Research article

Analysis of a stochastic two-species Schoener's competitive model with Lévy jumps and Ornstein–Uhlenbeck process

  • Received: 27 December 2023 Revised: 13 March 2024 Accepted: 21 March 2024 Published: 28 March 2024
  • MSC : 60H10, 60H30, 92D25

  • This paper studies a stochastic two-species Schoener's competitive model with Lévy jumps by the mean-reverting Ornstein–Uhlenbeck process. First, the biological implication of introducing the Ornstein–Uhlenbeck process is illustrated. After that, we show the existence and uniqueness of the global solution. Moment estimates for the global solution of the stochastic model are then given. Moreover, by constructing the Lyapunov function and applying Itô's formula and Chebyshev's inequality, it is found that the model is stochastic and ultimately bounded. In addition, we give sufficient conditions for the extinction of species. Finally, numerical simulations are employed to demonstrate the analytical results.

    Citation: Yajun Song, Ruyue Hu, Yifan Wu, Xiaohui Ai. Analysis of a stochastic two-species Schoener's competitive model with Lévy jumps and Ornstein–Uhlenbeck process[J]. AIMS Mathematics, 2024, 9(5): 12239-12258. doi: 10.3934/math.2024598

    Related Papers:

  • This paper studies a stochastic two-species Schoener's competitive model with Lévy jumps by the mean-reverting Ornstein–Uhlenbeck process. First, the biological implication of introducing the Ornstein–Uhlenbeck process is illustrated. After that, we show the existence and uniqueness of the global solution. Moment estimates for the global solution of the stochastic model are then given. Moreover, by constructing the Lyapunov function and applying Itô's formula and Chebyshev's inequality, it is found that the model is stochastic and ultimately bounded. In addition, we give sufficient conditions for the extinction of species. Finally, numerical simulations are employed to demonstrate the analytical results.



    加载中


    [1] H. Qiu, W. Deng, Optimal harvesting of a stochastic delay competitive lotka–volterra model with lévy jumps, Appl. Math. Comput., 317 (2018), 210–222. https://doi.org/10.1016/j.amc.2017.08.044 doi: 10.1016/j.amc.2017.08.044
    [2] Z. Jin, H. Maoan, L. Guihua, The persistence in a lotka–volterra competition systems with impulsive, Chaos, Solitons & Fractals, 24 (2005), 1105–1117. https://doi.org/10.1016/j.chaos.2004.09.065 doi: 10.1016/j.chaos.2004.09.065
    [3] Q. Liu, D. Qian, Z. Wang, Quasi-periodic solutions of the lotka-volterra competition systems with quasi-periodic perturbations, Discrete and Continuous Dynamical Systems-B, 17 (2012), 1537. https://doi.org/10.3934/dcdsb.2012.17.1537 doi: 10.3934/dcdsb.2012.17.1537
    [4] M. Liu, K. Wang, Stochastic lotka–volterra systems with lévy noise, J. Math. Anal. Appl., 410 (2014), 750–763. https://doi.org/10.1016/j.jmaa.2013.07.078 doi: 10.1016/j.jmaa.2013.07.078
    [5] S. Y. Wang, W. M. Chen, X. L. Wu, Competition analysis on industry populations based on a three-dimensional lotka–volterra model, Discrete Dyn. Nat. Soc., 2021 (2021). https://doi.org/10.1155/2021/9935127
    [6] H. Seno, A discrete prey–predator model preserving the dynamics of a structurally unstable lotka–volterra model, J. Differ. Equ. Appl., 13 (2007), 1155–1170. https://doi.org/10.1080/10236190701464996 doi: 10.1080/10236190701464996
    [7] Z. Jun, C. G. Kim, Positive solutions for a lotka–volterra prey–predator model with cross-diffusion of fractional type, Results Math., 65 (2014), 293–320. https://doi.org/10.1007/s00025-013-0346-2 doi: 10.1007/s00025-013-0346-2
    [8] J. Lv, K. Wang, M. Liu, Dynamical properties of a stochastic two-species schoener's competitive model, Int. J. Biomath., 5 (2012), 1250035. https://doi.org/10.1142/S1793524511001751 doi: 10.1142/S1793524511001751
    [9] H. Qiu, Y. Liu, Y. Huo, R. Hou, W. Zheng, Stationary distribution of a stochastic two-species schoener's competitive system with regime switching, AIMS Mathematics, 8 (2023), 1509–1529. https://doi.org/10.3934/math.2023076 doi: 10.3934/math.2023076
    [10] C. Li, Z. Guo, Z. Zhang, Dynamics of almost periodic schoener's competition model with time delays and impulses, SpringerPlus, 5 (2016), 1–19. https://doi.org/10.1186/s40064-016-2068-x doi: 10.1186/s40064-016-2068-x
    [11] L. Wu, F. Chen, Z. Li, Permanence and global attractivity of a discrete schoener's competition model with delays, Math. Comput. Model., 49 (2009), 1607–1617. https://doi.org/10.1016/j.mcm.2008.06.004 doi: 10.1016/j.mcm.2008.06.004
    [12] X. Mao, G. Marion, E. Renshaw, Environmental brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [13] R. M. May, Stability and complexity in model ecosystems, volume 1, Princeton university press, 2019.
    [14] M. Liu, M. Deng, Analysis of a stochastic hybrid population model with allee effect, Appl. Math. Comput., 364 (2020), 124582. https://doi.org/10.1016/j.amc.2019.124582 doi: 10.1016/j.amc.2019.124582
    [15] X. Li, X. Mao, Population dynamical behavior of non-autonomous lotka-volterra competitive system with random perturbation, Discrete and Continuous Dynamical Systems-Series A, 24 (2009), 523–593. https://doi.org/10.3934/dcds.2009.24.523 doi: 10.3934/dcds.2009.24.523
    [16] Y. Li, H. Gao, Existence, uniqueness and global asymptotic stability of positive solutions of a predator–prey system with holling ii functional response with random perturbation, Nonlinear Anal.-Theor., 68 (2008), 1694–1705. https://doi.org/10.1016/j.na.2007.01.008 doi: 10.1016/j.na.2007.01.008
    [17] Q. Liu, D. Jiang, Stationary distribution and extinction of a stochastic predator–prey model with distributed delay, Appl. Math. Lett., 78 (2018), 79–87. https://doi.org/10.1016/j.aml.2017.11.008 doi: 10.1016/j.aml.2017.11.008
    [18] X. Zhang, R. Yuan, A stochastic chemostat model with mean-reverting ornstein-uhlenbeck process and monod-haldane response function, Appl. Math. Comput., 394 (2021), 125833. https://doi.org/10.1016/j.amc.2020.125833 doi: 10.1016/j.amc.2020.125833
    [19] Y. Song, X. Zhang, Stationary distribution and extinction of a stochastic sveis epidemic model incorporating ornstein–uhlenbeck process, Appl. Math. Lett., 133 (2022), 108284. https://doi.org/10.1016/j.aml.2022.108284 doi: 10.1016/j.aml.2022.108284
    [20] Y. Cai, J. Jiao, Z. Gui, Y. Liu, W. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. https://doi.org/10.1016/j.amc.2018.02.009 doi: 10.1016/j.amc.2018.02.009
    [21] B. Zhou, D. Jiang, T. Hayat, Analysis of a stochastic population model with mean-reverting ornstein–uhlenbeck process and allee effects, Commun. Nonlinear Sci., 111 (2022), 106450. https://doi.org/10.1016/j.cnsns.2022.106450 doi: 10.1016/j.cnsns.2022.106450
    [22] S. S. Lee, J. Hannig, Detecting jumps from lévy jump diffusion processes, J. Financ. Econ., 96 (2010), 271–290. https://doi.org/10.1016/j.jfineco.2009.12.009 doi: 10.1016/j.jfineco.2009.12.009
    [23] H. Li, M. T. Wells, C. L. Yu, A Bayesian Analysis of Return Dynamics with Lévy Jumps, The Review of Financial Studies, 21 (2006), 2345–2378. https://doi.org/10.1093/rfs/hhl036 doi: 10.1093/rfs/hhl036
    [24] M. Liu, K. Wang, Stochastic lotka–volterra systems with lévy noise, J. Math. Anal. Appl., 410 (2014), 750–763. https://doi.org/10.1016/j.jmaa.2013.07.078 doi: 10.1016/j.jmaa.2013.07.078
    [25] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [26] Q. Liu, A stochastic predator–prey model with two competitive preys and ornstein–uhlenbeck process, J. Biol. Dynam., 17 (2023), 2193211. https://doi.org/10.1080/17513758.2023.2193211 doi: 10.1080/17513758.2023.2193211
    [27] E. Allen, Environmental variability and mean-reverting processes, Discrete and Continuous Dynamical Systems - Series B, 21 (2016), 2073–2089. https://doi.org/10.3934/dcdsb.2016037 doi: 10.3934/dcdsb.2016037
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(690) PDF downloads(67) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog