Research article Topical Sections

Selection of artificial intelligence provider via multi-attribute decision-making technique under the model of complex intuitionistic fuzzy rough sets

  • Choosing an optimal artificial intelligence (AI) provider involves multiple factors, including scalability, cost, performance, and dependability. To ensure that decisions align with organizational objectives, multi-attribute decision-making (MADM) approaches aid in the systematic evaluation and comparison of AI vendors. Therefore, in this article, we propose a MADM technique based on the framework of the complex intuitionistic fuzzy rough model. This approach effectively manages the complex truth grade and complex false grade along with lower and upper approximation. Furthermore, we introduced aggregation operators based on Dombi t-norm and t-conorm, including complex intuitionistic fuzzy rough (CIFR) Dombi weighted averaging (CIFRDWA), CIFR Dombi ordered weighted averaging (CIFRDOWA), CIFR Dombi weighted geometric (CIFRDWG), and CIFR Dombi ordered weighted geometric (CIFRDOWG) operators, which were integrated into our MADM technique. We then demonstrated the application of this technique in a case study on AI provider selection. To highlight its advantages, we compared our proposed method with other approaches, showing its superiority in handling complex decision-making scenarios.

    Citation: Tahir Mahmood, Ahmad Idrees, Majed Albaity, Ubaid ur Rehman. Selection of artificial intelligence provider via multi-attribute decision-making technique under the model of complex intuitionistic fuzzy rough sets[J]. AIMS Mathematics, 2024, 9(11): 33087-33138. doi: 10.3934/math.20241581

    Related Papers:

    [1] Muhammad Ali Khan, Saleem Abdullah, Alaa O. Almagrabi . Analysis of deep learning technique using a complex spherical fuzzy rough decision support model. AIMS Mathematics, 2023, 8(10): 23372-23402. doi: 10.3934/math.20231188
    [2] Tehreem, Harish Garg, Kinza Ayaz, Walid Emam . Multi attribute decision-making algorithms using Hamacher Choquet-integral operators with complex intuitionistic fuzzy information. AIMS Mathematics, 2024, 9(12): 35860-35884. doi: 10.3934/math.20241700
    [3] Tahir Mahmood, Azam, Ubaid ur Rehman, Jabbar Ahmmad . Prioritization and selection of operating system by employing geometric aggregation operators based on Aczel-Alsina t-norm and t-conorm in the environment of bipolar complex fuzzy set. AIMS Mathematics, 2023, 8(10): 25220-25248. doi: 10.3934/math.20231286
    [4] Shichao Li, Zeeshan Ali, Peide Liu . Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems. AIMS Mathematics, 2025, 10(3): 6589-6635. doi: 10.3934/math.2025302
    [5] Muhammad Qiyas, Neelam Khan, Muhammad Naeem, Saleem Abdullah . Intuitionistic fuzzy credibility Dombi aggregation operators and their application of railway train selection in Pakistan. AIMS Mathematics, 2023, 8(3): 6520-6542. doi: 10.3934/math.2023329
    [6] Chunxiao Lu, Zeeshan Ali, Peide Liu . Selection of artificial neutral networks based on cubic intuitionistic fuzzy Aczel-Alsina aggregation operators. AIMS Mathematics, 2024, 9(10): 27797-27833. doi: 10.3934/math.20241350
    [7] Rana Muhammad Zulqarnain, Xiao Long Xin, Muhammad Saeed . Extension of TOPSIS method under intuitionistic fuzzy hypersoft environment based on correlation coefficient and aggregation operators to solve decision making problem. AIMS Mathematics, 2021, 6(3): 2732-2755. doi: 10.3934/math.2021167
    [8] Talha Midrar, Saifullah Khan, Saleem Abdullah, Thongchai Botmart . Entropy based extended TOPOSIS method for MCDM problem with fuzzy credibility numbers. AIMS Mathematics, 2022, 7(9): 17286-17312. doi: 10.3934/math.2022952
    [9] Wajid Azeem, Waqas Mahmood, Tahir Mahmood, Zeeshan Ali, Muhammad Naeem . Analysis of Einstein aggregation operators based on complex intuitionistic fuzzy sets and their applications in multi-attribute decision-making. AIMS Mathematics, 2023, 8(3): 6036-6063. doi: 10.3934/math.2023305
    [10] Jian Qi . Artificial intelligence-based intelligent computing using circular q-rung orthopair fuzzy information aggregation. AIMS Mathematics, 2025, 10(2): 3062-3094. doi: 10.3934/math.2025143
  • Choosing an optimal artificial intelligence (AI) provider involves multiple factors, including scalability, cost, performance, and dependability. To ensure that decisions align with organizational objectives, multi-attribute decision-making (MADM) approaches aid in the systematic evaluation and comparison of AI vendors. Therefore, in this article, we propose a MADM technique based on the framework of the complex intuitionistic fuzzy rough model. This approach effectively manages the complex truth grade and complex false grade along with lower and upper approximation. Furthermore, we introduced aggregation operators based on Dombi t-norm and t-conorm, including complex intuitionistic fuzzy rough (CIFR) Dombi weighted averaging (CIFRDWA), CIFR Dombi ordered weighted averaging (CIFRDOWA), CIFR Dombi weighted geometric (CIFRDWG), and CIFR Dombi ordered weighted geometric (CIFRDOWG) operators, which were integrated into our MADM technique. We then demonstrated the application of this technique in a case study on AI provider selection. To highlight its advantages, we compared our proposed method with other approaches, showing its superiority in handling complex decision-making scenarios.



    Fibonacci polynomials and Lucas polynomials are important in various fields such as number theory, probability theory, numerical analysis, and physics. In addition, many well-known polynomials, such as Pell polynomials, Pell Lucas polynomials, Tribonacci polynomials, etc., are generalizations of Fibonacci polynomials and Lucas polynomials. In this paper, we extend the linear recursive polynomials to nonlinearity, that is, we discuss some basic properties of the bi-periodic Fibonacci and Lucas polynomials.

    The bi-periodic Fibonacci {fn(t)} and Lucas {ln(t)} polynomials are defined recursively by

    f0(t)=0,f1(t)=1,fn(t)={ayfn1(t)+fn2(t)n0(mod2),byfn1(t)+fn2(t)n1(mod2),n2,

    and

    l0(t)=2,l1(t)=at,ln(t)={byln1(t)+ln2(t)n0(mod2),ayln1(t)+ln2(t)n1(mod2),n2,

    where a and b are nonzero real numbers. For t=1, the bi-periodic Fibonacci and Lucas polynomials are, respectively, well-known bi-periodic Fibonacci {fn} and Lucas {ln} sequences. We let

    ς(n)={0n0(mod2),1n1(mod2),n2.

    In [1], the scholars give the Binet formulas of the bi-periodic Fibonacci and Lucas polynomials as follows:

    fn(t)=aς(n+1)(ab)n2(σn(t)τn(t)σ(t)τ(t)), (1.1)

    and

    ln(t)=aς(n)(ab)n+12(σn(t)+τn(t)), (1.2)

    where n0, σ(t), and τ(t) are zeros of λ2abtλab. This is σ(t)=abt+a2b2t2+4ab2 and τ(t)=abta2b2t2+4ab2. We note the following algebraic properties of σ(t) and τ(t):

    σ(t)+τ(t)=abt,σ(t)τ(t)=a2b2t2+4ab,σ(t)τ(t)=ab.

    Many scholars studied the properties of bi-periodic Fibonacci and Lucas polynomials; see [2,3,4,5,6]. In addition, many scholars studied the power sums problem of second-order linear recurrences and its divisible properties; see [7,8,9,10].

    Taking a=b=1 and t=1, we obtain the Fibonacci {Fn} or Lucas {Ln} sequence. Melham [11] proposed the following conjectures:

    Conjecture 1. Let m1 be an integer, then the sum

    L1L3L5L2m+1nk=1F2m+12k

    can be represented as (F2n+11)2R2m1(F2n+1), including R2m1(t) as a polynomial with integer coefficients of degree 2m1.

    Conjecture 2. Let m1 be an integer, then the sum

    L1L3L5L2m+1nk=1L2m+12k

    can be represented as (L2n+11)Q2m(L2n+1), where Q2m(t) is a polynomial with integer coefficients of degree 2m.

    In [12], the authors completely solved the Conjecture 2 and discussed the Conjecture 1. Using the definition and properties of bi-periodic Fibonacci and Lucas polynomials, the power sums problem and their divisible properties are studied in this paper. The results are as follows:

    Theorem 1. We get the identities

    nk=1f2m+12k(t)=a2m+1b(a2b2t2+4ab)mmj=0(1)mj(2m+1mj)(f(2n+1)(2j+1)(t)f2j+1(t)l2j+1(t)), (1.3)
    nk=1f2m+12k+1(t)=(ab)m(a2b2t2+4ab)mmj=0(2m+1mj)(f(2n+2)(2j+1)(t)f2(2j+1)(t)l2j+1(t)), (1.4)
    nk=1l2m+12k(t)=mj=0(2m+1mj)(l(2n+1)(2j+1)(t)l2j+1(t)l2j+1(t)), (1.5)
    nk=1l2m+12k+1(t)=am+1bm+1mj=0(1)mj(2m+1mj)(l(2n+2)(2j+1)(t)l2(2j+1)(t)l2j+1(t)), (1.6)

    where n and m are positive integers.

    Theorem 2. We get the identities

    nk=1f2m2k(t)=a2m(a2b2t2+4ab)mmj=0(1)mj(2mmj)f2j(2n+1)(t)f2j(t)a2m(a2b2t2+4ab)m(2mm)(1)m(n+12), (1.7)
    nk=1f2m2k+1(t)=(ab)m(a2b2t2+4ab)mmj=0(2mmj)(f2j(2n+2)(t)f4j(t)f2j(t))(ab)m(a2b2t2+4ab)m(2mm)n, (1.8)
    nk=1l2m2k(t)=mj=0(2mmj)f2j(2n+1)(t)l2j+1(t)22m1(2mm)(n+12), (1.9)
    nk=1l2m2k+1(t)=ambmmj=0(1)mj(2mmj)(f2j(2n+2)(t)f4j(t)f2j(t))ambm(2mm)(1)mn, (1.10)

    where n and m are positive integers.

    As for application of Theorem 1, we get the following:

    Corollary 1. We get the congruences:

    bl1(t)l3(t)l2m+1(t)nk=1f2m+12k(t)0(modf2n+1(t)1), (1.11)

    and

    al1(t)l3(t)l2m+1(t)nk=1l2m+12k(t)0(modl2n+1(t)at), (1.12)

    where n and m are positive integers.

    Taking t=1 in Corollary 1, we have the following conclusions for bi-periodic Fibonacci {fn} and Lucas {ln} sequences.

    Corollary 2. We get the congruences:

    bl1l3l2m+1nk=1f2m+12k0(modf2n+11), (1.13)

    and

    al1l3l2m+1nk=1l2m+12k0(modl2n+1a), (1.14)

    where n and m are nonzero real numbers.

    Taking a=b=1 and t=1 in Corollary 1, we have the following conclusions for bi-periodic Fibonacci {Fn} and Lucas {Ln} sequences.

    Corollary 3. We get the congruences:

    L1L3L2m+1nk=1F2m+12k0(modF2n+11), (1.15)

    and

    L1L3L2m+1nk=1L2m+12k0(modL2n+11), (1.16)

    where n and m are nonzero real numbers.

    To begin, we will give several lemmas that are necessary in proving theorems.

    Lemma 1. We get the congruence

    f(2n+1)(2j+1)(t)f2j+1(t)0(modf2n+1(t)1),

    where n and m are nonzero real numbers.

    Proof. We prove it by complete induction for j0. This clearly holds when j=0. If j=1, we note that abf3(2n+1)(t)=(a2b2t2+4ab)f32n+1(t)3abf2n+1(t) and we obtain

    f3(2n+1)(t)f3(t)=(abt2+4)f32n+1(t)3f2n+1(t)(abt2+4)f31(t)+3f1(t)=(abt2+4)(f2n+1(t)f1(t))(f22n+1(t)+f2n+1(t)f1(t)+f21(t))3(f2n+1(t)f1(t))=(abt2+4)(f2n+1(t)1)(f22n+1(t)+f2n+1(t)f1(t)+f21(t))3(f2n+1(t)1)0(modf2n+1(t)1).

    This is obviously true when j=1. Assuming that Lemma 1 holds if j=1,2,,k, that is,

    f(2n+1)(2j+1)(t)f2j+1(t)0(modf2n+1(t)1).

    If j=k+12, we have

    l2(2n+1)(t)f(2n+1)(2j+1)(t)=f(2n+1)(2j+3)(t)+abf(2n+1)(2j1)(t),

    and

    abl2(2n+1)(t)=(a2b2t2+4ab)f22n+1(t)2ab(a2b2t2+4ab)f21(t)2ab(modf2n+1(t)1).

    We have

    f(2n+1)(2k+3)(t)f2k+3(t)=l2(2n+1)(t)f(2n+1)(2k+1)(t)abf(2n+1)(2k1)(t)l2(t)f2k+1(t)+abf2k1(t)((abt2+4)f21(t)2)f(2n+1)(2k+1)(t)abf(2n+1)(2k1)(t)((abt2+4)f21(t)2)f2k+1(t)+abf2k1(t)((abt2+4)f21(t)2)(f(2n+1)(2k+1)(t)f2k+1(t))ab(f(2n+1)(2k1)(t)f2k1(t))0(modf2n+1(t)1).

    This completely proves Lemma 1.

    Lemma 2. We get the congruence

    al(2n+1)(2j+1)(t)al2j+1(t)0(modl2n+1(t)at),

    where n and m are nonzero real numbers.

    Proof. We prove it by complete induction for j0. This clearly holds when j=0. If j=1, we note that al3(2n+1)(t)=bl32n+1(t)+3al2n+1(t) and we obtain

    al3(2n+1)(t)al3(t)=bl32n+1(t)+3al2n+1(t)bl31(t)3al1(t)=(l2n+1(t)l1(t))(bl22n+1(t)+bl2n+1(t)l1(t)+bl21(t))3a(l2n+1(t)l1(t))=(l2n+1(t)at)(bl22n+1(t)+bayl2n+1(t)+ba2t2)3a(l2n+1(t)at)0(modl2n+1(t)at).

    This is obviously true when j=1. Assuming that Lemma 2 holds if j=1,2,,k, that is,

    al(2n+1)(2j+1)(t)al2j+1(t)0(modl2n+1(t)at).

    If j=k+12, we have

    l2(2n+1)(t)l(2n+1)(2j+1)(t)=l(2n+1)(2j+3)(t)+l(2n+1)(2j1)(t),

    and

    al2(2n+1)(t)=bl22n+1(t)+2abl21(t)+2a(modl2n+1(t)at).

    We have

    al(2n+1)(2k+3)(t)al(2k+3)(t)=a(l2(2n+1)(t)l(2n+1)(2k+1)(t)l(2n+1)(2k1)(t))a(l2(t)l2k+1(t)l2k1(t))(bl21(t)+2a)l(2n+1)(2k+1)(t)al(2n+1)(2k1)(t)(bl21(t)+2a)l2k+1(t)+al2k1(t)(abt2+2)(al(2n+1)(2k+1)(t)al2k+1(t))(al(2n+1)(2k1)(t)al2k1(t))0(modl2n+1(t)at).

    This completely proves Lemma 2.

    Proof of Theorem 1. We only prove (1.3), and the proofs for other identities are similar.

    nk=1f2m+12k(t)=nk=1(aς(2k+1)(ab)2k2(σ2k(t)τ2k(t)σ(t)τ(t)))2m+1=a2m+1(σ(t)τ(t))2m+1nk=1(σ2k(t)τ2k(t))2m+1(ab)(2m+1)k=a2m+1(σ(t)τ(t))2m+1nk=12m+1j=0(1)j(2m+1j)σ2k(2m+1j)(t)τ2kj(t)(ab)(2m+1)k=a2m+1(σ(t)τ(t))2m+12m+1j=0(1)j(2m+1j)(1σ2n(2m+12j)(t)(ab)(2m+12j)n(ab)2m+12jσ2(2m+12j)(t)1)=a2m+1(σ(t)τ(t))2m+1mj=0(1)j(2m+1j)(1σ2n(2m+12j)(t)(ab)(2m+12j)n(ab)2m+12jσ2(2m+12j)(t)11σ2n(2j12m)(t)(ab)(2j12m)n(ab)2j12mσ2(2j12m)(t)1)=a2m+1(σ(t)τ(t))2m+1mj=0(1)j(2m+1j)(σ2(2m+12j)(t)(ab)2m+12jσ(2n+2)(2m+12j)(t)(ab)(n+1)(2m+12j)+1σ2n(2j12m)(t)(ab)(2j12m)n1σ2(2m+12j)(t)(ab)(2m+12j))=a2m+1(σ(t)τ(t))2m+1mj=0(1)j(2m+1j)×(σ2m+12j(t)τ2m+12j(t)σ(2n+1)(2m+12j)(t)(ab)(2m+12j)n+τ(2n+1)(2m+12j)(t)(ab)(2m+12j)nσ2m+12j(t)τ2m+12j(t))=a2m+1b(a2b2t2+4ab)mmj=0(1)mj(2m+1mj)(f(2n+1)(2j+1)(t)f2j+1(t)l2j+1(t)).

    Proof of Theorem 2. We only prove (1.7), and the proofs for other identities are similar.

    nk=1f2m2k(t)=nk=1(aς(2k+1)(ab)2k2(σ2k(t)τ2k(t)σ(t)τ(t)))2m=a2m(σ(t)τ(t))2mnk=1(σ2k(t)τ2k(t))2m(ab)2mk=a2m(σ(t)τ(t))2mnk=12mj=0(1)j(2mj)σ2k(2mj)(t)τ2kj(t)(ab)2mk=a2m(σ(t)τ(t))2m2mj=0(1)j(2mj)(1σ2n(2m2j)(t)(ab)(2m2j)n(ab)2m2jσ2(2m2j)(t)1)
    =a2m(σ(t)τ(t))2mmj=0(1)j(2mj)(1σ2n(2m2j)(t)(ab)(2m2j)n(ab)2m2jσ2(2m2j)(t)1+1σ2n(2j2m)(t)(ab)(2j2m)n(ab)2j2mσ2(2j2m)(t)1)+a2m(σ(t)τ(t))2m(1)m+1(2mm)n=a2m(σ(t)τ(t))2mmj=0(1)j(2mj)(σ2(2m2j)(t)(ab)2m2jσ(2n+2)(2m2j)(t)(ab)(n+1)(2m2j)1+σ2n(2j2m)(t)(ab)(2j2m)n1σ2(2m2j)(t)(ab)2m2j)+a2m(σ(t)τ(t))2m(1)m+1(2mm)n=a2m(σ(t)τ(t))2mmj=0(1)j(2mj)(σ2m2j(t)τ2m2j(t)σ(2n+1)(2m2j)(t)(ab)n(2m2j)+τ(2n+1)(2m2j)(t)(ab)n(2m2j)τ2m2j(t)σ2m2j(t))+a2m(σ(t)τ(t))2m(1)m+1(2mm)n=a2m(a2b2t2+4ab)mmj=0(1)mj(2mmj)(f2j(2n+1)(t)f2j(t)f2j(t))+a2m(a2b2t2+4ab)m(1)m+1(2mm)n.

    Proof of Corollary 1. First, from the definition of fn(t) and binomial expansion, we easily prove (f2n+1(t)1,a2b2t2+4ab)=1. Therefore, (f2n+1(t)1,(a2b2t2+4ab)m)=1. Now, we prove (1.11) by Lemma 1 and (1.3):

    bl1(t)l3(t)l2m+1(t)nk=1f2m+12k(t)=l1(t)l3(t)l2m+1(t)(a2m+1(σ(t)τ(t))2mmj=0(1)mj(2m+1mj)(f(2n+1)(2j+1)(t)f2j+1(t)l2j+1(t)))0(modf2n+1(t)1).

    Now, we use Lemma 2 and (1.5) to prove (1.12):

    al1(t)l3(t)l2m+1(t)nk=1l2m+12k(t)=l1(t)l3(t)l2m+1(t)(mj=0(2m+1mj)(al(2n+1)(2j+1)(t)al2j+1(t)l2j+1(t)))0(modl2n+1(t)at).

    In this paper, we discuss the power sums of bi-periodic Fibonacci and Lucas polynomials by Binet formulas. As corollaries of the theorems, we extend the divisible properties of the sum of power of linear Fibonacci and Lucas sequences to nonlinear Fibonacci and Lucas polynomials. An open problem is whether we extend the Melham conjecture to nonlinear Fibonacci and Lucas polynomials.

    The authors declare that they did not use Artificial Intelligence (AI) tools in the creation of this paper.

    The authors would like to thank the editor and referees for their helpful suggestions and comments, which greatly improved the presentation of this work. All authors contributed equally to the work, and they have read and approved this final manuscript. This work is supported by Natural Science Foundation of China (12126357).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [3] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107
    [4] B. C. Bizzo, R. R. Almeida, M. H. Michalski, T. K. Alkasab, Artificial intelligence and clinical decision support for radiologists and referring providers, J. Amer. Coll. Radio., 16 (2019), 1351–1356. https://doi.org/10.1016/j.jacr.2019.06.010 doi: 10.1016/j.jacr.2019.06.010
    [5] S. Yu, C. Guo, Service design under asymmetric service provider competition: applications of AI services, Transport. Res. E: Log., 182 (2024), 103424. https://doi.org/10.1016/j.tre.2024.103424 doi: 10.1016/j.tre.2024.103424
    [6] M. I. Khaleel, M. Safran, S. Alfarhood, M. Zhu, Workflow scheduling scheme for optimized reliability and end-to-end delay control in cloud computing using AI-based modeling, Mathematics, 11 (2023), 4334. https://doi.org/10.3390/math11204334 doi: 10.3390/math11204334
    [7] Y. Wu, Z. Zhang, G. Kou, H. Zhang, X. Chao, C. C. Li, et al., Distributed linguistic representations in decision making: Taxonomy, key elements and applications, and challenges in data science and explainable artificial intelligence, Inform. Fusion, 65 (2021), 165–178. https://doi.org/10.1016/j.inffus.2020.08.018 doi: 10.1016/j.inffus.2020.08.018
    [8] A. S. Dukyil, Artificial intelligence and multiple criteria decision-making approach for a cost-effective RFID-enabled tracking management system, phD thesis, Brunel University, London, 2018.
    [9] K.-H. Hu, F.-H. Chen, M.-F. Hsu, G.-H. Tzeng, Governance of artificial intelligence applications in a business audit via a fusion fuzzy multiple rule-based decision-making model, Financ. Innova., 9 (2023), 117. https://doi.org/10.1186/s40854-022-00436-4 doi: 10.1186/s40854-022-00436-4
    [10] P. Wang, Y. Fu, P. Liu, B. Zhu, F. Wang, D. Pamucar, Evaluation of ecological governance in the Yellow River basin based on Uninorm combination weight and MULTIMOORA-Borda method, Expert Syst. Appl., 235 (2024), 121227. https://doi.org/10.1016/j.eswa.2023.121227 doi: 10.1016/j.eswa.2023.121227
    [11] Z.-Y. Zhuang, A. Hocine, N. Kouaissah, G. A. Kiker, Optimising sustainable renewable energy portfolios using a multi-tolerance fuzzy goal programming approach, Int. J. Green Energy, 20 (2023), 640–655. https://doi.org/10.1080/15435075.2022.2080502 doi: 10.1080/15435075.2022.2080502
    [12] Z. Wen, H. Liao, E. K. Zavadskas, J. Antuchevičienė, Applications of fuzzy multiple criteria decision-making methods in civil engineering: a state-of-the-art survey, J. Civ. Eng. Manag., 27 (2021), 358–371. https://doi.org/10.3846/jcem.2021.15252 doi: 10.3846/jcem.2021.15252
    [13] Z. Zhang, H. Liao, A. Tang, Renewable energy portfolio optimization with public participation under uncertainty: a hybrid multi-attribute multi-objective decision-making method, Appl. Energ., 307 (2022), 118267. https://doi.org/10.1016/j.apenergy.2021.118267 doi: 10.1016/j.apenergy.2021.118267
    [14] A. Hocine, Z.-Y. Zhuang, N. Kouaissah, D.-C. Li, Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions, Eur. J. Oper. Res., 285 (2020), 642–654. https://doi.org/10.1016/j.ejor.2020.02.009 doi: 10.1016/j.ejor.2020.02.009
    [15] F. Shen, Q. Huang, H. Su, Z. Xu, An outranking approach for multi-attribute group decision-making with interval-valued hesitant fuzzy information, Eng. Appl. Artif. Intel., 137 (2024), 109120. https://doi.org/10.1016/j.engappai.2024.109120 doi: 10.1016/j.engappai.2024.109120
    [16] Z.-Y. Zhuang, C. R. Su, S. C. Chang, The effectiveness of IF-MADM (intuitionistic-fuzzy multi-attribute decision-making) for group decisions: methods and an empirical assessment for the selection of a senior centre, Technol. Econ. Dev. Eco., 25 (2019), 322–364. https://doi.org/10.3846/tede.2019.8399 doi: 10.3846/tede.2019.8399
    [17] M. Javed, S. Javeed, T. Senapati, Multi-attribute group decision-making with T-spherical fuzzy Dombi power Heronian mean-based aggregation operators, Granul. Comput., 9 (2024), 71. https://doi.org/10.1007/s41066-024-00487-1 doi: 10.1007/s41066-024-00487-1
    [18] P. S. Kumar, An efficient approach for solving type-2 intuitionistic fuzzy solid transportation problems with their equivalent crisp solid transportation problems, Int. J. Syst. Assur. Eng. Manag., 15 (2024), 4370–4403. https://doi.org/10.1007/s13198-024-02433-5 doi: 10.1007/s13198-024-02433-5
    [19] Z.-Y. Zhuang, L.-W. Yang, M.-H. Lee, C.-Y. Wang, 'MEAN+ R': implementing a web-based, multi-participant decision support system using the prevalent MEAN architecture with R based on a revised intuitionistic-fuzzy multiple attribute decision-making model, Microsyst. Technol., 24 (2018), 4291–4309. https://doi.org/10.1007/s00542-018-3755-z doi: 10.1007/s00542-018-3755-z
    [20] J. Ye, Multiple attribute group decision-making methods with unknown weights in intuitionistic fuzzy setting and interval-valued intuitionistic fuzzy setting, Int. J. Gen. Syst., 42 (2013), 489–502. https://doi.org/10.1080/03081079.2013.775127 doi: 10.1080/03081079.2013.775127
    [21] M. Beccali, M. Cellura, D. Ardente, Decision making in energy planning: the ELECTRE multicriteria analysis approach compared to a FUZZY-SETS methodology, Energ. Convers. Manage., 39 (1998), 1869–1881. https://doi.org/10.1016/S0196-8904(98)00053-3 doi: 10.1016/S0196-8904(98)00053-3
    [22] D. Bigaud, F. Thibault, L. Gobert, Decision-making through a fuzzy hybrid AI system for selection of a third-party operations and maintenance provider, International Journal of Multicriteria Decision Making, 6 (2016), 35–65. https://doi.org/10.1504/IJMCDM.2016.075630 doi: 10.1504/IJMCDM.2016.075630
    [23] S. Abdullah, Saifullah, A. O. Almagrabi, An integrated group decision-making framework for the evaluation of artificial intelligence cloud platforms based on fractional fuzzy sets, Mathematics, 11 (2023), 4428. https://doi.org/10.3390/math11214428 doi: 10.3390/math11214428
    [24] K.-H. Hu, F.-H. Chen, M.-F. Hsu, G.-H. Tzeng, Identifying key factors for adopting artificial intelligence-enabled auditing techniques by joint utilization of fuzzy-rough set theory and MRDM technique, Technol. Econ. Dev. Eco., 27 (2021), 459–492. https://doi.org/10.3846/tede.2020.13181 doi: 10.3846/tede.2020.13181
    [25] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [26] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [27] Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
    [28] M. I. Ali, F. Feng, T. Mahmood, I. Mahmood, H. Faizan, A graphical method for ranking Atanassov's intuitionistic fuzzy values using the uncertainty index and entropy, Int. J. Intell. Syst., 34 (2019), 2692–2712. https://doi.org/10.1002/int.22174 doi: 10.1002/int.22174
    [29] Y. He, H. Chen, Z. He, L. Zhou, Multi-attribute decision making based on neutral averaging operators for intuitionistic fuzzy information, Appl. Soft Comput., 27 (2015), 64–76. https://doi.org/10.1016/j.asoc.2014.10.039 doi: 10.1016/j.asoc.2014.10.039
    [30] Y. He, H. Chen, L, Zhou, J. Liu, Z. Tao, Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making, Inform. Sciences, 259 (2014), 142–159. https://doi.org/10.1016/j.ins.2013.08.018 doi: 10.1016/j.ins.2013.08.018
    [31] H. Zhao, Z. Xu, M. Ni, S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets, Int. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 doi: 10.1002/int.20386
    [32] W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations, Int. J. Intell. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498 doi: 10.1002/int.20498
    [33] M. R. Seikh, U. Mandal, Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making, Granul. Comput., 6 (2021), 473–488. https://doi.org/10.1007/s41066-019-00209-y doi: 10.1007/s41066-019-00209-y
    [34] J.-Y. Huang, Intuitionistic fuzzy Hamacher aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 27 (2014), 505–513. https://doi.org/10.3233/IFS-131019 doi: 10.3233/IFS-131019
    [35] W. Yang, Z. Chen, The quasi-arithmetic intuitionistic fuzzy OWA operators, Knowl.-Based Syst., 27 (2012), 219–233. https://doi.org/10.1016/j.knosys.2011.10.009 doi: 10.1016/j.knosys.2011.10.009
    [36] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
    [37] D. E. Tamir, L. Jin, A. Kandel, A new interpretation of complex membership grade, Int. J. Intell. Syst., 26 (2011), 285–312. https://doi.org/10.1002/int.20454 doi: 10.1002/int.20454
    [38] C. Li, T.-W. Chiang, Function approximation with complex neuro-fuzzy system using complex fuzzy sets–a new approach, New Gener. Comput., 29 (2011), 261–276. https://doi.org/10.1007/s00354-011-0302-1 doi: 10.1007/s00354-011-0302-1
    [39] L. Bi, S. Dai, B. Hu, Complex fuzzy geometric aggregation operators, Symmetry, 10 (2018), 251. https://doi.org/10.3390/sym10070251 doi: 10.3390/sym10070251
    [40] L. Bi, S. Dai, B. Hu, S. Li, Complex fuzzy arithmetic aggregation operators, J. Intell. Fuzzy Syst., 36 (2019), 2765–2771. https://doi.org/10.3233/JIFS-18568 doi: 10.3233/JIFS-18568
    [41] B. Hu, L. Bi, S. Dai, Complex fuzzy power aggregation operators, Math. Prob. Eng., 2019 (2019), 9064385. https://doi.org/10.1155/2019/9064385 doi: 10.1155/2019/9064385
    [42] C. Cornelis, M. De Cock, E. E. Kerre, Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge, Expert Syst., 20 (2003), 260–270. https://doi.org/10.1111/1468-0394.00250 doi: 10.1111/1468-0394.00250
    [43] L. Zhou, W.-Z. Wu, W.-X. Zhang, On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators, Inform. Sciences, 179 (2009), 883–898. https://doi.org/10.1016/j.ins.2008.11.015 doi: 10.1016/j.ins.2008.11.015
    [44] C. Jane, M. Pal, G. Wei, Multiple attribute decision making method based on intuitionistic Dombi operators and its application in mutual fund evaluation, Arch. Control Sci., 30 (2020), 437–470. https://doi.org/10.24425/acs.2020.134673 doi: 10.24425/acs.2020.134673
    [45] A. Alnoor, A. A. Zaidan, S. Qahtan, H. A. Alsattar, R. T. Mohammed, K. W. Khaw, et al., Toward a sustainable transportation industry: oil company benchmarking based on the extension of linear diophantine fuzzy rough sets and multicriteria decision-making methods, IEEE Trans. Fuzzy Syst., 31 (2023), 449–459. https://doi.org/10.1109/TFUZZ.2022.3182778 doi: 10.1109/TFUZZ.2022.3182778
    [46] A. Tan, W.-Z. Wu, Y. Qian, J. Liang, J. Chen, J. Li, Intuitionistic fuzzy rough set-based granular structures and attribute subset selection, IEEE Trans. Fuzzy Syst., 27 (2019), 527–539. https://doi.org/10.1109/TFUZZ.2018.2862870 doi: 10.1109/TFUZZ.2018.2862870
    [47] A. Hussain, T. Mahmood, F. Smarandache, S. Ashraf, TOPSIS approach for MCGDM based on intuitionistic fuzzy rough Dombi aggregation operations, Comp. Appl. Math., 42 (2023), 176. https://doi.org/10.1007/s40314-023-02266-1 doi: 10.1007/s40314-023-02266-1
    [48] Z. Zhang, Generalized intuitionistic fuzzy rough sets based on intuitionistic fuzzy coverings, Inform. Sciences, 198 (2012), 186–206. https://doi.org/10.1016/j.ins.2012.02.054 doi: 10.1016/j.ins.2012.02.054
    [49] T. Mahmood, J. Ahmmad, Z. Ali, M. S. Yang, Confidence level aggregation operators based on intuitionistic fuzzy rough sets with application in medical diagnosis, IEEE Access, 11 (2023), 8674–8688. https://doi.org/10.1109/ACCESS.2023.3236410 doi: 10.1109/ACCESS.2023.3236410
    [50] J. Yi, J. Ahmmad, T. Mahmood, U. ur Rehman S. Zeng, Complex fuzzy rough set: an application in digital marketing for business growth, IEEE Access, 12 (2024), 66453–66465. https://doi.org/10.1109/ACCESS.2024.3397699 doi: 10.1109/ACCESS.2024.3397699
    [51] W. Emam, J. Ahmmad, T. Mahmood, U. ur Rehman, S. Yin, Classification of artificial intelligence tools for civil engineering under the notion of complex fuzzy rough Frank aggregation operators, Sci. Rep., 14 (2024), 11892. https://doi.org/10.1038/s41598-024-60561-1 doi: 10.1038/s41598-024-60561-1
    [52] T. Mahmood, A. Idrees, K. Hayat, M. Ashiq, U. ur Rehman, Selection of AI architecture for autonomous vehicles using complex intuitionistic fuzzy rough decision making, World Electr. Veh. J., 15 (2024), 402. https://doi.org/10.3390/wevj15090402 doi: 10.3390/wevj15090402
    [53] R. Chinram, A. Hussain, T. Mahmood, M. I. Ali, EDAS method for multi-criteria group decision making based on intuitionistic fuzzy rough aggregation operators, IEEE Access, 9 (2021), 10199–10216. https://doi.org/10.1109/ACCESS.2021.3049605 doi: 10.1109/ACCESS.2021.3049605
    [54] J. Dombi, A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators, Fuzzy Set. Syst., 8 (1982), 149–163. https://doi.org/10.1016/0165-0114(82)90005-7 doi: 10.1016/0165-0114(82)90005-7
    [55] P.-J. Chen, P.-C. Chen, Z.-Y. Zhuang, AHP can be applied to construction topics, too, In: Analytic hierarchy process–an overview, IntechOpen, 2024. https://doi.org/10.5772/intechopen.1006376
    [56] Z.-Y. Zhuang, C.-H. Fu, Housing preference structures in East Asia: an empirical study and non-paradigmatic shifts between nearby metropoles, Int. J. Strateg. Prop. Manag., 27 (2023), 1–20. https://doi.org/10.3846/ijspm.2023.18628 doi: 10.3846/ijspm.2023.18628
    [57] L.-P. Chi, C.-H. Fu, J.-P. Chyng, Z.-Y. Zhuang, J.-H. Huang, A post-training study on the budgeting criteria set and priority for MALE UAS design, Sustainability, 11 (2019), 1798. https://doi.org/10.3390/su11061798 doi: 10.3390/su11061798
    [58] M. Yahya, M. Naeem, S. Abdullah, M. Qiyas, M. Aamir, A novel approach on the intuitionistic fuzzy rough frank aggregation operator-based EDAS method for multicriteria group decision-making, Complexity, 2021 (2021), 5534381. https://doi.org/10.1155/2021/5534381 doi: 10.1155/2021/5534381
    [59] T. Mahmood, U. ur Rehman, A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures, Int. J. Intell. Syst., 37 (2022), 535–567. https://doi.org/10.1002/int.22639 doi: 10.1002/int.22639
    [60] T. Mahmood, U. ur Rehman, M. Naeem, Prioritization of strategies of digital transformation of supply chain employing bipolar complex fuzzy linguistic aggregation operators, IEEE Access, 11 (2023), 3402–3415. https://doi.org/10.1109/ACCESS.2023.3234117 doi: 10.1109/ACCESS.2023.3234117
    [61] U. ur Rehman, Selection of database management system by using multi-attribute decision-making approach based on probability complex fuzzy aggregation operators, Journal of Innovative Research in Mathematical and Computational Sciences, 2 (2023), 1–16.
    [62] M. Akram, H. Garg, K. Zahid, Extensions of ELECTRE-I and TOPSIS methods for group decision-making under complex Pythagorean fuzzy environment, Iran. J. Fuzzy Syst., 17 (2020), 147–164. https://doi.org/10.22111/IJFS.2020.5522 doi: 10.22111/IJFS.2020.5522
    [63] P. Wang, B. Zhu, Y. Yu, Z. Ali, B. Almohsen, Complex intuitionistic fuzzy DOMBI prioritized aggregation operators and their application for resilient green supplier selection, Facta Univ. Ser. Mech. Eng., 21 (2023), 339–357. https://doi.org/10.22190/FUME230805029W doi: 10.22190/FUME230805029W
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(530) PDF downloads(40) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog