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Abstract: This work focused on studying the effect of vaccination rate « on reducing the outbreak
of infectious diseases, especially if the infected individuals do not have any symptoms. We employed
the fractional order derivative in this study since it has a high degree of accuracy. Recently, a lot of
scientists have been interested in fractional-order models. It is considered a modern direction in the
mathematical modeling of epidemiology systems. Therefore, a fractional order of the SEIR epidemic
model with two types of infected groups and vaccination strategy was formulated and investigated
in this paper. The proposed model includes the following classes: susceptible S(7), exposed E(?),
asymptomatic infected L.(7), symptomatic infected I,,(#), vaccinated V(¢), and recovered R(7). We began
our study by creating the existence, non-negativity, and boundedness of the solutions of the proposed
model. Moreover, we established the basic reproduction number R, that was used to examine the
existence and stability of the equilibrium points for the presented model. By creating appropriate
Lyapunov functions, we proved the global stability of the free-disease equilibrium point and endemic
equilibrium point. We concluded that the free-disease equilibrium point is globally asymptotically
stable (GAS) when Ry < 1, while the endemic equilibrium point is GAS if Ry > 1. Therefore, we
indicated the increasing vaccination rate « leads to reducing Ry. These findings confirm the important
role of vaccination rate « in fighting the spread of infectious diseases. Moreover, the numerical
simulations were introduced to validate theoretical results that are given in this work by applying
the predictor-corrector PECE method of Adams-Bashforth-Moulton. Further more, the impact of the
vaccination rate k was explored numerically and we found that, as « increases, the R, is decreased.
This means the vaccine can be useful in reducing the spread of infectious diseases.
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1. Introduction

Mathematical modeling plays an important role in understanding a lot of phenomena and situations
in the real world. It can be applied to describe the relationships among the components of a problem
by using mathematical tools. In addition, it is a useful technique that is applied to introduce predictions
for real problems. Moreover, it deals with a different field of sciences, for instance, see [1-7]. One
of the mathematical tools applied to analyze and discuss the problems is differential equations. There
is more than one operator of differential equation that helps study the problem and gives accurate
representations for the problems.

Mathematical modeling is commonly used in studying the outbreak of infectious diseases. Recently,
many articles were published to investigate the transmission of various diseases among the people such
as influenza [8, 9], Zika virus [10], Covid-19 [11, 12], and measles [13]. In the field of mathematical
modeling of infectious diseases, the researchers are interested in presenting the qualitative analysis of
their proposed model. They focus on finding the conditions that reduce the pandemic by illustrating the
stability theory. Therefore, they employ the ordinary differential equations (ODEs), partial differential
equations (PDEs), discrete differential equations, and fractional order differential equations (FDEs) in
their study. The earliest modeling of infectious disease considered the population of the outbreak has
only three groups: susceptible group S, infected group 7, and recovered group R [14]. After that, the
scientists extended a classic model S I R into S E I R to incorporate the exposed individual [15-17]. A
lot of modifications for the classical epidemic models were introduced by including other categories of
population components such as: vaccination class, treatment control, or new factors that affect on the
transmission of the infectious disease [18-20].

Vaccine is an appropriate way and it is important to reduce the spread of infectious diseases.
Therefore, the researchers considered the impact of vaccination in their models, and many of the
published articles describe the transmission of infectious diseases through the population by assuming
the individuals who are vaccinated as a component of the population [21-25].

One of the significant examples of infectious diseases is Coronavirus. Coronavirus disease (Covid-
19) was discovered in 2019 and then spread worldwide, leading to a continuing pandemic outbreak
worldwide [26,27]. Recently, many published articles studied the outbreak of Covid-19 by considering
more than one class of infected people, since a person can be infected by Covid-19 without displaying
any symptoms. Also, some of these articles show the role of a vaccine in fighting the diffusion of Covid-
19 [28-30]. Therefore, it is important to develop a mathematical model to represent the spread of
infectious diseases by including the different types of infected people and vaccinated people at the same
time. Accordingly, this work aims to propose mathematical modeling in which the population involves
two types of infected groups and vaccinated individuals, and it also considers the fractional differential
equations as an operator for this system. The fractional order of differential equations was used in many
biological systems because the memory feature, which is the ability to include all previous conditions
to explain the state condition, and the non-locality effect distinguishes the fractional derivative, which
means it is valuable for the pandemic models depend on the history [31-33]. Furthermore, the
fractional order of differential equations is more similar to real-life problems, and it expresses the whole
time domain for physical stages, not as in the ODEs systems that are related to the local properties of
a certain position [32]. Hence, fractional calculus investigates the arbitrary-order derivative, that is, it
is a generalization of ODEs [34].
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In [34], Sun et al. constructed an SEQIR epidemic model with saturated incidence and vaccination.
They investigated the stability analysis of equilibrium points by presenting different theorems.
Soulaimani and Kaddar [35] introduced a study of an optimal control of fractional order SEIR model
with general incidence and vaccination. The SVEIR epidemic model was considered and verified by
Nabti and Ghanbari [36], and they proved properties of their model such as existence, boundedness,
and global stability of equilibria. In [37], the authors proposed a new fractional infectious disease
model under the non-singular Mittage-Leffler derivative. They assumed the infectious group has been
divided into two classes: acute and chronically infectious people. In [38], Ali et al. investigated the
transmission dynamics of a fractional-order mathematical model of COVID-19 including susceptible,
exposed, asymptomatic infected, symptomatic infected, and recovered.

However, these previous models neglected the effect of vaccination on some infectious individual
cases. Hence, this work distributes a new modification of infection dynamics that contains two types
of infected individuals and people who are vaccinated. It is organized as follows: In Section 2, we
introduce the description of our model. Some definitions of fractional derivatives, existence, positivity,
and boundedness of the proposed model are shown in Section 3. In Section 4, we prove the global
stability of the equilibria. The numerical simulations are given in Section 5, to validate the analysis
results proved in previous sections.

2. Model formulation

This paper is interested in modifying the SEIR epidemic model. The proposed model consists of
the following components: the susceptible individuals are denoted by S(¢), the exposed individuals
are given by E(7), I.(r) and I,(¢) are defined as the asymptomatic infected and symptomatic infected
respectively, V(7) is described the individuals that are vaccinated, and R(#) are recovered population.

2.1. System description

Our proposed model is described as

D’S =A-pS1. - B,S1, - (x + p)S,

D’E =BSL +B.ST, + B VI, +&B, VI, - (y + p)E,
D’l. =0yE - (d, + p)l,

D", =(1-6)yE - (d +p)I,,
D'V=kS-eBVL.—eBVI, - (0+p)V,

D'R = oV +d1. + d51, - pR,

2.1)

with initial conditions
S(0) > 0, E(0) > 0, 1.(0) > 0, L,,(0) > 0, V(0) > 0, and R(0) > 0.

Here, the total population is N(r) = S(¢)+E(?) +1.(r) +1,(1)+ V() +R(#), where D" is fractional derivative
in the Caputo sense and # is a parameter that describes the order of the fractional time-derivative with
0 < ¢ < 1. Each of the proposed model’s parameters is assumed to be positive and constant, and they
are shown in Table 1. Figure 1 describes all elements of system (2.1).
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Table 1. Description of the parameters in the proposed model.

Parameters Description

A The rate of recruitment into the susceptible individuals.

Bi The infection rate of susceptible population without symptoms.
B2 The infection rate of susceptible population with symptoms.

K Vaccination rate.

Jo, Natural mortality rate.

£ Vaccine ineffectiveness, 0 < ¢ < 1.

0y The progression rate from E(¢) into I.(¢), since 0 < 6 < 1.
(1-6)y The progression rate from E(7) into L,(7).

o The rate of vaccinated individuals that were removed to the recovered group.
d The recovery rate of infected individuals without symptoms.

dy The recovery rate of infected individuals with symptoms.

N%
N\
%

D
>

d

P

o

R

) &\?// ?}» (93 ' |
4 V / ) | " |

Figure 1. The diagram of system (2.1).

3. Mathematical preliminaries and basic properties

In our work, we will apply the Caputo-derivative because it has important features such as nonlocal
and nonsingular exponential kernel [30]. Consequently, in this section, we introduce some of the
related definitions. Also, we will investigate the solution’s following characteristics: existence of the
solution, uniqueness, positivity, and boundedness.

Definition 3.1. [39] The Caputo derivative of order ¥ > 0 for any function y € C"([ty,),R) is
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given as
" X" .
r(n _ 19) o (l‘ _ Z)19—n+1 ’

where t > ¢y, I' is Gamma function, and n € Z*, such that ¢ € (n — 1, n).

D x(t) =

Lemma 3.1. [40] Consider the following fractional system

D (t) = (1, (1)), and x(to) = xo, o > O,

where ¢ € (0, 1], : [fy, 00) X & —> RS. If T satisfied the Lipschitz condition, then the system (2.1)
has a unique solution on [y, o).

3.1. Existence, positivity, and boundedness of solutions

Assume that = = {S,E,I,[,,V,R € R¢ : S > 0,E > 0,I. > 0,, > 0,V > O,R >
0, max(|S|, [El, [Ic|, L], [VI, IR]) < ¢}. Then, we will indicate that for each initial value in =, the solution
of system (2.1) is unique.

Theorem 3.2. The solution of system (2.1) is non-negative and ultimately uniformly bounded for all
t>0.

Proof. First, we will illustrate that the solution of system (2.1) is non-negative. From system (2.1), we
get

D’Sls.o = A >0,

DBl = BiSI+BSL +ef VL +eB VI, > 0,

DL = 6yE >0,

Dﬁ1n|1,]:0 = (1-6yE >0,

DﬂVlV:O = kS >0,

D'Rlgey = oV +dil . +dol, > 0.

Hence, we can see that S(r), E(?), I.(1),1,(r), V(£),R(z) > 0 for any r > 0. Now, we figure out the
solution of system (2.1) is uniformly bounded. Let N(7) = S(¢) + E(?) + L.(¥) + 1,(t) + V(¢) + R(?). Then,

DN(f) < A — pN(7). (3.1)

Applying the Laplace transform on Eq (3.1), we get

s N(s) — s" T N(0) < % - pN(s),
S N(s) + pN(s) < g + 571 N(O),
" +ps)N(Gs) < A+ N(0),
NG < A 57 N(0)

+ .
(SI9+] + p S) (519+] +p 5)
Then, by using the inverse Laplace transform, we find that

0 <N@) < At” By (=pt”) + N(O) Eg(—p1”),
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where E is the Mittag-Lefller function. Thus, according to Lemma 5 and Corollary 6 in [41], we have
A
0< N@® < —.
P

Therefore, we find limsup,_, N(7) < ,%, implies that S(1), E(?), I.(1), L,,(¢), V(¢), and R(¢) are bounded.
Thus,

E = {(S(t),E(t),Ic(t),I,,(t),V(t),R(t)) €RC:0<S+E+IL+1,+V+R < %},

is a positive invariant set with respect to system (2.1). O

Theorem 3.3. For any given initial conditions in Z, such that S(0), E(0), I.(0), I,,(0), V(0), R(0) > 0,
the model (2.1) has a unique solution on [0, o) and it remains non-negative and bounded for all ¢ > O.

Proof. Let W(x) = (¥1 (1), ¥2(0), Ws(0), Wa (), (1), Wo(x)) be a mapping, where

Yix) = A-pBiSI—BSL, - (k+p)S,

Yoly) = BiSIc+BST, +eBi VI +eB, VI, — (v +p)E,
Vi(x) = O0yE-(d +p),

Yix) = (1-0)yE-(d+p),

Ys(x) = «kS—-efVL-eBVI,—(@+p)V,

Ye(x) = oV +dl. +dl,—pR,

and y = (S,E, I, I, V,R). Suppose that ¢ and ¢ are two arbitrary solutions of system (2.1), such that

¢=(S,EL,I,,V,R),and ¢ = (S,E, I, I,, V,R). Then, we obtain

| = B1(SI. — SI.) — Bo(ST, = ST,) — (k + p) (S — S)| + |B:(SL. — SI,)

+B,(SI, — SI)) + 81 (V1. = VI) + &B>(VI, — VI,) — (y + p)(E — E)|
+0y(E-E) - (d +p) (e — )| +1(1 - )y (E—E) - (d> + p) (I, - I))|
+k(S = S) = B1(VL. — VL) — gB,(VI, = VL) = (0 + p)(V = V)|

+Ho(V =V) +di(I. - L) + d>(1, - I,) - p(R = R)],

281181 - S| +28,IST, - ST+ 2k +p)IS -S| +2&B, VI, - VI
+28B, VL - VI +Qy+p) [E—El+Qd +p)ll. - Tl + 2dy + p) [T, - I
+20+p)IV-VI+pR-R|

281181, +SI, —S1, - ST/ +2B,ISL, + ST, - SI, - ST[+ 2k +p)[S - 5|
2B VI + VI, - VI, - VI|+2eB,VL, + VI, - VI, - VL]
+Q2y+p)[E-El+Qd +p) |l - LI+ 2dr + p) I, - I
+20+p)[V-VI+pR-R|

281 Il IS = S| + 281 ISI L. — Ll + 28, IL,IIS = S| + 28, ISI L, = L,
+Q2k+p)IS=SI+2&B1 LIV —-V|+2&B V||l - L

¥(e) — ¥ (@l

IA

IA

IA
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+2&B: IVIIL, — LI + 2B LI IV = VI + 2y +p) [E - E|
+Qdi +p)[Ie = LI+ 2dr + p) I, = L] + (20 + p)[V = V| + pIR = R,

< ReBi+P)+2k+p)IS=SI+Q2peBi+p)+20+p) V-V
+Qo(1+e)p1+2di +p) |l — LI+ 2p (1 + &) B +2d> +p) I, - L
+2y+p)[E-E[+pR-R|,

< Allg -4l

where,

A = max{2@PB +P2) +2k+p), 2y +p), Lo (1 +&)B +2d; +p),
Qo1 +e)Br+2d, +p), 2 e(Br + B2) + 20 + p), p}.

As a result, W(y) satisfies Lipschitz condition, implying that the solution of system (2.1) exists and
unique. O

4. Analysis of the model

In this section, we calculate the basic reproduction number Ry. Then, we explore the global stability
analysis of the disease-free equilibrium point and endemic-equilibrium point by constructing the
appropriate Lyaounov functions.

4.1. The basic reproduction number

It is observed that our system (2.1) always admits a disease-free equilibrium point Uy =
(So,0,0,0, Vo, Rp), and to study the existence of the endemic equilibrium point U™ of the system (2.1),
we establish the reproduction number R, by employing the well-known method of the next generation
matrix [42], which is a number of newly infected individuals generated from an infected individual at
the beginning of the infectious process. Mathematically, it is a spectral radius of the next-generation
matrix 37! II, where J represents the positive matrix of new infection cases, which is a derivative of
the non-linear terms at Uy, and Il denotes the matrix of the transition of the infections, which is a
derivative of the linear terms at U,. For a system (2.1), we obtain

0 Bi(So+&Vy) B2(So+eVy) Y+p 0 0
J=10 0 0 , and Il = -0y di+p O
0 0 0 —(1-6)y 0 dr, +p
Thus, we get
Y(So+£Vo) (M + /32(1—9)) Bi1(So+&eVo)  B2(So+£Vo)
~1 (y+p) dy+p dy+p di+p dy+p
J 1= 0 0 0

0 0 0

Then, the basic reproduction number R; is the spectral radius of the matrix J~'TI, which is defined as

AIMS Mathematics Volume 9, Issue 3, 6878-6903.
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Ro =

(y+p) \di+p dr+p

_7’(50+8V0)(1319 +,32(1—9)):7’(So+8vo) B0 +7(So+8Vo)/32(1—9)
(y+p) di+p (y+p) da+p

RO,I RO,Z

Since, Ry represents the average number of secondary cases caused by contact with the infected
people without symptoms while Ry, determines the average number of secondary cases related to

infected people with symptoms.

4.2. Steady states

Lemma 4.1. The model (2.1) has a positive basic reproduction number R, such that:

(i) if Ry < 1, then there exists only one fixed point.

(i1) if Ry > 1, then there exist two equilibrium points.

Proof. To calculate the equilibria of system (2.1), we set (S, E, L, I, V,R) as an equilibrium point that

satisfies the following equations

0 = A-BiSLk-BS1, - (k+p)S,

= BiSI.+B.SI, +ep VI + BV, = (v + p)E,
= OyE-(di +p),

(1-60)yE - (dz» + p)I,

= kS—-epiVI.-eBVIL,-(0+p)V,

= oV +dl +d)], - pR.

S O O O O
Il

Thus, from Eq (4.3) and Eq (4.4), we get

6vE (1-6yE
= , and I, = ————.
d]-l-p d, +p

C

Substituting Eq (4.7) in Eq (4.1), we have

3 A
T (Bi8y | B(1-0)y )
(d1+.0+ dy+p )E+(K+p)

From substituting Eqs (4.7) and (4.8) in Eq (4.5), we obtain

T (BiLoy | B2(1-0) B8y | B(1-0) :
(d'1+3 + 7)E +(k+p) (d11+g + y)gE +t(+p)

Substituting Eqgs (4.7) and (4.9) in Eq (4.6), we find

- )

[ 5 }[ 1 )
B1o B2 (1-6) B8 B2 (1-6)
(G + P ) B+ e ) )\ (557 + 255 ) eE+ 0+ )

4.1)
(4.2)
(4.3)
(4.4)
(4.5)
(4.6)

4.7)

4.8)

4.9)
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0yE 1-6)vE
pa, 2B, A=0YEY (4.10)
d1+p d2+p

Now, from substituting Eqs (4.7)—(4.9) into Eq (4.2), we have

F E(K,E* + IGE + %) = 0, 4.11)
where,

F - 1

e + ) B - G+ ) (v vt E- e o0

B0 B(1-0)Y
7( =
! ‘9(’””(<d1+p>+ <d2+p>)
B0 B(l-6) Bi6  Br(l-6)

* (<d1+p>+ <d2+p>) (9“’)(8(“’””“”))_Ag((dl+p>+ & +p) )]
G = (1 -Ro).

Hence, from Eq (4.11) we see that,

(i) if E = 0, then from Eqs (4.7)- (4 10), we get the disease-free equilibrium point U, =

A K
(S0,0,0,0, Vo, Ro) = ( ,0,0,0, (Q+P)(K+P) p(pr)(Hp))

(i1) if E # 0, then we have 7(1E2 +JGE + 9G = 0. Since K — 4K, K5 > 0and K < 0 if and only if
Ro > 1, that means there exist a positive real root E* when R, > 1. By substituting E* into Eqs

(4.7)—(4.10), we have

. 0yE’ . (1-60yE
- = , and I, = —————
d1+p d, +p0
A
S = e maay B ’
(B + B ) E + (k +p)

. KA 1
Ve =
B B2 (1-6) * Bié B2 (1-6) *
[(dll'*'g + 2d2+p y)E +(K+p)]((d]|+; + 2dz+p y)gE + (Q+p)]

and
el
PI\ (B2 + 022 B + (k + p) | (B2 + B8202) B2 + (0 + p)
)
It is clear that the endemic equilibrium point U* = (S*, E*, IL, T, V*,R") exists if Ry > 1. O
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4.3. Stability of equilibria

Clearly, from system (2.1), the equation of recovered group R can be ignored without any loss of
generality since it does not appear in the rest of the equations. Furthermore, recovered equation R and
the other equations have no transmission rates between them. Thus, in studying the stability of the
equilibria, we will reduce the model (2.1) to the following system

D’S =A-pS1. - BS1, - (x + p)S,
D’E =BiSL + ST, + e VL + BV, — (¥ + p)E,
D’l. =0yE - (d; + p)L, (4.12)
DL, =(1-6)yE — (d> + p)l,,
D’V =kS-eBVIl.—eB VL, —(0+p) V.
Hence, we will clarify the global stability of the disease-free equilibrium point and endemic
equilibrium point by establishing the Lyapunov function.

Let the function 7 (u(t)) : R* — R™* be defined as 7 (u(t)) = u(t)—u‘ —u* ln(”lf—f.)), and note that 7 (u(1))
is non-negative for any u(¢) > 0. In addition, we set

® = {(S,E,1,I,, V) e R} :S>0,E>0,1.> 0,1, >0,V >0}

Lemma 4.2. [43] Assume x(f) € R* is a continuous and derivable function. Then, for any ¢ > £,
. ) t ¢ )
D’ ()((t)—)(‘ —x‘In (&)) < (1 —)L) D’ x(), x° € R*, V& € (0,1).
X¢ X

Theorem 4.3. The disease-free equilibrium point Uy is globally asymptotically stable (GAS) if Ry < 1.

Proof. We construct a Lyapunov function ® — R? as follows

ZO=wi (TOS)+T(V)+E)+w, 1. + w31,

where, w; = %, wy =B (p+dy), andws = B, (o + d;). It is observe that Z is positive definite.

The time derivative of Z along solutions of system (4.12) is given as

S

S \Y
D’Z < w (1—§°) D’S + w, D'E + w, (1—7‘)) D’V + w, D’1, + w3 D"1,,
S
< w (1——0)(A—,81$Ic—,8281,7—(K+p)S)+a)1 BiSI + ST, + B VI

V
+eB VI, = (y + p)E) + wy (1 — 70) kS—epiVI.—eBVIL, —(0+p)V)

+w(0YE - (di + p) o) + w3((1 = O) YE — (d> + p)T;)).
By using A = (k + p) Sp and k Sy = (0 + p) V, we obtain

So

D’Z < w (1—§

)(PSO—PS)'HUl,Bl Sole + wi B2So I, + w1 kSo —w (y + p)E

AIMS Mathematics Volume 9, Issue 3, 6878-6903.
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+wr 0 yE—wy(di +p) I + w3y (1 —=0)E — w3 (dy + p)I,, —wi (0 +p) V

v S
—w1 kS (70)4-0)1 Sﬁl Vol + w Sﬁz\]oln-l-a)] (Q +p)V0+a)1 (1 - EO) KSO,

S Sy V,S \Y
D'Z < w (1—§)@so—p3)+wlkso(2—30—&%])+w1(g+p)vo(1—\70)
d d
+(("+S V0 d) S 4 ev)p, - (p+d1)(p+dz),31)) I,
0+8V0
d d
+ ((p = li(fv: 2 (So+ Vo) o — (p+ di) (p + dz)ﬂz)) L
d d
[y arpio+ypranpa-o- ELEED 1) g
o+ &Yy
Then,
S S, V,S \%
D’Z < w (1—30)(,050—p5)+w1/<so (Z—EO—SOLV)-FQ)lKSQ(l—V—O)
+((p+dz),31 0y + (o +d)B (1 - 8yy - (“Sd”(’”d” <p+y>) E.
o+ &Yy
Therefore,
S S, VoS V
Dﬂ.Z < wi (1—§0)(p80—p5)+w1KSO(3—§O—SOLV—\TO)
+((So +&Vo)(p+dy)B1 0y N (So+&Vo) (o +d)B (1 -0y l) B
+d)(p+d)(p+7y) p+d)(p+d)(p+7y) '
Hence,
" p+d)p+d) o, kKSolo+d)(p+d) (, So VoS V
b’z = pS(S()+8V()) (S SO) * S()+8V0 (3 S S()V V())
+(Ry — 1) E.

Thus, since the geometric mean is less than or equal arithmetical mean, we obtain

So VoS 'V

3 < § + V_SO + VO.

only if S = Sp, E = 0, and V = V,. Hence, the subset H’ is the largest invariant set of H =
{(S,E, I,I,,V) € ®:D"Z = O}. By applying La Salle’s invariant principle [44], we observe that all
solutions converge to H’. In H’, the elements are equal to S = Sy, V = Vg, and E = 0. Also, from
the system (4.12), we obtain I, = 0 and I,, = O when E = 0. Thus, H’ = {(S,E,I.,1,,V) € H : S =
So, V=V, E=1.=1, =0} = {Up}. Therefore, U, is GAS when R, < I. O

Moreover, when Ry < 1, D’Z < O for all S,E,[,1,,V > 0. Note that D’Z = 0 if and

Theorem 4.4. The endemic equilibrium point U* is GAS when Ry > 1.
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Proof. We define a Lyapunov function as follows:

I*(S* V* '(S*+eV*
BiL(S +e )T(Ic)+'82”( )

0> _
D’Z =70O)+7T(E)+ 07 E 1-67F

Td,) +T (V).

Note that Z is positive definite. By calculating the time derivative of Z along the solutions of
system (4.12), we obtain

_ * Ex
D'Z < (1—%) DﬂS+(1—E) D’E +

ALE eV I por (1Y pry
(1-6)yE~ L, 7 \Y ’

BT (S* + eV ( I

1-=|D"1,
6yE* I

*

E
- E) (ﬁ1SIC +,82$ I” + SﬁIVIC
BiL(S"+&eVY) ( I

1-<|@yE-( I,
oy E IL_)()f (di +p)le)

D’Z < (1 —%) (A—ﬁlslc—ﬁZSIU—(K+p)S)+(1

+eB VI, - (y +p)E) +
B> I:; (S*+&eV®)

I*
(1 - —n) (A =0 yE-(d+p)y)

(1-6)yE* I,
+(1 - g) (kS —ep VI, —eB VI, —(0+p)V).

From the equilibria, we have the following relationships

A=pSLE+BS T +(k+p)S,
0yE" = (dy +p)T.,

(1-0)yE" = (2 +p)T

(0+p) V" = «kS* eIV =B I, V*
kS*=(@+p) V" +efi V' [ +eB V'L,

Y+ E =S L +BS T +ef VL +ef V.

After substituting the above relationships and then eliminating some terms, we obtain

*

S
1 -— S*I

*

S
),32 ST

D'"Z < ( S*)((K+p)s*—(K+p)S)+( -3

1-=
S

E* E* E*
+B1S L +6 S L= (y+p)E - (E) BiSI. —(E)ﬁzsln _(f) efi VI

£

-5 efrVI+(BS L +BS L +efi VI +efV)+ 0y E 0yE
IX(S*+ V™ I¥(S*+ V™ I
_ ﬁl c( & ) (d1+p)lc— ﬁl c( € ) c QyE
0yE* 0y E* I,
I*(S* + e V* IX(S* + e VY)
LBLE V) 4y o (B (1-6)yE
0y E* (1-6)yE*

AIMS Mathematics Volume 9, Issue 3, 6878-6903.



6890

_(ﬁz S8 +e ))(2+p)1 (I)(ﬁz( +e ))(1_9”]5
n

(1-0)yE* (1-0)yE"
B L(S" +& V") ) v \%
( 10T )(d2+p)l,] (1——)(p+@)V+(l—V)Ks

+eB V'L +£B, V'L,

9 (S*_S)2 S * T * T * *
D'"Z < _(K+p)T+ 1—§ (,81$IC+ﬁ28 In)+,81$IC+,BZS IT]
E* E* E* E*
—fﬁlslc—fﬂZSIn—Esﬂl\/Ic—ft‘?ﬁzVIn—(?’*‘P)E
E . .
+§(ﬁls*li+8ﬁlv*12 +,325*I;;+8,82V*I;)—,318*IC—,BZS*IU
26 S' L +2eB, V" Ic+2ﬂZS*I;+28,82V I;—Sﬂl V'L -eB, V'],

*

+eB V' I.+eB, V'] —(I—V—) (p+Q)V+(1—§)KS

Hence,
. S*—8)? S*
D’Z < —(K+p)%+(l—§)(ﬁls*li+ﬁzS*If,)—(7+p)E
——,BlsIC——,BZSI,,—ES,BIVIC—EsﬁZVIn+§(p+y)E
(I E*)ﬁl _(ICE*)S'BI "_(InE*)’BZ 7 (IE)E'BZ
A% \%A
20 ST L +2eB VL4288 [ +2e, V'L, — 1—— (p+0)V+ 1—7 KS.
Therefore,
. (S* - S)? S* SLE* EI
D’ < - - T3 = - ——=— - —< E
Z < —(k+p) S +B1 ST STSTE BL - (y+p)
S* SL,E EIL VI.E* EL
T3 - = - —— — E VI |2 -
ﬂbsn(3 S STE Eﬂ)+%y+m teh ( V'IE Eﬂ)
VILE* ET V* V*
T2 —2— - —"|-(1-— - — )
+eB, V n( VLE E*In) ( V)(,O+Q)V+( V)KS
Then,
= (S* - S)? S* SLE* EI’
D’ < - - ST (3 - — - —— - —% |- E

S* SLE* EIL
S S*LE E‘I

VI, E* EK)

+(y+pE+ VT (2 - -
) (y+p) EPi ( VLE EL
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VI,E* EI A YV +(1 AP
VLE B, v) Pre v |«

£

* £ * * Pk V L g LR £
+(1— V)(g,BlV IL+epV In)—(l— V)(8,31V [ +eBV I,,)-

We obtain,

* 2

_ S*—S S* SI.E* EI
D'Z < —(K+p)¥+ﬁls*1:( )

S SI'E E-l,
. s* SI,E* EI, . V' VLE EIL
+ﬁZSIn(3—§—m—E*I)+(7+p)E+sﬁ1VI (3————— )

v* VL E EI;; V* V*
—(1- A\ 1- S
v +o0)V+ v K

Thus

D’Z < —p¥+ﬁls*lzﬁ(3—%—%—%) (y +p)E
+,32$*I;';(3—%—%—;I;)+(7+p)E+sﬁlVI*(3—%—%—5%)
+8B2V*I;(3—§—%—;) (p+9)w+,<s*(1_§—§x:+%).

Therefore,

, S* —S)? S* SI.E* EI
D'Z < —p¥+ﬁls*lj (3 ‘)_(

S* SL,E* EIL V¢ VILE* EI’
ST (32 2= E VI [3- o - 2
2 '7( S S'TE E*1)+(7+p) teb ( V VIE E*Ic)
v+ VLE EL (V= V)
+eB VT (3 — - 21— _ 0
eh "( V VTE E*I) hro—y

S Sv* v*
T ver IM1-—=- —|-
+Hep1 VI +ef, ,7+(,0+Q)V)( 3 S*V+V)
Finally, we have

_ S* - S)? S* SILE* EI’ S* SILE* EI
D'Z < —p%+,815*1:(3—§—51—*E—E*I) B ST (3 L '7)

. S* Sv* VI.E* EI . S* SvV* VvV
+8’81VI(4_§_S*V_V*I*E E*Ic)+(p+Q)V (3 S )

s* Sv* VIL,E* EI
+eB V' |4 — —
&b "( S SV VIE E*I)
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Now, from the geometrical and arithmetical means relationship, we have

S* SI.E* EI
<= +

3< T+ :
S S'I'E  E°l,

* SI,E* EI
3ss—+ g —
S "STLE EI,

S* SV* VLE EL
< =+ + + ,
S TSV VILE EL
S* sSv* VLE* EI
4< =+ R S R—
S 'SV VILE EI,

4

As aresult, D’Z < 0if Ry > 1 for all S,E,I,L,,V > 0. Moreover, D’Z = 0 if and only if S =
S E=E"1.=1,1, = L and V = V*. Suppose that H’ is the largest subset of H = {(S,E, I.,L,,V):
D?’Z = 0}. Then, H = {U*}. Therefore, from La Salle’s invariant principle [44], the endemic
equilibrium point U* is GAS when Ry > 1. O

5. Numerical simulation and sensitivity analysis

5.1. Sensitivity analysis

A valuable insight into how changes in various parameters impact the overall dynamics of the
system can be provided by the sensitivity analysis of the model with respect to the basic reproduction
number Ry. Now, to study the sensitivity, we calculate the partial derivatives of R, with respect to each
parameter. Thus, we have

_ 7((Q+P+8K))( pi 6 +,82(1—9)) A 5
(y+p)e+p) \di+p dr+p | k+p :
Then, we see that

0Ry Aby(o+p+ek)
Y 0, 5.2
B~ @rpdEpEEpLy) (5.2)
Ry A(l-0)y(o+p+e€k)
Y 0, 5.3
B @rpatp&EpLy) (5-3)
ORo —AOB y(o+p+ekK)
EY 0 5.4
ad, (e+p)(di +p)* (k+p)(p+7) = (5.4
0Ro A1 -0)By(e+p+ek)
o 0, 5.5
0d ~ 0+p) b +pRk+pp+y) (5.5)
MRy _ —0bip+d)+(A-Opdi+p)Byle+(1-8)p) _ 56
Ak (0+p)(dy +p)(dr+p)(k+p)P(p+7) ’ '
IR _ Yo +p+eK)(B10(dr+p)+B(1-06)(d +p)) 50 5.7)
OA (+p)(di+p)(dr+p)(k+p)(0+7) ’ '
MRy _ yAkOBp+d)+ (1 =OBd+p) _ 58)
de (0+p)(d +p)(dr+p)(k+p)(p+7) ’ '
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MRy __(Aek@Bi(p+d)+(1=0Bdi+p) _ 59)
do (©+p)*(d+p)(dr+p)(k+p)(p+7) ’ '
MRy _ Aplpto+ex)Bib(dr+p)+B (- 6)(di+p)) S0 (5.10)
dy (0 +p) (dy +p)(dy +p) (K +p) (P +7)? ’ '

and

0R _ OB (p+dy)+(1=0)Br(dy +p)yA(l — (0 + p + K)é)
dp ((di +p) (dr +p) (kK +p) (y + p) (0 + p))°

, (5.11)

where & = (d, + p) (d2 + p) (k + p) (y + p) + (0 + p) (da + p) (K + p) (y + p) + (d1 +p) (0 +p) (K +p) (¥ +
p)+(d +p)(dy+p)(0+p)(y+p)+(d +p)(d, +p) (k+p) (0 +p). Therefore, an increase in the value
of B1, B2, A, €, and y would result in a rise in Ry while no change occurs if p varies. Conversely, the
rest parameters would indicate the opposite effect.

5.2. Numerical simulation

In this subsection, we will illustrate that our theoretical investigations are confirmed with numerical
results. Therefore, we set three groups of initial conditions:

IC1:S(0) = 25, E(0) = 3, I.(0) = 6, [,(0) = 5, V(0) = 5, R(0) = 10.
IC2:S(0) = 50, E(0) = 6, I.(0) = 12, 1,(0) = 1, V(0) = 5, R(0) = 5.
IC3:S(0) = 60, E(0) = 15, 1.(0) = 1, L,(0) = 1, V(0) = 10, R(0) = 8.

Now, we assume that values of the parameters are A = 10,« = 04,y = 08, p = 02,0 =
02,dy =d, = 02,0 = 0.5, € = 0.3 while 8, and 3,, varied. Additionally, we plot the solutions
of the system (2.1) at different values of ¢} (0.95, 0.85, 0.75, and 1) by using predictor-corrector PECE
method of Adams-Bashforth-Moulton [45]. Then, we will study the following cases:

I: The effect of 3, and 3, on the stability

By setting 5; = 0.02, 8, = 0.02 and using IC1, we obtain Ry = 0.6933 < 1, and the
result is given in Figure 2. The solution trajectories converge to Uy = (So, Eo, 1.0, 1,0, Vo,Ro) =
(16.67,0,0,0,16.67,16.67). This ensures that U, is GAS based on the result of Theorem 4.3. This
means the spread of the infectious disease is decreasing.

By setting 81 = 0.2,8, = 0.02 and using IC1, we obtain Ry = 3.8133 > 1, and the

result is given in Figure 3. The solution trajectories converge to U* = (S*,E*,Ij,I;‘],V*,R*) =
(4.96,8.04,6.43,6.43,2.40,21.71). Also, when 8, = 0.1, 8, = 0.1, we get Ry = 3.4667 > 1,
as shown in Figure 4, and it is clear that the solutions tend to U* = (S*,E*,I’;,I;,V*,R*) =

(5.41,7.79,6.23,6.23,2.79,21.51). This prove that, from Figures 3 and 4, the equilibrium point U™ is
GAS based on the result of Theorem 4.4. Biologically, this indicates there is an outbreak of infectious
disease.
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In Figure 5, we plot the solutions at different initial conditions and ¢ = 0.95, and we also assume
that 8; = 0.02, 8, = 0.02. Then we have Ry, = 0.6933 and B, = 0.2, 8, = 0.02, which implies
Ro = 3.8133. Thus, we observe that the results support the theoretical results of Theorems 4.3 and 4.4.
Finally, we notice that the proposed fractional system converts to the following ODE system at ¢ = 1

DS = A—BiSI, - BS T, — (k + p)S,

DE =B,S1. + ST, + i VI + BV, — (v + p)E,

DI. = 60vE - (d, + p)L,

DL, = (1-60)yE - (d, + p)L,,

DV =kS—-efiVI.-eB VI, -(0+p)V,
DR =0V +d 1. + d,I,, — pR.

(5.12)

Then, we solve the ODE system (5.12) by using the Runge-Kutta method (rk4). Figures 2—4 show that
the solution of system (2.1) is consistent with the solution of system (5.12) when # is equal to one. In
addition, from Figures 2—4, we conclude that the increasing of fractional order reduces the outbreak of

the infectious disease.
II: The effect of « on equilibrium point

In this part, we select different values of « to examine the effect of the vaccination rate x on the
transmission of the infectious disease. We fix the values A = 10, & = 03,y = 0.8, p = 020 =
02,dy =d, =0.2,0=0.5, and B; = B, = 0.1 with IC2. Table 2 illustrates that increasing « leads to
decreasing R, and the number of infected individuals. This result is shown in Figure 6.

Table 2. Effect of the parameter «.

K The equilibrium point Ro

0.01 (6.22,8.72,6.97,6.97,0.07,21.01) 7.6762
0.03 (6.18,8.67,6.93,6.93,0.22,21.04) 7.1130
0.08 (6.07,8.54,6.83,6.83,0.59,21.11) 6.0571
0.6 (5.04,7.38,5.90,5.90,4.01,21.73)  2.9000
09 (4.55,6.83,5.46,5.46,5.63,22.03) 2.4364
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Figure 6. Solution of system (2.1) with different values of «.

6. Conclusions

In this work, we presented a S E1.1,,VR epidemic model with two types of infected individuals and
a vaccination strategy. The model has six compartments: susceptible S(¢), exposed E(¢), asymptomatic
infected I.(#), symptomatic infected I, (¢), vaccinated V(z), and recovered R(#). We proved the existence,
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positivity, and boundedness of all solutions in this model. By applying the next-generation method, we
calculated the basic reproduction number R, that controls the existence and stability of the equilibria.
By applying the Lyapunov method together with LaSalle’s invariance principle, we derived that if the
basic reproduction number R is less than one, then the free-disease equilibrium point is GAS and if R,
is greater than one, then the endemic equilibrium point is GAS. In addition, the effect of the vaccination
rate « is illustrated numerically and we conclude that, as « increases, Ry is decreased. This means the
vaccine can be useful in reducing the spread of infectious diseases. Finally, some of the numerical
simulations were introduced to support our theoretical results by using MATLAB.
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