Many applications from computational mathematics can be identified for a system of non-linear equations in more generalized Banach spaces. Analytical methods do not exist for solving these type of equations, and so we solve these equations using iterative methods. We introduced a new numerical technique for finding the roots of non-linear equations in Banach space. The method is tenth-order and it is an extension of the fifth-order method which is developed by Arroyo et.al. [
Citation: Kasmita Devi, Prashanth Maroju. Local convergence study of tenth-order iterative method in Banach spaces with basin of attraction[J]. AIMS Mathematics, 2024, 9(3): 6648-6667. doi: 10.3934/math.2024324
Many applications from computational mathematics can be identified for a system of non-linear equations in more generalized Banach spaces. Analytical methods do not exist for solving these type of equations, and so we solve these equations using iterative methods. We introduced a new numerical technique for finding the roots of non-linear equations in Banach space. The method is tenth-order and it is an extension of the fifth-order method which is developed by Arroyo et.al. [
[1] | A. Cordero, J. A. Ezquerro, M. A. Hernández-Verón, J. R. Torregrosa, On the local convergence of a fifth-order iterative method in Banach spaces, Appl. Math. Comput., 251 (2015), 396–403. https://doi.org/10.1016/j.amc.2014.11.084 doi: 10.1016/j.amc.2014.11.084 |
[2] | Y. Tao, K. Madhu, Optimal fourth, eighth and sixteenth order methods by using divided difference techniques and their basins of attraction and its application, Mathematics, 7 (2019), 322. https://doi.org/10.3390/math7040322 doi: 10.3390/math7040322 |
[3] | I. K. Argyros, S. K. Khattri, S. George, Local convergence of an at least sixth-order method in Banach spaces, J. Fixed Point Theory Appl., 21 (2019), 23. https://doi.org/10.1007/s11784-019-0662-6 doi: 10.1007/s11784-019-0662-6 |
[4] | S. Amat, I. K. Argyros, S. Busquier, M. A. Hernández-Verón, E. Martínez, On the local convergence study for an efficient k-step iterative method, J. Comput. Appl. Math., 343 (2018), 753–761. https://doi.org/10.1016/j.cam.2018.02.028 doi: 10.1016/j.cam.2018.02.028 |
[5] | T. M. Pavkov, V. G. Kabadzhov, I. K. Ivanov, S. I. Ivanov, Local convergence analysis of a one parameter family of simultaneous methods with applications to real-world problems, Algorithms, 16 (2023), 103. https://doi.org/10.3390/a16020103 doi: 10.3390/a16020103 |
[6] | P. Maroju, Á. A. Magreñán, Í. Sarría, A. Kumar, Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces, J. Math. Chem., 58 (2020), 686–705. https://doi.org/10.1007/s10910-019-01097-y doi: 10.1007/s10910-019-01097-y |
[7] | A. Kumar, P. Maroju, R. Behl, D. K. Gupta, S. S. Motsa, A family of higher order iterations free from second derivative for nonlinear equations in R, J. Comput. Appl. Math., 330 (2018), 676–694. https://doi.org/10.1016/j.cam.2017.07.005 doi: 10.1016/j.cam.2017.07.005 |
[8] | F. Soleimani, F. Soleymani, S. Shateyi, Some iterative methods free from derivatives and their basins of attraction for nonlinear equations, Discrete Dyn. Nat. Soc., 2013 (2013), 301718. https://doi.org/10.1155/2013/301718 doi: 10.1155/2013/301718 |
[9] | S. Singh, D. K. Gupta, Iterative methods of higher order for nonlinear equations, Vietnam J. Math., 44 (2016), 387–398. https://link.springer.com/article/10.1007/s10013-015-0135-1 |
[10] | S. Sutherland, Finding roots of complex polynomials with Newton’s method, Boston University, 1989. |
[11] | H. Singh, J. R. Sharma, Simple yet highly efficient numerical techniques for systems of nonlinear equations, Comput. Appl. Math., 42 (2023), 22. https://doi.org/10.1007/s40314-022-02159-9 doi: 10.1007/s40314-022-02159-9 |
[12] | A. A. Magreñán-Ruiz, I. K. Argyros, Two-step Newton methods, J. Complexity, 30 (2014), 533–553. https://doi.org/10.1016/j.jco.2013.10.002 doi: 10.1016/j.jco.2013.10.002 |
[13] | G. A. Nadeem, W. Aslam, F. Ali, An optimal fourth-order second derivative free iterative method for nonlinear scientific equations, Kuwait J. Sci., 50 (2023), 1–15. https://doi.org/10.48129/kjs.18253 doi: 10.48129/kjs.18253 |
[14] | P. Maroju, R. Behl, S. S. Motsa, Some novel and optimal families of King's method with eighth and sixteenth-order of convergence, J. Comput. Appl. Math., 318 (2017), 136–148. https://doi.org/10.1016/j.cam.2016.11.018 doi: 10.1016/j.cam.2016.11.018 |
[15] | A. K. Maheshwari, A fourth order iterative method for solving nonlinear equations, Appl. Math. Comput., 211 (2009), 383–391. https://doi.org/10.1016/j.amc.2009.01.047 doi: 10.1016/j.amc.2009.01.047 |
[16] | V. Arroy, A. Cordero, J. R. Torregrosa, M. P. Vassileva, Artificial satellites preliminary orbit determination by the modified high-order Gauss method, Int. J. Comput. Math., 89 (2012), 347–356. https://doi.org/10.1080/00207160.2011.560266 doi: 10.1080/00207160.2011.560266 |
[17] | N. Y. Abdul-Hassan, A. H. Ali, C. Park, A new fifth-order iterative method free from second derivative for solving nonlinear equations, J. Appl. Math. Comput., 68 (2022), 2877–2886. https://doi.org/10.1007/s12190-021-01647-1 doi: 10.1007/s12190-021-01647-1 |
[18] | A. S. Alshomrani, R. Behl, P. Maroju, Local convergence of parameter based method with six and eighth order of convergence, J. Math. Chem., 58 (2020), 841–853. https://doi.org/10.1007/s10910-020-01113-6 doi: 10.1007/s10910-020-01113-6 |
[19] | O. S. Solaiman, I. Hashim, Two new efficient sixth order iterative methods for solving nonlinear equations, J. King Saud Univ. Sci., 31 (2019), 701–705, https://doi.org/10.1016/j.jksus.2018.03.021 doi: 10.1016/j.jksus.2018.03.021 |
[20] | R. Behl, P. Maroju, S. S. Motsa, A family of second derivative free fourth order continuation method for solving nonlinear equations, J. Comput. Appl. Math., 318 (2017), 38–46. https://doi.org/10.1016/j.cam.2016.12.008 doi: 10.1016/j.cam.2016.12.008 |
[21] | A. G. Wiersma, The complex dynamics of Newton's method, University of Groningen, 2016. |