Research article Special Issues

Huizhou resident population, Guangdong resident population and elderly population forecast based on the NAR neural network Markov model

  • Received: 31 October 2023 Revised: 13 December 2023 Accepted: 18 December 2023 Published: 03 January 2024
  • MSC : 62M05, 62M10, 62P05, 62P20

  • We propose a nonlinear auto regressive neural network Markov model (NARMKM) to predict the annual Huizhou resident population, Guangdong resident population and elderly population in China, and improve the accuracy of population forecasting. The new model is built upon the traditional neural network model and utilized matrix perturbation theory to study the natural and response characteristics of a system when the structural parameters change slightly. The delay order and hidden layer number of neurons has a greater effect the prediction result of NAR neural network model. Therefore, we make full use of prior information to constrain and test when making predictions. We choose reasonable parameter settings to obtain more reliable prediction results. Three experiments are conducted to validate the high prediction accuracy of the NARMKM model, with mean absolute percentage error (MAPE), root mean square error (RMSE), STD and R2. These results demonstrate the superior fitting performance of the NARMKM model when compared to other six competitive models, including GM (1, 1), ARIMA, Multiple regression, FGM (1, 1), FANGBM and NAR. Our study provides a scientific basis and technical references for further research in the finance as well as population fields.

    Citation: Dewang Li, Meilan Qiu, Zhongliang Luo. Huizhou resident population, Guangdong resident population and elderly population forecast based on the NAR neural network Markov model[J]. AIMS Mathematics, 2024, 9(2): 3235-3252. doi: 10.3934/math.2024157

    Related Papers:

  • We propose a nonlinear auto regressive neural network Markov model (NARMKM) to predict the annual Huizhou resident population, Guangdong resident population and elderly population in China, and improve the accuracy of population forecasting. The new model is built upon the traditional neural network model and utilized matrix perturbation theory to study the natural and response characteristics of a system when the structural parameters change slightly. The delay order and hidden layer number of neurons has a greater effect the prediction result of NAR neural network model. Therefore, we make full use of prior information to constrain and test when making predictions. We choose reasonable parameter settings to obtain more reliable prediction results. Three experiments are conducted to validate the high prediction accuracy of the NARMKM model, with mean absolute percentage error (MAPE), root mean square error (RMSE), STD and R2. These results demonstrate the superior fitting performance of the NARMKM model when compared to other six competitive models, including GM (1, 1), ARIMA, Multiple regression, FGM (1, 1), FANGBM and NAR. Our study provides a scientific basis and technical references for further research in the finance as well as population fields.



    加载中


    [1] N. Jia, H. P. Hu, Y. P. Bai, Population prediction based on BP neural network, J. Shandong Uni. Techn. (Natural Science Edition), 25 (2011), 22–24. https://doi.org/10.3969/j.issn.1672-6197.2011.03.006 doi: 10.3969/j.issn.1672-6197.2011.03.006
    [2] Y. Li, U. S. Population forecast based on BP algorithm neural network, in Chinese, Sci. Technl. Eng., 34 (2011), 8665–8667.
    [3] R. F. Jiang, Y. M. Jiang. F. Y. Li, Study and application of population forecast model based on grey system and PSO-BP neural network, in Chinese, Northwest Popul., 32 (2011), 23–26. https://doi.org/10.15884/j.cnki.issn.1007-0672.2011.03.018 doi: 10.15884/j.cnki.issn.1007-0672.2011.03.018
    [4] Q. Ren, D. D. Hou, Stochastic model for population forecast: based on leslie matrix and arma model, Popul. Res., 35 (2011), 28–41.
    [5] X. H. Yu, H. Y. Xu, W. G. Lou, Construction and empirical study of projection pursuit autoregressive model of population prediction, in Chinese, Stat. Decis., 23 (2022), 38–42. https://doi.org/10.13546/j.cnki.tjyjc.2022.23.007 doi: 10.13546/j.cnki.tjyjc.2022.23.007
    [6] Y. X. Wang, H. Wang, J. Xiao, Forecast on population distribution of Shanghai pension system based on the gray GM(1, 1) model, Syste. Engin. Theo. Pract., 30 (2010), 2244–2253. https://doi.org/10.12011/1000-6788(2010)12-2244 doi: 10.12011/1000-6788(2010)12-2244
    [7] F. R. Li, Application of improved dynamic GM(1, 1) model to population forecasting, in Chinese, Stat. Decis., 19 (2013), 72–74. https://doi.org/10.13546/j.cki.tjyjc.2013.19.015 doi: 10.13546/j.cki.tjyjc.2013.19.015
    [8] K. P. Men, W. Zen, Research on population development forecast of China in the next 50 years, J. Quant. Techn. Econo., 3 (2004), 12–17. https://doi.org/10.13653/j.cnki.jqte.2004.03.003 doi: 10.13653/j.cnki.jqte.2004.03.003
    [9] X. J. Wang, H. M. Chen, X. Y. Zhao, Joint modeling and prediction of the mortality of male and female aged population in China, in Chinese, Stat. Res., 38 (2021), 151–160. https://doi.org/10.19343/j.cnki.11-1302/c.2021.10.012 doi: 10.19343/j.cnki.11-1302/c.2021.10.012
    [10] X. F. Guo, J. Y. Huang, H. Wang, Application of improved grey model in floating population prediction, in Chinese, Stat. Decis., 34 (2018), 76–79. https://doi.org/10.13546/j.cnki.tjyjc.2018.08.018 doi: 10.13546/j.cnki.tjyjc.2018.08.018
    [11] X. M. Zou, C. B. Xiu, Application of chaotic operator model in population prediction, in Chinese, Stat. Decis., 15 (2011), 169–171. https://doi.org/10.13546/j.cnki.tjyjc.2011.15.025 doi: 10.13546/j.cnki.tjyjc.2011.15.025
    [12] D. Li, Y. Y. Yu, B. Wang, Urban population prediction based on multi-objective lioness optimization algorithm and system dynamics model, Sci. Rep., 13 (2023), 11836–11861. https://doi.org/10.1038/S41598-023-39053-1 doi: 10.1038/S41598-023-39053-1
    [13] R. H. Hou, X. Y. Xu, Population prediction based on improved multi-dimensional grey model and support vector machine, in Chinese, Stat. Decis., 18 (2021), 41–51. https://doi.org/10.13546/j.cnki.tjyjc.2021.18.009 doi: 10.13546/j.cnki.tjyjc.2021.18.009
    [14] Y. H. Hao, X. M. Wang, The dynamic model of gray system and its application to population forcasting, Math. Pract. Theory, 32 (2002), 813–820. https://doi.org/10.3969/j.issn.1000-0984.2002.05.022 doi: 10.3969/j.issn.1000-0984.2002.05.022
    [15] Z. Y. Wang, X. L. Xu, Z. Hu, F. Ye, Y. F. Wang, Prediction of permanent resident population in Xi'an based on grey-weighted markov prediction model, Modern Inform. Technol., 6 (2022), 118–121. https://doi.org/10.19850/j.cnki.2096-4706.2022.18.029 doi: 10.19850/j.cnki.2096-4706.2022.18.029
    [16] Sunayana, S. Kuma, R. Kumar, Forecasting of municipal solid waste generation using non-linear autoregressive (NAR) neural models, Waste Manag., 121 (2021), 206–214. https://doi.org/10.1016/j.wasman.2020.12.011 doi: 10.1016/j.wasman.2020.12.011
    [17] M. Adil, R. Ullah, S. Noor, N. Gohar, Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design, Neural Comput. Appl., 34 (2020), 8355–8363. https://doi.org/10.1007/s00521-020-05305-8 doi: 10.1007/s00521-020-05305-8
    [18] S. Wei, D. Zuo, J. Song, Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network, J. Hydro Inform., 14 (2012), 974–991. https://doi.org/10.2166/hydro.2012.143 doi: 10.2166/hydro.2012.143
    [19] Y. T. Bai, X. B. Jin, X. Y. Wang, J. Kong, Y. Lu, Compound autoregressive network for prediction of multivariate time series, Complexity, 2019 (2019), 9107167. https://doi.org/10.1155/2019/9107167 doi: 10.1155/2019/9107167
    [20] J. T. Song, Y. C. Chen, J. Yan, A novel outlier detection method of long-term dam monitoring data based on SSA-NAR, Wirel. Commun. Mobile Comput., 2022 (2022), 6569367. https://doi.org/10.1155/2022/6569367 doi: 10.1155/2022/6569367
    [21] F. Ma, Y. Jin, C. Sun, Short-term prediction model of subway passenger flow based on EMD optimized NAR dynamic neural network, J. Appl. Sci., 38 (2020), 936–943. https://doi.org/10.3969/j.issn.0255-8297.2020.06.010 doi: 10.3969/j.issn.0255-8297.2020.06.010
    [22] M. Lydia, S. SureshKumar, A. I. Selvakumar, G. E. P. Kumar, Linear and non-linear autoregressive models for short-term wind speed forecasting, Energy Conver. Manage., 112 (2016), 115–124. https://doi.org/10.1016/j.enconman.2016.01.007 doi: 10.1016/j.enconman.2016.01.007
    [23] M. S. Tanvir, I. M. Mujtaba, Neural network based correlations for estimating temperature elevation for seawater in MSF desalination process, Desalination, 195 (2006), 251–272. https://doi.org/10.1016/j.desal.2005.11.013 doi: 10.1016/j.desal.2005.11.013
    [24] R. Sarkar, S. Julai, S. Hossain, W. T. Chong, M. Rahman, A comparative study of activation functions of NAR and NARX neural network for long-term wind speed forecasting in Malaysia, Math. Probl. Engin., 2019 (2019), 6403081. https://doi.org/10.1155/2019/6403081 doi: 10.1155/2019/6403081
    [25] G. Benrhmach, K. Namir, A. Namir, J. Bouyaghroumni, Nonlinear autoregressive neural network and extended Kalman filters for prediction of financial time series, J. Appl. Math., 2020 (2020), 5057801. https://doi.org/10.1155/2020/5057801 doi: 10.1155/2020/5057801
    [26] W. C. Fan, Y. Jiang, S. Y. Huang, W. G. Liu, Research and prediction of opioid crisis based on BP neural network and Markov chain, AIMS Math., 4 (2019), 1357–1368. https://doi.org/10.3934/math.2019.5.1357 doi: 10.3934/math.2019.5.1357
    [27] A. Souissi, E. G. Soueidy, M. Rhaima, Clustering property for quantum Markov chains on the comb graph, AIMS Math., 8 (2023), 7865–7880. https://doi.org/10.3934/math.2023396 doi: 10.3934/math.2023396
    [28] Y. H. Lin, H. Y. Liu, Inverse problems for fractional equations with a minimal number of measurements, Commun. Anal. Comput., 1 (2023), 72–93. https://doi.org/10.3934/cac.2023005 doi: 10.3934/cac.2023005
    [29] D. W. Li, M. L. Qiu, S. P. Yang, C. Wang, Z. L. Luo, An optimal fractional-order accumulative Grey Markov model with variable parameters and its application in total energy consumption, AIMS Math., 8 (2023), 26425–26443. https://doi.org/ 10.3934/math.20231349
    [30] D. W. Li, D. M. Xu, M. L. Qiu, S. P. Yang, Forecasting the public financial budget expenditure in Dongguan with an optimal weighted combination Markov model, AIMS Math., 8 (2023), 15600–15617. https://doi.org/ 10.3934/math.2023796
    [31] M. L. Qiu, D. W. Li, Z. L. Luo, X. J. Yu, Huizhou GDP forecast based on fractional opposite-direction accumulating nonlinear grey bernoulli markov model, ERA., 31 (2023), 947–960. https://doi.org/10.3934/era.2023047 doi: 10.3934/era.2023047
    [32] M. C. Şahingil, R. Yurttaş, The determination of flare launching programs to use against pulse width modulating guided missile seekers via hidden Markov models, In: 2012 20th Signal Processing and Communications Applications Conference (SIU), 2012. https://doi.org/10.1109/SIU.2012.6204715
    [33] A. Krogh, B. Larsson, G. H. Von, E. L. L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes, J. Mol. Biol., 305 (2001), 567–580. https://doi.org/10.1006/jmbi.2000.4315 doi: 10.1006/jmbi.2000.4315
    [34] M. Thyer, G. Kuczera, Modeling long-term persistence in hydroclimatic time series using a hidden state Markov model, Water Resour. Res., 36 (2000), 3301–3310. https://doi.org/10.1029/2000WR900157 doi: 10.1029/2000WR900157
    [35] M. Gao, H. Yang, Q. Xiao, M. Goh, A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: evidence from American industrial sector, Renew. Energy, 181 (2022), 803–819. https://doi.org/10.1016/j.renene.2021.09.072 doi: 10.1016/j.renene.2021.09.072
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(958) PDF downloads(97) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog