Research article Special Issues

Reachable set estimation for neutral semi-Markovian jump systems with time-varying delay

  • Received: 13 December 2023 Revised: 25 January 2024 Accepted: 25 January 2024 Published: 26 February 2024
  • MSC : 93E03

  • This work addresses the issue of finding ellipsoidal bounds of reachable sets for neutral semi-Markovian jump systems with time-varying delay and bounded peak disturbances, for which the related result has been rarely proposed for neutral semi-Markovian jump systems. Based on the modified improved Lyapunov-Krasovskii functional, a boundary of the reachable set for neutral semi-Markovian jump systems was obtained with the aid of utilizing a novel integral inequality and combining with the time-delay segmentation technique. The numerical examples are supplied to verify the effectiveness of the obtained results.

    Citation: Xipan Zhang, Changchun Shen, Dingju Xu. Reachable set estimation for neutral semi-Markovian jump systems with time-varying delay[J]. AIMS Mathematics, 2024, 9(4): 8043-8062. doi: 10.3934/math.2024391

    Related Papers:

  • This work addresses the issue of finding ellipsoidal bounds of reachable sets for neutral semi-Markovian jump systems with time-varying delay and bounded peak disturbances, for which the related result has been rarely proposed for neutral semi-Markovian jump systems. Based on the modified improved Lyapunov-Krasovskii functional, a boundary of the reachable set for neutral semi-Markovian jump systems was obtained with the aid of utilizing a novel integral inequality and combining with the time-delay segmentation technique. The numerical examples are supplied to verify the effectiveness of the obtained results.



    加载中


    [1] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnam, Linear matrix inequalities in systems and control theory, SIAM, Philadelphia, PA, 1994.
    [2] J. H. Gillula, G. M. Hoffmann, H. Huang, M. P. Vitus, C. J. Tomlin, Applications of hybrid reachability analysis to robotic aerial vehicles, Int. J. Robot. Res., 30 (2011), 335–354. https://doi.org/10.1177/0278364910387173 doi: 10.1177/0278364910387173
    [3] F. Parise, M. E. Valcher, J. Lygeros, Computing the projected reachable set of stochastic biochemical reaction networks modeled by switched affine systems, IEEE T. Automat. Contr., 63 (2018), 3719–3734. https://doi.org/10.1109/TAC.2018.2798800 doi: 10.1109/TAC.2018.2798800
    [4] W. Lin, Z. Yang, Z. Ding, Reachable set estimation and safety verification of nonlinear systems via iterative sums of squares programming, J. Syst. Sci. Complex., 35 (2022), 1154–1172. https://doi.org/10.1007/s11424-022-1121-9 doi: 10.1007/s11424-022-1121-9
    [5] J. Wang, C. Yang, J. Xia, Z. G. Wu, H. Shen, Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol, IEEE T. Fuzzy Syst., 30 (2022), 1889–1899. http://dx.doi.org/10.1109/TFUZZ.2021.3070125 doi: 10.1109/TFUZZ.2021.3070125
    [6] H. Zhang, W. Li, J. Zhang, Y. Wang, J. Sun, Fully distributed dynamic event-triggered bipartite formation tracking for multiagent systems with multiple nonautonomous leaders, IEEE T. Neur. Net. Lear., 34 (2023), 7453–7466. http://dx.doi.org/10.1109/TNNLS.2022.3143867 doi: 10.1109/TNNLS.2022.3143867
    [7] H. Zhang, J. Zhang, Y. Cai, S. X. Sun, J. Y. Sun, Leader-following consensus for a class of nonlinear multiagent systems under event-triggered and edge-event triggered mechanisms, IEEE T. Cybernetics, 52 (2022), 7643–7654. http://dx.doi.org/10.1109/TCYB.2020.3035907 doi: 10.1109/TCYB.2020.3035907
    [8] J. Tian, S. Zhong, Y Wang, Improved exponential stability criteria for neural networks with time-varying delays, Neurocomputing, 97 (2012), 164–173. https://doi.org/10.1016/j.neucom.2012.05.018 doi: 10.1016/j.neucom.2012.05.018
    [9] C. K. Zhang, Y. He, L. Jiang, M. Wu, Q. G. Wang, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481–485. http://dx.doi.org/10.1016/j.automatica.2017.07.056 doi: 10.1016/j.automatica.2017.07.056
    [10] T. Zhao, B. Zhou, W. Michiels, Stability analysis of linear time-varying time-delay systems by non-quadratic Lyapunov functions with indefinite derivatives, Syst. Control Lett., 122 (2018), 77–85. http://dx.doi.org/10.1016/j.sysconle.2018.09.012 doi: 10.1016/j.sysconle.2018.09.012
    [11] S. Mondie, A. V. Egorov, M. A. Gomez, Stability conditions for time delay systems in terms of the Lyapunov matrix, IFAC-PapersOnLine, 51 (2018), 136–141. http://dx.doi.org/10.1016/j.ifacol.2018.07.212 doi: 10.1016/j.ifacol.2018.07.212
    [12] S. Luo, F. Deng, A note on delay-dependent stability of Itô-type stochastic time-delay systems, Automatica, 105 (2019), 443–447. http://dx.doi.org/10.1016/j.automatica.2019.03.005 doi: 10.1016/j.automatica.2019.03.005
    [13] Z. Y. Li, S. Shang, J. Lam, On stability of neutral-type linear stochastic time-delay systems with three different delays, Appl. Math. Comput., 360 (2019), 147–166. http://dx.doi.org/10.1016/j.amc.2019.04.070 doi: 10.1016/j.amc.2019.04.070
    [14] A. Aleksandrov, D. Efimov, Stability analysis of switched homogeneous time-delay systems under synchronous and asynchronous commutation, Nonlinear Anal.-Hybri., 42 (2021), 101090. http://dx.doi.org/10.1016/j.nahs.2021.101090 doi: 10.1016/j.nahs.2021.101090
    [15] K. Cui, Z. Song, S. Zhang, Stability of neutral-type neural network with Lévy noise and mixed time-varying delays, Chaos Soliton. Fract., 159 (2022), 112146. http://dx.doi.org/10.1016/j.chaos.2022.112146 doi: 10.1016/j.chaos.2022.112146
    [16] Y. Chen, J. Lam, B. Zhang, Estimation and synthesis of reachable set for switched linear systems, Automatica, 63 (2016), 63122–63132. https://doi.org/10.1016/j.automatica.2015.10.033 doi: 10.1016/j.automatica.2015.10.033
    [17] W. Xiang, H. D. Tran, T. T. Johnson, Output reachable set estimation for switched linear systems and its application in safety verification, IEEE T. Automat. Contr., 62 (2017), 5380–5387. https://doi.org/10.1109/TAC.2017.2692100 doi: 10.1109/TAC.2017.2692100
    [18] S. Baldi, W. Xiang, Reachable set estimation for switched linear systems with dwell-time switching, Nonlinear Anal.-Hybri., 29 (2018), 2920–2933. https://doi.org/10.1016/j.nahs.2017.12.004 doi: 10.1016/j.nahs.2017.12.004
    [19] J. Li, J. Zhao, Reachable set estimation for switched linear systems with state-dependent switching and bumpless transfer based event-triggered control, ISA T., 139 (2023), 179–190. https://doi.org/10.1016/j.isatra.2023.04.031 doi: 10.1016/j.isatra.2023.04.031
    [20] S. Jin, Y. Pang, X. Zhou, A. Y. Yan, W. Wang, W. B. Hu, Robust finite-Time control and reachable set estimation for uncertain switched neutral systems with time delays and input constraints, Appl. Math. Comput., 407 (2021), 126321. https://doi.org/10.1016/j.amc.2021.126321 doi: 10.1016/j.amc.2021.126321
    [21] J. Huang, Y. Shi, Stochastic stability of semi-Markov jump linear systems: An LMI approach, In: 2011 50th IEEE conference on decision and control and european control conference, 2011, 4668–4673. http://dx.doi.org/10.1109/CDC.2011.6161313
    [22] Y. Wei, J. H. Park, J. Qiu, L. G. Wu, Sliding mode control for semi-Markovian jump systems via output feedback, Automatica, 81 (2017), 133–141. http://dx.doi.org/10.1016/j.automatica.2017.03.032 doi: 10.1016/j.automatica.2017.03.032
    [23] M. Zhang, J. Huang, Y. Zhang, Stochastic stability and stabilization for stochastic differential semi-Markov jump systems with incremental quadratic constraints, Int. J. Robust Nonlin., 31 (2021), 6788–6809. https://doi.org/10.1002/rnc.5643 doi: 10.1002/rnc.5643
    [24] F. Li, L. Wu, P. Shi, Stochastic stability of semi-Markovian jump systems with mode-dependent delays, Int. J. Robust Nonlin., 24 (2014), 3317–3330. https://doi.org/10.1002/rnc.3057 doi: 10.1002/rnc.3057
    [25] H. Xiao, Q. Zhu, H. R. Karimi, Stability analysis of semi-Markov switching stochastic mode-dependent delay systems with unstable subsystems, Chaos Soliton. Fract., 165 (2022), 112791. https://doi.org/10.1016/j.chaos.2022.112791 doi: 10.1016/j.chaos.2022.112791
    [26] B. Wang, Q, Zhu, Stability analysis of discrete-time semi-Markov jump linear systems, IEEE T. Automat. Contr., 65 (2020), 5415–5421. https://doi.org/10.1109/TAC.2020.2977939 doi: 10.1109/TAC.2020.2977939
    [27] J. Huang, Y. Shi, Stochastic stability and robust stabilization of semi-Markov jump linear systems, Int. J. Robust Nonlin., 23 (2013), 2028–2043. https://doi.org/10.1002/rnc.2862 doi: 10.1002/rnc.2862
    [28] M. Zhang, J. Huang, G. Zong, X. Zhao, Y. Zhang, Observer design for semi-Markov jump systems with incremental quadratic constraints, J. Franklin I., 358 (2021), 5599–5622. https://doi.org/10.1016/j.jfranklin.2021.05.001 doi: 10.1016/j.jfranklin.2021.05.001
    [29] H. Xiao, Q. Zhu, H. R. Karimi, Stability analysis of semi-Markov switching stochastic mode-dependent delay systems with unstable subsystems, Chaos Soliton. Fract., 165 (2022), 112791. https://doi.org/10.1016/j.chaos.2022.112791 doi: 10.1016/j.chaos.2022.112791
    [30] J. Wang, Z. Chen, H. Shen, J. D. Cao, Fuzzy $\mathcal {H}_\infty $ control of semi-Markov jump singularly perturbed nonlinear systems with partial information and actuator saturation, IEEE T. Fuzzy Syst., 31 (2023), 4374–4384. https://doi.org/10.1109/TFUZZ.2023.3284609 doi: 10.1109/TFUZZ.2023.3284609
    [31] S. Sun, X. Dai, R. Xi, Y. L. Cai, X. P. Xie, C. H. Zhang, Reachable set estimation for Itô stochastic semi-Markovian jump systems against multiple time delays, Int. J. Control Autom., 20 (2022), 2857–2867. https://doi.org/10.1007/s12555-021-0679-7 doi: 10.1007/s12555-021-0679-7
    [32] X. Ma, Y. Zhang, J. Huang, Reachable set estimation and synthesis for semi-Markov jump systems, Inform. Sci., 609 (2022), 376–386. https://doi.org/10.1016/j.ins.2022.07.069 doi: 10.1016/j.ins.2022.07.069
    [33] L. Zhang, B. Niu, N. Zhao, X. D. Zhao, Reachable set estimation of singular semi-Markov jump systems, J. Franklin I., 360 (2023), 12535–12551. https://doi.org/10.1016/j.jfranklin.2021.07.053 doi: 10.1016/j.jfranklin.2021.07.053
    [34] L. Zhang, Y. Cao, Z. Feng, N. Zhao, Reachable set synthesis for singular systems with time-varying delay via the adaptive event-triggered scheme, J. Franklin I., 359 (2022), 1503–1521. https://doi.org/10.1016/j.jfranklin.2021.11.032 doi: 10.1016/j.jfranklin.2021.11.032
    [35] H. Zhang, H. Ren, Y. F. Mu, J. Han, Optimal consensus control design for multiagent systems with multiple time delay using adaptive dynamic programming, IEEE T. Cybernetics, 52 (2022), 12832–12842. https://doi.org/10.1109/TCYB.2021.3090067 doi: 10.1109/TCYB.2021.3090067
    [36] C. Shen, S. Zhong, The ellipsoidal bound of reachable sets for linear neutral systems with disturbances, J. Franklin I., 348 (2011), 2570–2585. https://doi.org/10.1016/j.jfranklin.2011.07.017 doi: 10.1016/j.jfranklin.2011.07.017
    [37] J. Li, Q. Zhu, Stability of neutral stochastic delayed systems with switching and distributed-delay dependent impulses, Nonlinear Anal.-Hybri., 47 (2023), 101279. https://doi.org/10.1016/j.nahs.2022.101279 doi: 10.1016/j.nahs.2022.101279
    [38] K. Q. Gu, An integral inequality in the stability problem of time-delay systems, In: Proceedings of the 39th IEEE conference on decision and control (Cat. No. 00CH37187), Sydney, NSW, Australia, 3 (2000), 2805–2810. https://doi.org/10.1109/CDC.2000.914233
    [39] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [40] P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varing delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [41] P. G. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin I., 352 (2015), 1378–1396. https://doi.org/10.1016/j.jfranklin.2015.01.004 doi: 10.1016/j.jfranklin.2015.01.004
    [42] F. Yang, J. He, J. Wang, M. Wang, Auxiliary‐function‐based double integral inequality approach to stability analysis of load frequency control systems with interval time‐varying delay, IET Control Theory A., 12 (2018), 601–612. https://doi.org/10.1049/iet-cta.2017.1187 doi: 10.1049/iet-cta.2017.1187
    [43] R. Manivannan, R. Samidurai, J. Cao, A. Alsaedi, F. E. Alsaadi, Stability analysis of interval time-varying delayed neural networks including neutral time-delay and leakage delay, Chaos Soliton. Fract., 114 (2018), 433–445. https://doi.org/10.1016/j.chaos.2018.07.041 doi: 10.1016/j.chaos.2018.07.041
    [44] R. Chen, M. Guo, S. Zhu, Y. Q. Qi, M. Wang, J. H. Hu, Reachable set bounding for linear systems with mixed delays and state constraints, Appl. Math. Comput., 425 (2022), 127085. https://doi.org/10.1016/j.amc.2022.127085 doi: 10.1016/j.amc.2022.127085
    [45] J. H. Lee, J. H. Kim, P. G. Park, A generalized multiple-integral inequality based on free matrices: Application to stability analysis of time-varying delay systems, Appl. Math. Comput., 430 (2022), 127288. https://doi.org/10.1016/j.amc.2022.127288 doi: 10.1016/j.amc.2022.127288
    [46] J. Tian, Z. Ren, S. Zhong, A new integral inequality and application to stability of time-delay systems, Appl. Math. Lett., 101 (2020), 106058. https://doi.org/10.1016/j.aml.2019.106058 doi: 10.1016/j.aml.2019.106058
    [47] H. Ren, G. Zong, L. Hou, Y. Yang, Finite-time resilient decentralized control for interconnected impulsive switched systems with neutral delay, ISA T., 67 (2017), 19–29. https://doi.org/10.1016/j.isatra.2017.01.013 doi: 10.1016/j.isatra.2017.01.013
    [48] M. Zheng, Y. Zhou, S. Yang, L. N. Li, Robust $\mathcal {H}_\infty $ control of neutral system for sampled-data dynamic positioning ships, IMA J. Math. Control I., 36 (2019), 1325–1345. https://doi.org/10.1093/imamci/dny029 doi: 10.1093/imamci/dny029
    [49] Z. Zuo, Y. Wang, New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations, IEE P.-Contr. Theor. Ap., 153 (2006), 623–626. https://doi.org/10.1049/ip-cta:20045258 doi: 10.1049/ip-cta:20045258
    [50] X. G. Liu, M. Wu, R. Martin, Delay-dependent stability analysis for uncertain neutral systems with time-varying delays, Math. Comput. Simulat., 75 (2007), 15–27. https://doi.org/10.1016/j.matcom.2006.08.006 doi: 10.1016/j.matcom.2006.08.006
    [51] J. K. Tian, L. L. Xiong, J. X. Liu, X. J. Xie, Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay, Chaos Soliton. Fractal., 40 (2009), 1858–1866. https://doi.org/10.1016/j.chaos.2007.09.068 doi: 10.1016/j.chaos.2007.09.068
    [52] H. Shen, M. Chen, Z. G. Wu, J. D. Cao, J. H. Park, Reliable event-triggered asynchronous extended passive control for semi-Markov jump fuzzy systems and its application, IEEE T. Fuzzy Syst., 28 (2019), 1708–1722. https://doi.org/10.1109/TFUZZ.2019.2921264 doi: 10.1109/TFUZZ.2019.2921264
    [53] Z. Feng, J. Lam, On reachable set estimation of singular systems, Automatica, 52 (2015), 146–153. https://doi.org/10.1016/j.automatica.2014.11.007 doi: 10.1016/j.automatica.2014.11.007
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(550) PDF downloads(65) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog