Research article Special Issues

Estimates related to Caputo derivatives using generalized modified $ h $-convex functions

  • Received: 05 June 2024 Revised: 15 August 2024 Accepted: 20 August 2024 Published: 12 October 2024
  • MSC : 26A51, 26A33

  • In the present work, we have established some new fractional integral inequalities for functions whose $ k $th-derivatives are generalized modified $ h $-convex and symmetric about the midpoint involving the Caputo fractional derivatives. Many particular cases are obtained by using the findings.

    Citation: Halim Benali, Mohammed Said Souid, Hatıra Günerhan, Unai Fernandez-Gamiz. Estimates related to Caputo derivatives using generalized modified $ h $-convex functions[J]. AIMS Mathematics, 2024, 9(10): 28813-28827. doi: 10.3934/math.20241398

    Related Papers:

  • In the present work, we have established some new fractional integral inequalities for functions whose $ k $th-derivatives are generalized modified $ h $-convex and symmetric about the midpoint involving the Caputo fractional derivatives. Many particular cases are obtained by using the findings.



    加载中


    [1] G. A. Anastassiou, Fractional differentiation inequalities, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-98128-4
    [2] H. Benali, Some generalized fractional integrals inequalities for a class of functions, J. Interdiscip. Math., 24 (2021), 853–866. https://doi.org/10.1080/09720502.2020.1815343 doi: 10.1080/09720502.2020.1815343
    [3] Z. Bouazza, M. S. Souid, H. Günerhan, Multiterm boundary value problem of Caputo fractional differential equations of variable order, Adv. Differ. Equ., 2021 (2021), 400. https://doi.org/10.1186/s13662-021-03553-z doi: 10.1186/s13662-021-03553-z
    [4] M. Caputo, Linear model of dissipation whose $Q$ is almost frequency independent–Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [5] P. Cerone, S. S. Dragomir, Advances in inequalities for special functions, Nova Science Publishers, 2008.
    [6] M. M. Dzherbashyan, A. B. Nersesyan, Fractional derivatives and the Cauchy problem for differential equations of fractional order, Izv. Akad. Nauk Armenian SSR Matem., 3 (1968), 3–28.
    [7] Y. Dong, M. Zeb, G. Farid, S. Bibi, Hadamard inequalities for strongly $(\alpha, m)$-convex functions via Caputo fractional derivatives, J. Math., 2021 (2021), 6691151. https://doi.org/10.1155/2021/6691151 doi: 10.1155/2021/6691151
    [8] G. Farid, On Caputo fractional derivatives via convexity, Kragujev. J. Math., 44 (2020), 393–399. https://doi.org/10.46793/KgJMat2003.393F doi: 10.46793/KgJMat2003.393F
    [9] H. Günerhan, H. Dutta, M. A. Dokuyucu, W. Adel, Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators, Chaos Soliton. Fract., 139 (2020), 110053. https://doi.org/10.1016/j.chaos.2020.110053 doi: 10.1016/j.chaos.2020.110053
    [10] A. A. Kilbas, H. M. Sriivastara, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
    [11] S. M. Kang, G. Farid, W. Nazeer, S. Naqvi, A version of the Hadamard inequality for Caputo fractional derivatives and related results, J. Comput. Anal. Appl., 27 (2019), 962–972.
    [12] M. Lazarevic, Advanced topics on applications of fractional calculus on control problems, system stability and modeling, WSEAS Press, 2014.
    [13] F. Mainardi, Fractional calculus and waves in linear viscoelaticity: an introduction to mathematical models, London: Imperial College Press, 2010. https://doi.org/10.1142/p614
    [14] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [15] K. B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, Vol. 111, Academic Press, 1974.
    [16] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Academic Press, 1999.
    [17] A. Refice, M. S. Souid, J. L. G. Guirao, H. Günerhan, Terminal value problem for Riemann-Liouville fractional differential equation in the variable exponent Lebesgue space $L^{p(.)}$, Math. Meth. Appl. Sci., 2023. https://doi.org/10.1002/mma.8964
    [18] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993.
    [19] H. Srivastava, H. Günerhan, Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease, Math. Meth. Appl. Sci., 42 (2019), 935–941. https://doi.org/10.1002/mma.5396 doi: 10.1002/mma.5396
    [20] T. Zhao, M. S. Saleem, W. Nazeer, I. Bashir, I. Hussain, On generalized strongly modified $h$-convex functions, J. Inequal. Appl., 2020 (2020), 11. https://doi.org/10.1186/s13660-020-2281-6 doi: 10.1186/s13660-020-2281-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(225) PDF downloads(33) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog