to the classical uniform distribution when 

𝐼𝑥𝑈𝑈
=0. The neutrosophic cumulative distribution function (ncdf) of the neutrosophic uniform 

distribution is given by 

𝐹(𝑥𝑁𝑈) = (
𝑥𝑁𝐿−𝑎𝐿

(𝑏𝐿−𝑎𝐿)
) + (

𝑥𝑁𝑈−𝑎𝑈

(𝑏𝑈−𝑎𝑈)
) 𝐼𝑥𝑁𝑈

; 𝐼𝑥𝑁𝑈
𝜖[𝐼𝑥𝐿𝑈

, 𝐼𝑥𝑈𝑈
], 𝑎𝑁 ≤ 𝑥𝑁𝑈 ≤ 𝑏𝑁.         (3) 

Note that the first part presents the cumulative distribution function (cdf) of the uniform 

distribution under classical statistics, and the second part is the indeterminate part associated with 

ncdf. The ncdf reduces to cdf when 𝐼𝑥𝑈𝑈
=0. The simplified form of ncdf of the Uniform distribution 

when 𝐿 = 𝑈 = 𝑆 can be written as 

𝐹(𝑥𝑁𝑆𝑈
) = (

𝑥𝑁𝑆−𝑎𝑁𝑆

(𝑏𝑁𝑆−𝑎𝑁𝑆)
) (1 + 𝐼𝑁𝑆); 𝐼𝑁𝑆𝜖[𝐼𝐿𝑆, 𝐼𝑈𝑆], 𝑎𝑁 ≤ 𝑥𝑁𝑈 ≤ 𝑏𝑁.          (4) 

3. Neutrosophic Weibull distribution 

Aslam [22] introduced the neutrosophic Weibull distribution (NWD) originally. The 

neutrosophic form of the Weibull distribution is expressed by 

𝑓(𝑥𝑁𝑊) = 𝑓(𝑥𝐿𝑊) + 𝑓(𝑥𝑈𝑊)𝐼𝑁𝑊;  𝐼𝑁𝑊𝜖[𝐼𝐿𝑊, 𝐼𝑈𝑊].                  (5) 

The following npdf of the Weibull distribution is taken from [22] and reported as 

𝑓(𝑥𝑁𝑊) = {(
𝛽

𝛼
) (

𝑥𝐿

𝛼
)

𝛽−1
𝑒−(

𝑥𝐿
𝛼

)
𝛽

} + {(
𝛽

𝛼
) (

𝑥𝑈

𝛼
)

𝛽−1
𝑒−(

𝑥𝑈
𝛼

)
𝛽

} 𝐼𝑁𝑊; 𝐼𝑁𝑊𝜖[𝐼𝐿𝑊, 𝐼𝑈𝑊].      (6) 

The simplified form of the npdf of the Weibull distribution when 𝐿 = 𝑈 = 𝑆𝑊 is expressed by 

𝑓(𝑥𝑁𝑆𝑊
) = {(

𝛽

𝛼
) (

𝑥𝑆

𝛼
)

𝛽−1
𝑒−(

𝑥𝑆
𝛼

)
𝛽

} (1 + 𝐼𝑁𝑆); 𝐼𝑁𝑆𝜖[𝐼𝐿𝑆, 𝐼𝑈𝑆],              (7) 
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where 𝛼 and 𝛽 are the scale and shape parameters of the Weibull distribution. The npdf of the 

Weibull distribution reduces to pdf of the Weibull distribution when 𝐼𝑁𝑆 = 0. The ncdf of the Weibull 

distribution is expressed by 

𝐹(𝑥𝑁𝑆𝑊
) = 1 − {𝑒

−(
𝑥𝑁𝑆𝑊

𝛼
)

𝛽

(1 + 𝐼𝑁𝑊)} + 𝐼𝑁𝑊;  𝐼𝑁𝑊𝜖[𝐼𝐿𝑊, 𝐼𝑈𝑊].            (8) 

The ncdf of the Weibull distribution reduces to cdf of the Weibull distribution under classical 

statistics when 𝐼𝑁𝑊=0. The neutrosophic mean of the Weibull distribution is given as [22] 

𝜇𝑁𝑊 = 𝛼Γ(1 + 1 𝛽⁄ )(1 + 𝐼𝑁𝑊); 𝐼𝑁𝑊𝜖[𝐼𝐿𝑊, 𝐼𝑈𝑊].                    (9) 

The neutrosophic median of the Weibull distribution is given by 

𝜇̃𝑁𝑊 = 𝛼(ln (2))1/𝛽(1 + 𝐼𝑁𝑊); 𝐼𝑁𝑊𝜖[𝐼𝐿𝑊, 𝐼𝑈𝑊].                   (10) 

4. Simulation methodology 

This section presents the methodology to generate random variates from the proposed 

neutrosophic uniform distribution and the neutrosophic Weibull distribution. Let 𝑢𝑁𝜖[𝑢𝐿 , 𝑢𝑈] be a 

neutrosophic random uniform from 𝑢𝑁~𝑈𝑁([0,0], [1,1]). The neutrosophic random numbers from 

NUD and NWD will be obtained as follows: 

Let 

𝑢𝑁 = 𝐹(𝑥𝑁𝑈) = (
𝑥𝑁𝐿−𝑎𝐿

(𝑏𝐿−𝑎𝐿)
) + (

𝑥𝑁𝑈−𝑎𝑈

(𝑏𝑈−𝑎𝑈)
) 𝐼𝑥𝑁𝑈

; 𝐼𝑥𝑁𝑈
𝜖[𝐼𝑥𝐿𝑈

, 𝐼𝑥𝑈𝑈
], 𝑎𝑁 ≤ 𝑥𝑁𝑈 ≤ 𝑏𝑁, 

or 

𝑢𝑁 = 𝐹(𝑥𝑁𝑈) = (
𝑥𝑁𝑆−𝑎𝑁𝑆

(𝑏𝑁𝑆−𝑎𝑁𝑆)
) (1 + 𝐼𝑁𝑆); 𝐼𝑁𝑆𝜖[𝐼𝐿𝑆, 𝐼𝑈𝑆], 𝑎𝑁 ≤ 𝑥𝑁𝑈 ≤ 𝑏𝑁. 

The neutrosophic random numbers 𝑥𝑁𝑆𝑈
from NWD can be obtained using the following Eq 

(11) 

𝑥𝑁𝑆𝑈
= 𝑎𝑁𝑆 + (

𝑢𝑁

(1+𝐼𝑁𝑆)
) (𝑏𝑁𝑆 − 𝑎𝑁𝑆); 𝑢𝑁𝜖[𝑢𝐿 , 𝑢𝑈], 𝐼𝑁𝑆𝜖[𝐼𝐿𝑆, 𝐼𝑈𝑆].          (11) 

The random number from the Weibull distribution using classical statistics can be obtained 

when 𝐼𝑁𝑆=0 using the following Eq (12) 

𝑥 = 𝑎 + 𝑢(𝑏 − 𝑎);  𝑎 ≤ 𝑥 ≤ 𝑏.                           (12) 

The neutrosophic random numbers from the NWD will be obtained using the following 

methodology. 

Let 

𝑢𝑁 = 𝐹(𝑥𝑁𝑆𝑊
) = 1 − {𝑒

−(
𝑥𝑁𝑆𝑊

𝛼
)

𝛽

(1 + 𝐼𝑁𝑊)} + 𝐼𝑁𝑊;  𝐼𝑁𝑊𝜖[𝐼𝐿𝑊, 𝐼𝑈𝑊], 𝑢𝑁𝜖[𝑢𝐿 , 𝑢𝑈]. 
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The neutrosophic random numbers from NWD can be obtained through the following 

expression 

𝑥𝑁𝑆𝑊
= 𝛼 [− ln (

1−(𝑢𝑁−𝐼𝑁𝑊)

1+𝐼𝑁𝑊
)]

1

𝛽
;  𝐼𝑁𝑊𝜖[𝐼𝐿𝑊, 𝐼𝑈𝑊], 𝑢𝑁𝜖[𝑢𝐿 , 𝑢𝑈].             (13) 

The NWD reduces to neutrosophic exponential distribution (NED) when 𝛽 = 1. The 

neutrosophic random numbers from the NED can be obtained as follows: 

𝑥𝑁𝑆𝐸
= −𝛼 ln (

1−(𝑢𝑁−𝐼𝑁𝑊)

1+𝐼𝑁𝑊
) ; 𝐼𝑁𝑊𝜖[𝐼𝐿𝑊, 𝐼𝑈𝑊],  𝑢𝑁𝜖[𝑢𝐿 , 𝑢𝑈].               (14) 

The random numbers from the Weibull distribution using classical statistics can be obtained as 

𝑥𝑁𝑆𝑊
= −𝛼 ln(1 − 𝑢)

1

𝛽.                             (15) 

The random numbers from the exponential distribution using classical statistics can be obtained 

as 

𝑥𝑁𝑆𝑊
= −𝛼 ln(1 − 𝑢).                             (16) 

The following routine can be run to generate 𝑛 random numbers from the NUD. 

Step-1: Generate a uniform random number 𝑢𝑁 from 𝑢𝑁~𝑈𝑁([0,0], [1,1]). 

Step-2: Fix the values of 𝐼𝑁𝑆. 

Step-3: Generate values of 𝑥𝑁𝑆𝑈
 using the expression 

𝑥𝑁𝑆𝑈
= 𝑎𝑁𝑆 + (

𝑢𝑁

(1+𝐼𝑁𝑆)
) (𝑏𝑁𝑆 − 𝑎𝑁𝑆); 𝑢𝑁𝜖[𝑢𝐿 , 𝑢𝑈],  𝐼𝑁𝑆𝜖[𝐼𝐿𝑆, 𝐼𝑈𝑆]. 

Step-4: From the routine, the first value of 𝑥𝑁𝑆𝑈
 will be generated. 

Step-5: Repeat the routine 𝑘 times to generate 𝑘 random numbers from NUD. 

The following routine can be run to generate 𝑛 random numbers from the NUD. 

Step-1: Generate a uniform random number 𝑢𝑁 from 𝑢𝑁~𝑈𝑁([0,0], [1,1]). 

Step-2: Fix the values of 𝐼𝑁𝑆, 𝛼 and 𝛽. 

Step-3: Generate values of 𝑥𝑁𝑆𝑊
 using the expression 

𝑥𝑁𝑆𝑊
= 𝛼 [− ln (

1−(𝑢𝑁−𝐼𝑁𝑊)

1+𝐼𝑁𝑊
)]

1

𝛽
;  𝐼𝑁𝑊𝜖[𝐼𝐿𝑊, 𝐼𝑈𝑊], 𝑢𝑁𝜖[𝑢𝐿 , 𝑢𝑈]. 

Step-4: From the routine, the first value of  𝑥𝑁𝑆𝑊
 will be generated. 

Step-5: Repeat the routine 𝑘 times to generate 𝑘 random numbers from NWD. 

4.1. Examples 

To illustrate the proposed simulation methods, two examples will be discussed in this section. 

4.1.1. Example 1 

Suppose that 𝑥𝑁𝑆𝑈
is a neutrosophic uniform random variable with parameters 
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([20,20], [30,30]) and a random variate 𝑥𝑁𝑆𝑈
 under indeterminacy is needed. To generate a 

random number from NUD, the following steps have been carried out. 

Step-1: Generate a uniform random number 𝑢𝑁 = 0.05 from 𝑢𝑁~𝑈𝑁([0,0], [1,1]). 

Step-2: Fix the values of 𝐼𝑁𝑆 = 0.1. 

Step-3: Generate values of 𝑥𝑁𝑆𝑈
 using the expression 𝑥𝑁𝑆𝑈

= 20 + (
0.05

(1+0.1)
) (30 − 20) = 20.5. 

Step-4: From the routine, the first value of 𝑥𝑁𝑆𝑈
= 20.5 will be generated. 

Step-5: Repeat the routine 𝑘 times to generate 𝑘 random numbers from NUD. 

4.1.2. Example 2 

Step-1: Generate a uniform random number 𝑢𝑁 = 0.30 from 𝑢𝑁~𝑈𝑁([0,0], [1,1]). 

Step-2: Fix the values of 𝐼𝑁𝑆 = 0.20, 𝛼 = 5, and 𝛽 = 0.5. 

Step-3: Generate values of 𝑥𝑁𝑆𝑊
 using the expression 𝑥𝑁𝑆𝑊

= 5 [− ln (
1−(𝑢𝑁−𝐼𝑁𝑊)

1+𝐼𝑁𝑊
)]

1

0.5
= 0.04. 

Step-4: From the routine, the first value of 𝑥𝑁𝑆𝑊
= 0.04 will be generated. 

Step-5: Repeat the routine 𝑘 times to generate 𝑘 random numbers from NWD. 

5. Simulation study 

In this section, random numbers are generated by simulation using the above-mentioned 

algorithms for NUD and NWD. To generate random numbers from NUD, several uniform numbers 

are generated from 𝑢𝑁~𝑈𝑁([0,0], [1,1]) and placed in Tables 1 and 2. In Tables 1 and 2, several 

values of 𝐼𝑁𝑆 are considered to generate random numbers from the NUD. Table 1 is depicted by 

assuming that NUD has the parameters 𝑎𝑁𝑆=10 and 𝑏𝑁𝑆=20 and Table 2 is shown by assuming that 

NUD has the parameters 𝑎𝑁𝑆=20 and 𝑏𝑁𝑆=30. From Tables 1 and 2, the following trends can be 

noted in random numbers generated from NUD. 

1) For fixed 𝐼𝑁𝑆, 𝑎𝑁𝑆=10 and 𝑏𝑁𝑆=20, as the values of 𝑢 increase from 0.05 to 0.95, there is an 

increasing trend in random numbers. 

2) For fixed 𝑢, 𝑎𝑁𝑆=10 and 𝑏𝑁𝑆=20, as the values of 𝐼𝑁𝑆  increase from 0 to 1.1, there is a 

decreasing trend in random numbers. 

3) For fixed values of 𝑢 and 𝐼𝑁𝑆, as the values of 𝑎𝑁𝑆 and 𝑏𝑁𝑆 increases, there is an increasing 

trend in random numbers. 

Table 1. Random numbers from NUD when 𝑎𝑁𝑆=10 and 𝑏𝑁𝑆=20. 

𝑢 
𝐼𝑁𝑆 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

0.05 10.5 10.45 10.42 10.38 10.36 10.33 10.31 10.29 10.28 10.26 10.3 10.2 

0.1 11 10.91 10.83 10.77 10.71 10.67 10.63 10.59 10.56 10.53 10.5 10.5 

0.15 11.5 11.36 11.25 11.15 11.07 11.00 10.94 10.88 10.83 10.79 10.8 10.7 

0.2 12 11.82 11.67 11.54 11.43 11.33 11.25 11.18 11.11 11.05 11.0 11.0 

0.25 12.5 12.27 12.08 11.92 11.79 11.67 11.56 11.47 11.39 11.32 11.3 11.2 

0.3 13 12.73 12.50 12.31 12.14 12.00 11.88 11.76 11.67 11.58 11.5 11.4 

0.35 13.5 13.18 12.92 12.69 12.50 12.33 12.19 12.06 11.94 11.84 11.8 11.7 

Continued on next page 



13093 

AIMS Mathematics  Volume 9, Issue 5, 13087–13101. 

𝑢 
𝐼𝑁𝑆 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

0.4 14 13.64 13.33 13.08 12.86 12.67 12.50 12.35 12.22 12.11 12.0 11.9 

0.45 14.5 14.09 13.75 13.46 13.21 13.00 12.81 12.65 12.50 12.37 12.3 12.1 

0.5 15 14.55 14.17 13.85 13.57 13.33 13.13 12.94 12.78 12.63 12.5 12.4 

0.55 15.5 15.00 14.58 14.23 13.93 13.67 13.44 13.24 13.06 12.89 12.8 12.6 

0.6 16 15.45 15.00 14.62 14.29 14.00 13.75 13.53 13.33 13.16 13.0 12.9 

0.65 16.5 15.91 15.42 15.00 14.64 14.33 14.06 13.82 13.61 13.42 13.3 13.1 

0.7 17 16.36 15.83 15.38 15.00 14.67 14.38 14.12 13.89 13.68 13.5 13.3 

0.75 17.5 16.82 16.25 15.77 15.36 15.00 14.69 14.41 14.17 13.95 13.8 13.6 

0.8 18 17.27 16.67 16.15 15.71 15.33 15.00 14.71 14.44 14.21 14.0 13.8 

0.9 19 18.18 17.50 16.92 16.43 16.00 15.63 15.29 15.00 14.74 14.5 14.3 

0.95 19.5 18.64 17.92 17.31 16.79 16.33 15.94 15.59 15.28 15.00 14.8 14.5 

Table 2. Random numbers from NUD when 𝑎𝑁𝑆=20 and 𝑏𝑁𝑆=30. 

𝑢 
𝐼𝑁𝑆 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

0.05 20.5 20.5 20.4 20.4 20.4 20.3 20.3 20.3 20.3 20.3 20.3 20.2 

0.1 21.0 20.9 20.8 20.8 20.7 20.7 20.6 20.6 20.6 20.5 20.5 20.5 

0.15 21.5 21.4 21.3 21.2 21.1 21.0 20.9 20.9 20.8 20.8 20.8 20.7 

0.2 22.0 21.8 21.7 21.5 21.4 21.3 21.3 21.2 21.1 21.1 21.0 21.0 

0.25 22.5 22.3 22.1 21.9 21.8 21.7 21.6 21.5 21.4 21.3 21.3 21.2 

0.3 23.0 22.7 22.5 22.3 22.1 22.0 21.9 21.8 21.7 21.6 21.5 21.4 

0.35 23.5 23.2 22.9 22.7 22.5 22.3 22.2 22.1 21.9 21.8 21.8 21.7 

0.4 24.0 23.6 23.3 23.1 22.9 22.7 22.5 22.4 22.2 22.1 22.0 21.9 

0.45 24.5 24.1 23.8 23.5 23.2 23.0 22.8 22.6 22.5 22.4 22.3 22.1 

0.5 25.0 24.5 24.2 23.8 23.6 23.3 23.1 22.9 22.8 22.6 22.5 22.4 

0.55 25.5 25.0 24.6 24.2 23.9 23.7 23.4 23.2 23.1 22.9 22.8 22.6 

0.6 26.0 25.5 25.0 24.6 24.3 24.0 23.8 23.5 23.3 23.2 23.0 22.9 

0.65 26.5 25.9 25.4 25.0 24.6 24.3 24.1 23.8 23.6 23.4 23.3 23.1 

0.7 27.0 26.4 25.8 25.4 25.0 24.7 24.4 24.1 23.9 23.7 23.5 23.3 

0.75 27.5 26.8 26.3 25.8 25.4 25.0 24.7 24.4 24.2 23.9 23.8 23.6 

0.8 28.0 27.3 26.7 26.2 25.7 25.3 25.0 24.7 24.4 24.2 24.0 23.8 

0.9 29.0 28.2 27.5 26.9 26.4 26.0 25.6 25.3 25.0 24.7 24.5 24.3 

0.95 29.5 28.6 27.9 27.3 26.8 26.3 25.9 25.6 25.3 25.0 24.8 24.5 

The random numbers for NWD are generated using the algorithm discussed in the last section. 

The random numbers for various values of 𝑢, 𝐼𝑁𝑆, 𝛼, and 𝛽 are considered. The random numbers 

when 𝛼 = 5 and 𝛽 = 0 are shown in Table 3. The random numbers when 𝛼 = 5 and 𝛽 = 1 are 

shown in Table 4. The random numbers when 𝛼 = 5 and 𝛽 = 2 are shown in Table 5. 

From Tables 3–5, the following trends can be noted in random numbers generated from NUD. 

1) For fixed 𝐼𝑁𝑆, 𝛼 = 5 and 𝛽 = 0.5, as the values of 𝑢 increase from 0.05 to 0.95, there is an 

increasing trend in random numbers generated from NWD. 
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2) For fixed 𝑢, 𝛼 = 5, and 𝛽 = 0.5, as the values of 𝐼𝑁𝑆 increase from 0 to 1.1, there is an 

increasing trend in random numbers. 

3) For fixed values of 𝐼𝑁𝑆 and 𝛼, as the values of 𝛽 increase, there is an increasing trend in 

random numbers. 

Table 3. Random numbers from NUD when 𝛼 = 5 and 𝛽 = 0.5. 

𝑢 
𝐼𝑁𝑆 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

0.05 0.01 0.01 0.07 0.15 0.23 0.31 0.38 0.43 0.48 0.52 0.56 0.58 

0.1 0.06 0.00 0.03 0.10 0.18 0.25 0.32 0.38 0.43 0.48 0.51 0.54 

0.15 0.13 0.01 0.01 0.06 0.13 0.20 0.27 0.33 0.39 0.43 0.47 0.51 

0.2 0.25 0.05 0.00 0.03 0.08 0.15 0.22 0.28 0.34 0.39 0.43 0.47 

0.25 0.41 0.11 0.01 0.01 0.05 0.11 0.18 0.24 0.30 0.35 0.39 0.43 

0.3 0.64 0.21 0.04 0.00 0.02 0.07 0.13 0.20 0.25 0.31 0.35 0.39 

0.35 0.93 0.34 0.09 0.01 0.01 0.04 0.10 0.16 0.21 0.27 0.31 0.36 

0.4 1.30 0.53 0.17 0.03 0.00 0.02 0.06 0.12 0.17 0.23 0.28 0.32 

0.45 1.79 0.77 0.29 0.08 0.01 0.01 0.04 0.09 0.14 0.19 0.24 0.28 

0.5 2.40 1.08 0.44 0.15 0.03 0.00 0.02 0.06 0.11 0.16 0.21 0.25 

0.55 3.19 1.48 0.64 0.24 0.07 0.01 0.00 0.03 0.08 0.12 0.17 0.22 

0.6 4.20 1.99 0.91 0.38 0.13 0.02 0.00 0.02 0.05 0.10 0.14 0.19 

0.65 5.51 2.63 1.24 0.55 0.21 0.06 0.01 0.00 0.03 0.07 0.11 0.16 

0.7 7.25 3.47 1.67 0.77 0.32 0.11 0.02 0.00 0.01 0.05 0.09 0.13 

0.75 9.61 4.55 2.21 1.06 0.47 0.18 0.05 0.00 0.00 0.03 0.06 0.10 

0.8 12.95 5.99 2.92 1.42 0.67 0.28 0.10 0.02 0.00 0.01 0.04 0.08 

0.9 26.51 10.70 5.03 2.48 1.23 0.58 0.25 0.09 0.02 0.00 0.01 0.04 

0.95 44.87 14.87 6.67 3.26 1.63 0.79 0.36 0.14 0.04 0.00 0.00 0.02 

Table 4. Random numbers from NUD when 𝛼 = 5 and 𝛽 = 1. 

𝑢 
𝐼𝑁𝑆 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

0.05 0.26 - - - - - - - - - - - 

0.1 0.53 0.00 - - - - - - - - - - 

0.15 0.81 0.23 - - - - - - - - - - 

0.2 1.12 0.48 0.00 - - - - - - - - - 

0.25 1.44 0.74 0.21 - - - - - - - - - 

0.3 1.78 1.01 0.44 0.00 - - - - - - - - 

0.35 2.15 1.31 0.68 0.20 - - - - - - - - 

0.4 2.55 1.62 0.93 0.41 0.00 - - - - - - - 

0.45 2.99 1.96 1.20 0.63 0.18 - - - - - - - 

0.5 3.47 2.32 1.49 0.86 0.38 0.00 - - - - - - 

0.55 3.99 2.72 1.79 1.11 0.58 0.17 - - - - - - 

0.6 4.58 3.15 2.13 1.37 0.80 0.35 0.00 - - - - - 

Continued on next page 
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𝑢 
𝐼𝑁𝑆 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

0.65 5.25 3.63 2.49 1.66 1.03 0.54 0.16 - - - - - 

0.7 6.02 4.16 2.89 1.96 1.27 0.74 0.33 0.00 - - - - 

0.75 6.93 4.77 3.33 2.30 1.54 0.96 0.51 0.15 - - - - 

0.8 8.05 5.47 3.82 2.67 1.82 1.19 0.70 0.31 0.00 - - - 

0.9 11.51 7.32 5.02 3.52 2.48 1.70 1.11 0.66 0.29 0.00 - - 

0.95 14.98 8.62 5.78 4.04 2.85 1.99 1.35 0.85 0.45 0.13 - - 

Table 5. Random numbers from NUD when 𝛼 = 5 and 𝛽 = 2. 

𝑢 
𝐼𝑁𝑆 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

0.05 1.13 - - - - - - - - - - - 

0.1 1.62 0.00 - - - - - - - - - - 

0.15 2.02 1.08 - - - - - - - - - - 

0.2 2.36 1.55 0.00 - - - - - - - - - 

0.25 2.68 1.92 1.03 - - - - - - - - - 

0.3 2.99 2.25 1.48 0.00 - - - - - - - - 

0.35 3.28 2.56 1.84 0.99 - - - - - - - - 

0.4 3.57 2.85 2.16 1.42 0.00 - - - - - - - 

0.45 3.87 3.13 2.45 1.77 0.96 - - - - - - - 

0.5 4.16 3.41 2.73 2.07 1.37 0.00 - - - - - - 

0.55 4.47 3.69 3.00 2.35 1.70 0.92 - - - - - - 

0.6 4.79 3.97 3.26 2.62 2.00 1.33 0.00 - - - - - 

0.65 5.12 4.26 3.53 2.88 2.27 1.65 0.90 - - - - - 

0.7 5.49 4.56 3.80 3.13 2.52 1.93 1.28 0.00 - - - - 

0.75 5.89 4.88 4.08 3.39 2.77 2.19 1.59 0.87 - - - - 

0.8 6.34 5.23 4.37 3.65 3.02 2.44 1.87 1.24 0.00 - - - 

0.9 7.59 6.05 5.01 4.20 3.52 2.92 2.36 1.81 1.21 0.00 - - 

0.95 8.65 6.57 5.37 4.49 3.78 3.16 2.59 2.06 1.50 0.82 - - 

The algorithms to generate the random variables from NUD and NWD are depicted in Figures 1 

and 2. 
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Figure 1. Algorithm to generate random numbers from NUD. 

 

Figure 2. Algorithm to generate random numbers from NWD. 

6. Comparative studies 

In this section, the performance of simulations using classical simulation and neutrosophic 
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simulation will be discussed using the random numbers from the NUD and the NWD distribution. As 

explained earlier, the proposed simulation method under neutrosophy will be reduced to the classical 

simulation method under classical statistics when no uncertainty is found in the data. To study the 

behavior of random numbers, random numbers from NUD when 𝐼𝑁𝑆 = 1.1, 𝑎𝑁𝑆=20, and 𝑏𝑁𝑆=30 

are considered and depicted in Figure 3. In Figure 3, it can be seen that the curve of random numbers 

from the classical simulation is higher than the curve of random numbers from the neutrosophic 

simulation. From Figure 3, it is clear that the proposed neutrosophic simulation method gives smaller 

values of random numbers than the random numbers generated by the neutrosophic simulation 

method. The random numbers from NWD when 𝐼𝑁𝑆 = 0.9, 𝛼 = 5, and 𝛽 = 0.5 are considered and 

their curves are shown in Figure 4. From Figure 4, it can be seen that random numbers generated by 

neutrosophic simulation are smaller than the random numbers generated by the classical simulation 

method under classical statistics. The random numbers generated by the neutrosophic simulation are 

close to zero. The random numbers from NWD when 𝐼𝑁𝑆 = 0.1, 𝛼 = 5, and 𝛽 = 1 (exponential 

distribution) are considered and their curves are shown in Figure 5. From Figure 5, it can be seen that 

the curve of random numbers generated by neutrosophic simulation is lower than the curve of 

random numbers generated by the classical simulation method under classical statistics. The random 

numbers from NWD when 𝐼𝑁𝑆 = 0.1, 𝛼 = 5, and 𝛽 = 2 are considered and their curves are shown 

in Figure 6. From Figure 6, it can be seen that the curve of random numbers generated by 

neutrosophic simulation is lower than the curve of random numbers generated by the classical 

simulation method under classical statistics. From Figures 4–6, it can be concluded that the proposed 

simulation gives smaller values of random numbers as compared to the classical simulation method 

under classical statistics. 

 

Figure 3. Random numbers behavior from NUD when 𝐼𝑁𝑆 = 1.1, 𝑎𝑁𝑆=20, and 𝑏𝑁𝑆=30. 
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Figure 4. Random numbers behavior from NWD when 𝐼𝑁𝑆 = 0.9, and when 𝛼 = 5, and 𝛽 = 0.5. 

 

Figure 5. Random numbers behavior from NWD when 𝐼𝑁𝑆 = 0.1, and when 𝛼 = 5, and 𝛽 = 1. 
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Figure 6. Random numbers behavior from NWD when 𝐼𝑁𝑆 = 0.1, and when 𝛼 = 5, and 𝛽 = 2. 

7. Discussion 

The simulation method under neutrosophic statistics and classical methods was discussed in the 

last sections. From Tables 1 and 2, it can be seen that random numbers from the NUD can be 

generated when 𝐼𝑁𝑆 < 1, 𝐼𝑁𝑆 = 1 and  𝐼𝑁𝑆 > 1. On the other hand, the random numbers from the 

NWD can be generated for  𝐼𝑁𝑆 < 1, 𝐼𝑁𝑆 = 1, and 𝐼𝑁𝑆 > 1 when the shape parameter 𝛽 < 1. 

From Table 4 and 5, it can be noted that for several cases, the NWD generates negative results or 

random numbers do not exist. Based on the simulation studies, it can be concluded that the NWD 

generates random numbers 𝐼𝑁𝑆 < 1, 𝐼𝑁𝑆 = 1, and 𝐼𝑁𝑆 > 1 only when 𝛽 < 1. To generate random 

numbers from NWD when 𝛽 ≥ 1, the following expression will be used 

𝑥𝑁𝑆𝑊
= 𝛼 [− ln (

1−𝑢𝑁+𝐼𝑁𝑊

1+𝐼𝑁𝑊
)]

1

𝛽
;  1 − 𝑢𝑁 + 𝐼𝑁𝑊 ≥ 0. 

8. Concluding remarks 

In this paper, we initially introduced the NUD and presented a novel method for generating 

random numbers from both NUD and the NWD. We also introduced algorithms for generating 

random numbers within the context of neutrosophy. These algorithms were applied to generate 

random numbers from both distributions using various parameters. We conducted an extensive 

discussion on the behavior of these random numbers, observing that random numbers generated 

under neutrosophy tend to be smaller than those generated under uncertain environments. It is worth 

noting that generating random numbers from computers is a common practice. Tables 1–5 within this 

paper offer valuable insights into how the degree of determinacy influences random number 

generation. Additionally, these tables can be utilized for simulation purposes in fields marked by 

uncertainty, such as reliability, environmental studies, and medical science. From our study, we 

conclude that the proposed method for generating random numbers from NUD and NWD can be 

effectively applied in complex scenarios. In future research, exploring the statistical properties of the 
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proposed NUD would be advantageous. Additionally, investigating the proposed algorithm utilizing 

the accept-reject method could be pursued as a future research avenue. Moreover, there is potential to 

develop algorithms using other statistical distributions for further investigation. 

Use of AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Acknowledgements 

The authors are deeply thankful to the editor and reviewers for their valuable suggestions to 

improve the quality and presentation of the paper. 

Conflict of interest 

The authors declare no conflicts of interest. 

References 

1. N. T. Thomopoulos, Essentials of Monte Carlo simulation: Statistical methods for building 

simulation models, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6022-0 

2. J. W. Bang, R. E. Schumacker, P. L. Schlieve, Random-number generator validity in simulation 

studies: An investigation of normality, Educ. Psychol. Mea., 58 (1998), 430–450. 

https://doi.org/10.1177/0013164498058003005 

3. M. A. Schulz, B. Schmalbach, P. Brugger, K. Witt, Analysing humanly generated random 

number sequences: a pattern-based approach, PloS One, 7 (2012), e41531. 

https://doi.org/10.1371/journal.pone.0041531 

4. S. G. Tanyer, Random number generation with the method of uniform sampling: Very high 

goodness of fit and randomness, Eng. Let., 26 (2018), 23–31. 

5. D. Kaya, S. A. Tuncer, Generating random numbers from biological signals in LabVIEW 

environment and statistical analysis, Trait. Signal, 36 (2019), 303–310. 

https://doi.org/10.18280/ts.360402 

6. I. Tanackov, F. Sinani, M. Stanković, V. Bogdanović1, Ž. Stević, M. Vidić, et al., Natural test for 

random numbers generator based on exponential distribution, Mathematics, 7 (2019), 920. 

https://doi.org/10.3390/math7100920 

7. M. M. Jacak, P. Jóźwiak, J. Niemczuk. J. E. Jacak, Quantum generators of random numbers, Sci. 

Rep., 11 (2021), 16108. https://doi.org/10.1038/s41598-021-95388-7 

8. M. S. Ridout, Generating random numbers from a distribution specified by its Laplace transform, 

Stat. Comput., 19 (2009), 439. https://doi.org/10.1007/s11222-008-9103-x 

9. W. Hörmann, J. Leydold, Generating generalized inverse Gaussian random variates, Stat. 

Comput., 24 (2014), 547–557. https://doi.org/10.1007/s11222-013-9387-3 

 

 

https://doi.org/10.1007/978-1-4614-6022-0
https://doi.org/10.1177/0013164498058003005
https://doi.org/10.1371/journal.pone.0041531
https://doi.org/10.18280/ts.360402
https://doi.org/10.3390/math7100920
https://doi.org/10.1038/s41598-021-95388-7
https://doi.org/10.1007/s11222-008-9103-x
https://doi.org/10.1007/s11222-013-9387-3


13101 

AIMS Mathematics  Volume 9, Issue 5, 13087–13101. 

10. N. B. Rached, A. Haji-Ali, G. Rubino, R. Tempone, Efficient importance sampling for large 

sums of independent and identically distributed random variables, Stat. Comput., 31 (2021), 79. 

https://doi.org/10.1007/s11222-021-10055-1 

11. R. A. K. Sherwani, M. Aslam, M. A. Raza, M. Farooq, M. Abid, M. Tahir, Neutrosophic normal 

probability distribution—A spine of parametric neutrosophic statistical tests: aroperties and 

applications, In: Neutrosophic operational research, Cham: Springer, 2021, 153–169. 

https://doi.org/10.1007/978-3-030-57197-9_8 

12. W. Q. Duan, Z. Khan, M. Gulistan, A. Khurshid, Neutrosophic exponential distribution: 

Modeling and applications for complex data analysis, Complexity, 2021 (2021), 5970613. 

https://doi.org/10.1155/2021/5970613 

13. R. A. Aliev, A. V. Alizadeh, O. H. Huseynov, K. I. Jabbarova, Z‐number‐based linear 

programming, Int. J. Intell. Syst., 30 (2015), 563–589. https://doi.org/10.1002/int.21709 

14. R. Gao, D. A. Ralescu, Convergence in distribution for uncertain random variables, IEEE T. 

Fuzzy Syst., 26 (2018), 1427–1434. https://doi.org/10.1109/TFUZZ.2017.2724021 

15. S. Pirmuhammadi, T. Allahviranloo, M. Keshavarz, The parametric form of Z‐number and its 

application in Z‐number initial value problem, Int. J. Intell. Syst., 32 (2017), 1030–1061. 

https://doi.org/10.1002/int.21883 

16. R. A. Aliev, W. Pedrycz, B. G. Guirimov, O. H. Huseynov, Acquisition of Z-number-valued 

clusters by using a new compound function, IEEE T. Fuzzy Syst., 30 (2020), 279–286. 

https://doi.org/10.1109/TFUZZ.2020.3037969 

17. S. D. Nguyen, V. S. T. Nguyen, N. T. Pham, Determination of the optimal number of clusters: A 

fuzzy-set based method, IEEE T. Fuzzy Syst., 30 (2022), 3514–3526. 

https://doi.org/10.1109/TFUZZ.2021.3118113 

18. P. Wang, W. Q. Chen, S. L. Lin, L. Y. Liu, Z. W. Sun, F. G. Zhang, Consensus algorithm based 

on verifiable quantum random numbers, Int. J. Intell. Syst., 37 (2022), 6857–6876. 

19. M. Aslam, Truncated variable algorithm using DUS-neutrosophic Weibull distribution, Complex  

Intell. Syst., 9 (2023), 3107–3114. https://doi.org/10.1007/s40747-022-00912-5 

20. M. Aslam, Simulating imprecise data: sine-cosine and convolution methods with neutrosophic 

normal distribution, J. Big Data, 10 (2023), 143. https://doi.org/10.1186/s40537-023-00822-4 

21. M. Albassam, M. Ahsan-ul-Haq, M. Aslam, Weibull distribution under indeterminacy with 

applications, AIMS Mathematics, 8 (2023), 10745–10757. https://doi.org/10.3934/math.2023545 

22. M. Aslam, Testing average wind speed using sampling plan for Weibull distribution under 

indeterminacy, Sci. Rep., 11 (2021), 7532. https://doi.org/10.1038/s41598-021-87136-8 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1007/s11222-021-10055-1
https://doi.org/10.1007/978-3-030-57197-9_8
https://doi.org/10.1155/2021/5970613
https://doi.org/10.1002/int.21709
https://doi.org/10.1109/TFUZZ.2017.2724021
https://doi.org/10.1002/int.21883
https://doi.org/10.1109/TFUZZ.2020.3037969
https://doi.org/10.1109/TFUZZ.2021.3118113
https://doi.org/10.1007/s40747-022-00912-5
https://doi.org/10.1186/s40537-023-00822-4
https://doi.org/10.3934/math.2023545
https://doi.org/10.1038/s41598-021-87136-8



