This work focused on studying the effect of vaccination rate $ \kappa $ on reducing the outbreak of infectious diseases, especially if the infected individuals do not have any symptoms. We employed the fractional order derivative in this study since it has a high degree of accuracy. Recently, a lot of scientists have been interested in fractional-order models. It is considered a modern direction in the mathematical modeling of epidemiology systems. Therefore, a fractional order of the SEIR epidemic model with two types of infected groups and vaccination strategy was formulated and investigated in this paper. The proposed model includes the following classes: susceptible $ \mathrm{S}(t) $, exposed $ \mathrm{E}(t) $, asymptomatic infected $ \mathrm{I_{c}}(t) $, symptomatic infected $ \mathrm{I_{\eta}}(t) $, vaccinated $ \mathrm{V}(t) $, and recovered $ \mathrm{R}(t) $. We began our study by creating the existence, non-negativity, and boundedness of the solutions of the proposed model. Moreover, we established the basic reproduction number $ \mathcal{R}_{0} $, that was used to examine the existence and stability of the equilibrium points for the presented model. By creating appropriate Lyapunov functions, we proved the global stability of the free-disease equilibrium point and endemic equilibrium point. We concluded that the free-disease equilibrium point is globally asymptotically stable (GAS) when $ \mathcal{R}_{0}\, \leq \, 1 $, while the endemic equilibrium point is GAS if $ \mathcal{R}_{0} > 1 $. Therefore, we indicated the increasing vaccination rate $ \kappa $ leads to reducing $ \mathcal{R}_0 $. These findings confirm the important role of vaccination rate $ \kappa $ in fighting the spread of infectious diseases. Moreover, the numerical simulations were introduced to validate theoretical results that are given in this work by applying the predictor-corrector PECE method of Adams-Bashforth-Moulton. Further more, the impact of the vaccination rate $ \kappa $ was explored numerically and we found that, as $ \kappa $ increases, the $ \mathcal{R}_{0} $ is decreased. This means the vaccine can be useful in reducing the spread of infectious diseases.
Citation: Abeer Alshareef. Quantitative analysis of a fractional order of the $ SEI_{c}\, I_{\eta} VR $ epidemic model with vaccination strategy[J]. AIMS Mathematics, 2024, 9(3): 6878-6903. doi: 10.3934/math.2024335
This work focused on studying the effect of vaccination rate $ \kappa $ on reducing the outbreak of infectious diseases, especially if the infected individuals do not have any symptoms. We employed the fractional order derivative in this study since it has a high degree of accuracy. Recently, a lot of scientists have been interested in fractional-order models. It is considered a modern direction in the mathematical modeling of epidemiology systems. Therefore, a fractional order of the SEIR epidemic model with two types of infected groups and vaccination strategy was formulated and investigated in this paper. The proposed model includes the following classes: susceptible $ \mathrm{S}(t) $, exposed $ \mathrm{E}(t) $, asymptomatic infected $ \mathrm{I_{c}}(t) $, symptomatic infected $ \mathrm{I_{\eta}}(t) $, vaccinated $ \mathrm{V}(t) $, and recovered $ \mathrm{R}(t) $. We began our study by creating the existence, non-negativity, and boundedness of the solutions of the proposed model. Moreover, we established the basic reproduction number $ \mathcal{R}_{0} $, that was used to examine the existence and stability of the equilibrium points for the presented model. By creating appropriate Lyapunov functions, we proved the global stability of the free-disease equilibrium point and endemic equilibrium point. We concluded that the free-disease equilibrium point is globally asymptotically stable (GAS) when $ \mathcal{R}_{0}\, \leq \, 1 $, while the endemic equilibrium point is GAS if $ \mathcal{R}_{0} > 1 $. Therefore, we indicated the increasing vaccination rate $ \kappa $ leads to reducing $ \mathcal{R}_0 $. These findings confirm the important role of vaccination rate $ \kappa $ in fighting the spread of infectious diseases. Moreover, the numerical simulations were introduced to validate theoretical results that are given in this work by applying the predictor-corrector PECE method of Adams-Bashforth-Moulton. Further more, the impact of the vaccination rate $ \kappa $ was explored numerically and we found that, as $ \kappa $ increases, the $ \mathcal{R}_{0} $ is decreased. This means the vaccine can be useful in reducing the spread of infectious diseases.
[1] | D. A. Juraev, S. Noeiaghdam, Modern problems of mathematical physics and their application, Axioms, 11 (2022), 45. https://doi.org/10.3390/axioms11020045 doi: 10.3390/axioms11020045 |
[2] | K. Dukuza, Bifurcation analysis of a computer virus propagation model, Hacet. J. Math. Stat., 50 (2021), 1384–1400. https://doi.org/10.15672/hujms.747872 doi: 10.15672/hujms.747872 |
[3] | C. Zhang, Global behavior of a computer virus propagation model on multilayer networks, Secur. Commun. Netw., 2018 (2018), 2153195. https://doi.org/10.1155/2018/2153195 doi: 10.1155/2018/2153195 |
[4] | R. Zarin, H. Khaliq, A. Khan, D. Khan, A. Akgül, U. W. Humphries, Deterministic and fractional modeling of a computer virus propagation, Results Phys., 33 (2022), 105130. https://doi.org/10.1016/j.rinp.2021.105130 doi: 10.1016/j.rinp.2021.105130 |
[5] | H. A. Ashi, Stability analysis of a simple mathematical model for school bullying, AIMS Mathematics, 7 (2021), 4936–4945. https://doi.org/10.3934/math.2022274. doi: 10.3934/math.2022274 |
[6] | H. Batarfi, A. Elaiw, A. Alshareef, Dynamical behavior of MERS-CoV model with discrete delays, J. Comput. Anal. Appl., 27 (2019), 37–49. |
[7] | A. Alshareef, A. Elaiw, Dynamical behavior of MERS-CoV model with distributed delays, Appl. Math. Sci, 13 (2019), 283–298. https://doi.org/10.12988/ams.2019.9123 doi: 10.12988/ams.2019.9123 |
[8] | M. A. Abdoon, R. Saadeh, M. Berir, F. E. Guma, M. Ali, Analysis, modeling and simulation of a fractional-order influenza model, Alex. Eng. J., 74 (2023), 231–240. https://doi.org/10.1016/j.aej.2023.05.011 doi: 10.1016/j.aej.2023.05.011 |
[9] | F. Evirgen, E. Uçar, S. Uçar, N. Özdemir, Modelling influenza a disease dynamics under caputo-fabrizio fractional derivative with distinct contact rates, Mathematical Modelling and Numerical Simulation with Applications, 3 (2023), 58–73. https://doi.org/10.53391/mmnsa.1274004 doi: 10.53391/mmnsa.1274004 |
[10] | R. Prasad, K. Kumar, R. Dohare, Caputo fractional order derivative model of zika virus transmission dynamics, J. Math. Comput. Sci., 28 (2023), 145–157. http://doi.org/10.22436/jmcs.028.02.03. doi: 10.22436/jmcs.028.02.03 |
[11] | H. Joshi, B. Jha, M. Yavuz, Modelling and analysis of fractional-order vaccination model for control COVID-19 outbreak using real data, Math. Biosci. Eng., 20 (2022), 213–240. https://doi.org/10.3934/mbe.2023010 doi: 10.3934/mbe.2023010 |
[12] | P. Wintachai, K. Prathom, Stability analysis of SEIR model to related efficiency of vaccines for COVID-19 situation, Heliyon, 7 (2021), e06812. https://doi.org/10.1016/j.heliyon.2021.e06812 doi: 10.1016/j.heliyon.2021.e06812 |
[13] | M. Farman, A. Shehzad, A. Akgül, D. Baleanu, M. De la Sen, Modellig and analysis of a measles epidemic model with the constant proportional caputo operator, Symmetry, 15 (2023), 468. https://doi.org/10.3390/sym15020468 doi: 10.3390/sym15020468 |
[14] | W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118 |
[15] | D. Greenhalgh, Some results for an SEIR epidemic model with density dependence in the death rate, Math. Med. Biol., 9 (1992), 67–106. https://doi.org/10.1093/imammb/9.2.67 doi: 10.1093/imammb/9.2.67 |
[16] | Y. A. Kuznetsov, C. Piccardi, Bifurcation analysis of periodic SEIR and SIR epidemic models, J. Math. Biol, 32 (1994), 109–121. https://doi.org/10.1007/bf00163027 doi: 10.1007/bf00163027 |
[17] | Y. Ucakan, S. Gulen, K. Koklu, Analysing of tuberculosis in Turkey through SIR, SEIR and BSEIR mathematical models, Math. Comp. Model. Dyn., 27 (2021), 179–202. https://doi.org/10.1080/13873954.2021.1881560 doi: 10.1080/13873954.2021.1881560 |
[18] | S. Umdekar, P. K. Sharma, S. Sharma, An SEIR model with modified saturated incidence rate and Holling type Ⅱ treatment function, Computational and Mathematical Biophysics, 11 (2023), 20220146. https://doi.org/10.1515/cmb-2022-0146 doi: 10.1515/cmb-2022-0146 |
[19] | Z. Yaagoub, K. Allali, Global stability of multi-strain SEIR epidemic model with vaccination strategy, Math. Comput. Appl., 28 (2023), 9. https://doi.org/10.3390/mca28010009 doi: 10.3390/mca28010009 |
[20] | A. Das, M. Pal, A mathematical study of an imprecise SIR epidemic model with treatment control, J. Appl. Math. Comput., 56 (2018), 477–500. http://doi.org/10.1007/s12190-017-1083-6 doi: 10.1007/s12190-017-1083-6 |
[21] | M. Ehrhardt, J. Gašper, S. Kilianová, SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity, J. Comput. Sci., 37 (2019), 101027. https://doi.org/10.1016/j.jocs.2019.101027 doi: 10.1016/j.jocs.2019.101027 |
[22] | C. Gabrick, P. R. Protachevicz, A. M. Batista, K. C. Iarosz, S. L. T. de Souza, A. C. L. Almeida, et al., Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton, Physica A, 597 (2022), 127258. https://doi.org/10.1016/j.physa.2022.127258 doi: 10.1016/j.physa.2022.127258 |
[23] | G. T. Tilahun, S. Demie, A. Eyob, Stochastic model of measles transmission dynamics with double dose vaccination, Infectious Disease Modelling, 5 (2020), 478–494. https://doi.org/10.1016/j.idm.2020.06.003 doi: 10.1016/j.idm.2020.06.003 |
[24] | F. A. Wodajo, T. T. Mekonnen, Effect of intervention of vaccination and treatment on the transmission dynamics of HBV disease: a mathematical model analysis, J. Math., 2022 (2022), 9968832. https://doi.org/10.1155/2022/9968832 doi: 10.1155/2022/9968832 |
[25] | O. J. Peter, A. Yusuf, M. M. Ojo, S. Kumar, N. Kumari, F. A. Oguntolu, A mathematical model analysis of meningitis with treatment and vaccination in fractional derivatives, Int. J. Appl. Comput. Math., 8 (2022), 117. http://doi.org/10.1007/s40819-022-01317-1 doi: 10.1007/s40819-022-01317-1 |
[26] | F. Saldaña, J. X. Velasco-Hernández, Modeling the COVID-19 pandemic: a primer and overview of mathematical epidemiology, SeMA J., 79 (2022), 225–251. http://doi.org/10.1007/s40324-021-00260-3 doi: 10.1007/s40324-021-00260-3 |
[27] | A. Abbes, A. Ouannas, N. Shawagfeh, H. Jahanshahi, The fractional-order discrete COVID-19 pandemic model: stability and chaos, Nonlinear Dyn., 111 (2023), 965–983. http://doi.org/10.1007/s11071-022-07766-z doi: 10.1007/s11071-022-07766-z |
[28] | G. González-Parra, M. R. Cogollo, A. J. Arenas, Mathematical modeling to study optimal allocation of vaccines against COVID-19 using an age-structured population, Axioms, 11 (2022), 109. https://doi.org/10.3390/axioms11030109 doi: 10.3390/axioms11030109 |
[29] | Shyamsunder, S. Bhatter, K. Jangid, A. Abidemi, K. M. Owolabi, S. D. Purohit, A new fractional mathematical model to study the impact of vaccination on COVID-19 outbreaks, Decision Analytics Journal, 6 (2023), 100156. https://doi.org/10.1016/j.dajour.2022.100156 doi: 10.1016/j.dajour.2022.100156 |
[30] | S. Paul, A. Mahata, S. Mukherjee, B. Roy, M. Salimi, A. Ahmadian, Study of fractional order SEIR epidemic model and effect of vaccination on the spread of COVID-19, Int. J. Appl. Comput. Math., 8 (2022), 237. https://doi.org/10.1007/s40819-022-01411-4 doi: 10.1007/s40819-022-01411-4 |
[31] | M. R. S. Ammi, M. Tahiri, D. F. M. Torres, Global stability of a coputo fractional SIRS model with general incidence rate, Math. Comput. Sci., 15 (2021), 91–105. https://doi.org/10.1007/s11786-020-00467-z doi: 10.1007/s11786-020-00467-z |
[32] | M. Moustafa, M. Mohd, A. Ismail, F. Abdullah, Dynamical analysis of a fractional-order Rosenzweig-MacArthur model incorporating a prey refuge, Chaos Soliton. Fract., 109 (2018), 1–13. https://doi.org/10.1016/j.chaos.2018.02.008 doi: 10.1016/j.chaos.2018.02.008 |
[33] | M. Naim, F. Lahmidi, A. Namir, Global stability of a fractional order SIR epidemic model with double epidemic hypothesis and nonlinear incidence rate, Commun. Math. Biol. Neurosci., 38 (2020), 1–15. https://doi.org/10.28919/cmbn/4677 doi: 10.28919/cmbn/4677 |
[34] | D. Sun, Q. Li, W. Zhao, Stability and optimal control of a fractional SEQIR epidemic model with saturated incidence rate, Fractal Fract., 7 (2023), 533. https://doi.org/10.3390/fractalfract7070533 doi: 10.3390/fractalfract7070533 |
[35] | S. Soulaimani, A. Kaddar, Analysis and optimal control of a fractional order SEIR epidemic model with general incidence and vaccination, IEEE Access, 11 (2023), 81995–82002. https://doi.org/10.1109/ACCESS.2023.3300456 doi: 10.1109/ACCESS.2023.3300456 |
[36] | A. Nabti, B. Ghanbari, Global stability analysis of a fractional SVEIR epidemic model, Math. Method. Appl. Sci., 44 (2021), 8577–8597. https://doi.org/10.1002/mma.7285 doi: 10.1002/mma.7285 |
[37] | X. Liu, M. ur Rahmamn, S. Ahmed, D. Baleanu, Y. N. Anjam, A new fractional infectious disease model under the non-singular Mittag-Leffler derivative, Wave. Random Complex, 2022 (2022), 2036386. https://doi.org/10.1080/17455030.2022.2036386 doi: 10.1080/17455030.2022.2036386 |
[38] | Z. Ali, F. Rabiei, M. M. Rashid, T. Khodadadi, A fractional-order mathematical model for COVID-19 outbreak with the effect of symptomatic and asymptomatic transmissions, Eur. Phys. J. Plus, 137 (2022), 395. https://doi.org/10.1140/epjp/s13360-022-02603-z doi: 10.1140/epjp/s13360-022-02603-z |
[39] | I. Petras, Fractional-order nonlinear systems, Heidelberg: Springer Berlin, 2011. https://doi.org/10.1007/978-3-642-18101-6 |
[40] | Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag-leffler stability, Camput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019 |
[41] | S. Choi, B. Kang, N. Koo, Stability for caputo fractional differential systems, Abstr. Appl. Anal., 2014 (2014), 631419. https://doi.org/10.1155/2014/631419 doi: 10.1155/2014/631419 |
[42] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[43] | C. Vargas-De-Len, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci., 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013 |
[44] | J. K. Hale, Retarded functional differential equations: basic theory, In: Theory of functional differential equations, New York: Springer, 1977, 36–56. https://doi.org/10.1007/978-1-4612-9892-2_3. |
[45] | K. Diethelm, A. D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order, Forschung und wissenschaftliches Rechnen, Beiträge zum Heinz-Billing-Preis, 1998. https://fractionalworld.wordpress.com/abstracts-fracpece/ |