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1. Introduction

The fractional derivatives with constant or variable order [3,9] are excellent mathematical tools for
the description of memory and the hereditary properties of various processes and materials [12, 19].
In fractional calculus,these derivatives are defined through fractional integrals. There are several
approaches to fractional derivatives including Riemann-Liouville [10, 14, 15], Caputo, Hadamard
derivatives, [4,6,13,17].

Efforts have been dedicated to generalizations concerning mappings of bounded variation, absolute
continuity, various classes of convex functions, and their extension to fractional calculus, involving
Riemann-Liouville integrals and their generalizattions as referenced in [1,2,12,15].

In [8], the author proved some integral inequalities for functions whose kth (k € IN) derivatives are
convex involving Caputo derivatives and obtain the following results for a,A € I,a < A, o, € R,
a,f>1,andy : I - R:
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o If ¥ (k € N) exists and is positive and convex, then

T(k — a + DD 'Y(€) + (1) Tk - B+ DDA (&)

(k) (k) (k) (k)
< (éj_a)k—a/+l¢ (a);‘lﬁ (f) +(A_§)k—ﬂ+lw (A);lﬁ (é:) (11)
e If 4 exists and is positive, convex and symmetric about %2, then

11 1 ofa+A

2(k—a+1+k—,8+1)¢, ( 2 )

3 Tk - B+ DD y(a) Dk —a + 1D y(A)

2(A — q)kPB+! +(= 2(A — q)k-a+!
(k) (k)
< Y (A);‘l/’ (a) (1.2)

In [11], the authors gave a version of Hadamard’s inequality using the Caputo derivative. In [7],
the authors proved Hadamard inequalities for strongly @, m-convex functions via Caputo fractional
derivatives. In this paper, we consider the Caputo derivatives of a real valued function ¢ whose
derivatives ® (k € N) are genaralized modified h-convex. Some Caputo fractional versions of
Hermite-Hadamard inequalities are obtained. From which particular cases are revealed, we have also
established a new integral inequality between Caputo derivatives D% and the Riemann-Liouville
integrals R*%(y¥)%. By deriving new differential inequalities in this context, we aim to extend
the applicability of fractional calculus to problems involving generalized convex functions. These
results have significance in various fields, including mathematics, physics, and engineering, where
fractional calculus plays a crucial role in modeling complex phenomena with memory and long-range
dependence.sts Our results generalize those cited in [8] and unify several classes of functions,like
convex and s-convex functions.

2. Preliminaries

This section deals with some definitions of convexity [2, 5, 8], generalized h-convexity [20],
fractional integrals and derivatives [6, 18].
Let I ¢ R be aninterval and & : [0, 1] — (0, ), ¢ : I — (0, o) be two real valued functions, then

e Y is said to be h-convex, if

Y(pc + (1 = p)d) < h(p)p(c) + h(1 = p)p(d) 2.1)

holds for all ¢,d € I and p € (0, 1]. If (2.1) is reversed, then ¢ is said to be h-concave.
e The function ¥ is said to be modified h-convex if

Y(pc + (1 = p)d) < h(p)y(c) + (1 = h(p))y(d). (2.2)

e The function ¥ is said to be generalized modified s-convex if
Y(pc + (1 = p)d) < Y(d) + h(p)0W(c), y(d)). (2.3)
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Definition 2.1 (Additivity). [20] A continuous bifunction 6 is said to be additive, if
0(ai, by) + 0(az, by) = O(ay + ay, by + by), Vay,ay,by,by €R.

Definition 2.2 (Nonnegative homogeneity). [20] A continuous bifunction 0 is said to be nonnegatively
homogeneous if, for all 1 > 0,

9(/1611, /1612) = /19(611, Clg), Yai,a, € R.

Remark 2.1. For different functions h, 8 one can obtain various classes of generalized modified convex
functions:

e By taking in (2.1) h(z) = 7°(0 < s < 1), we have the definition of modified generalized s-convex
functions.
e [f, we take O(r, z) = r — z, then we obtain the definition of a modified h-convex function.

Let[a, A] (—o0 < a < A < +00) be a finite interval on the real axis R. For any function ¢ € L,([a, A)),
the Riemann-Liouville fractional integrals Ry and R} of order @ € R (a > 0) of ¢ are defined by

1 S
Ry W(s) = m f (s=0""ydt, s>a (left) 2.4)

and

1 A
R () = s f (=) "w(n)dt, s<A (right), 2.5)

respectively. Here I'(@) = fooo 1*"Ve™' dt, @ > 0 is the gamma function. We set R0,y = R} ¢ = ¢

Let [a, A] be a finite interval of the real line R. Let @ > 0,k € N, k = [a] + 1 and ¢ € AC*([a, A])
(AC*([a, A]) means the space of complex-valued functions y(x) which have continuous derivatives up
to order k—1 on [a, b] such that y*~D(x) € AC([a, A]) : i.e., absolutely continuous) see Lemma 2.4 [18].
The left and right Caputo fractional derivatives of order a (@ > 0) of ¥ are given by the following
formulas (see [1,4, 10, 13])

1 ¢
Dy y(€) = Th— o) f yP@E - ld, E>a
and " N
D} y(é) = FE,:_)Q) L O -, <A,
respectively.

If @« = k € N, then

DLy =yPE and DSy = (-D'yP ).

In particular, if k = 1, @ = 0, then

DY (&) =C D} (&) = u(&).
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Lemma 2.1. [16] The following formulas for Caputo fractional derivatives of order « > 0,k — 1 <
a < k(k € N) of a power function at t = a and t = b hold

C na _ F(p + 1) _ —
D; (t—a) = —F(p — 1)(t a)’™, t>a (2.6)
and I'(p+1)
Cna _ _ 4 _ —a
Dy (b-1)f = fp—a+ 1)(b nre, t<b. 2.7)

Our objective in this work, is to prove some fractional integral inequalities for functions whose
kth (k € N) derivatives are generalized modified h-convex functions involving the Caputo derivative
operator.

3. Results

Theorem 3.1. Let I be an interval of R, a,A € I,a < Aand a, > 0, such thatk—1 < a,3 < k,k € N.
Let  : I — R be differentiable function. If. y®(k € N) exists and is a positive generalized modified
h-convex function and 0 is a continuous bifunction, then the following integral inequality

Tk —a+1) (“Dg'w) @) + (1T - g+ 1) (“D5'w) €)
1
< (A= [w“‘)@ +0WP(A), P ) f h(z)dz]
0
1
+(€—a) ! [w“‘)(f) + 0P (a), yP &) f h(z)dz] 3.1)
0

holds.
Proof. For all ¢ € [a,A] and for all ¢ € [a, £], we have

E-nr<E-a', (3.2)
and
t= g_ta+ t_af.
¢(—a éE—a

Since y® is generalized modified h-convex, (2.3) implies that

y O <y +h (g )ew“” (@), y*“(©)). (3.3)

Multiplying inequalities (3.2) and (3.3) on both side and integrating, we obtain

f & -0 yP@ydt

f €—a) w<">(§)+h(§ )ew")( )s w“‘)(f))] (3.4)
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That is

1
Tk —a+ 1) (“D'w) ©) < ¢ - ) x [y + 0 WP (@), yP &) f h(z)dz] :
0

Let € € [a,A],t € [€, A], thus
—&F < (A=

We have ¢ A
t— -1
t= A—§A+ A—gf'
Since /¥ is generalized modified h-convex on [, A], then
v <yE) +h (i%é;) 0WOR), ¢ ().

Similarly, we obtain

(-D'Tk - B + 1)(CDﬁj‘¢) @) < (A= &P x

Adding (3.5) and (3.8), the claim follows.

Corollary 3.1. If, we set « = B in (3.1), then we obtain
Ttk - a+ D[(CD5y) @) + (D! (“Dy'w) @)
1
<(A-gF! ['J/(")(f) +6(yPA),u @) f h(z)dz]
0

1
+ (€ —a) ! [w“‘)@f) +6(y (@), y () f h(z)dz]-

0
Corollary 3.2. By setting 6(r,z) =r—2z,h(t) =t°,s € [0, 1] in (3.1), we obtain

Tk — o+ 1) (“DS'y) (€) + (DTG - B+ 1) (D 'v) ©)

A9 YY) + € -ty O@

N s+ 1

. (é: _ a)k—a+1 + (A _ é:)k—ﬁ+1
s+ 1

sy(&).
In particular, if h(z) = z, then we have

Tk —a+1)(°D'w) € + (1T - g+ D (D 'y) ©)
A9 YOQ) + € -0 Y@
N 2
s (é; _ a)k—a+] + (A _ é;)k—ﬁ+l
2

YN (@).

1
P + 0w, M) f h(z)dzl .
0

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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Taking a = B in (3.10), we obtain

Ttk - a+ D[(CD5y) @) + (D! (“Dy'v) @)

_ -y h@) + ¢ - af -y

- 2

. (é: _ a)k—a+1 + (A _ é_-)k—oﬁl

2

Example 3.1. Let ¢ : [a,A] — [0,00), $(€) = 55576 — )", a < € < A Let h : [0,1] — (0, 00),
h(t) > t, 6(x,y) = 2x + y. We verify easly that y®(&) = (¢ — a)? is generalized modified h-convex on
la, A]. From Corollary 3.1 and Lemma 2.1, we obtain

(3.11)

y ).

_ ~ C ol B 2(5 _ a)k—a+3
lhs := T(k - + 1) (“D2 'y) (&) = TR " v — (3.12)
and
1
rhs : = (£ — )" [(5 —a)’ + 0+ (¢ —-a)) f h(z)dz]
0
1
= (£ — a3 (1 + f h(z)dz) . (3.13)
0
For the right derivative (CDZjll//) (&), we consider the function W(€) = 2(3;‘:;):2, a<é<A
L _ Coal B 2(A _ é;)k—a+3
DTk —a+ DD ) @) = (k—a+1)k—a+2)k-a+3) (-19)
and |
rhs = (A = £)F (1 + f h(z)dz) . (3.15)
0

Now let I be an interval of R, a,A € I,(a < A) and @, > 0, such that k — 1 < a,8 < k, (k € N). Let
¥ : I — R. Assume that [y**Y| is generalized modified /- convex on [a, A].
It is clear that for all ¢ € [a, Al, t € [a, €], we have

- < (€ -a), t€[a, &) (3.16)

Since |y**V| is generalized modified h-convex, we have for ¢ € [a, €],

Lhs= — [W*”(f» + 0 (W@l W @) h (—t — )]
¢(—a
t—a

< @) slzﬁ“*“(fn+H(W‘*“(an,|w<k+”<§)|)h(f a)=Rhs. (3.17)

Multiplying (3.16) by the Rhs of inequality (3.17) and integrating the resulting inequality over
[a, €], we obtain

¢ 1
f (€ -y D(@ndr< <§—a)"-“(|w<k“><§>|+e(|w<k+1>(a)|,|w<k”><§)|) fo h(z)dz), (3.18)
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by integration by parts, we have

f € -0y D de = yPoE - 0+ (k- ) f € - 0y Py
=Tk -+ 1) (“DLy) @) - yP(a)E - ).

Hence
(k- a +1)(°DS v) ) - yP(a)E - )}
< («/z“‘*”(f) +0(ly** (@), @) fo 1 h(z)dz) € —a) . (3.19)
In a similar way, if we proceed with the Lhs of (3.17) as we did for the Rhs, it follows that
yP(a)é - a) ™ - Tk -+ 1)(“DLy) &)
< (Il//("”)(f)l +0 (W@l l*P@)) fo 1 h(z)dz) (E-a)". (3.20)
From (3.19) and (3.20), we obtain
IC(k — a + 1) (“D2,w) &) — v (@) - a)*|
< (W*”(&N +0 (W@l l*P@)) fo 1 h(z)dz) ¢-a)". (3:21)

Doing the same for ¢ € [¢,A] and 8 > 0,k—1 < 3 < k, and taking into acount that [**1| is generalized
modified h-convex, we have

Lhs= - [W*“(é» +60 (AL @)l A (;;_i)]
<y <y @ + 9(Iw("“)(A)I,Iw("“)(i)l)h(i;_é;) =Rhs. (3.22)
Hence
Uk =B+ 1) (“Df_y) ) - yP(a)(A - &)
< (A= O Px |l D@1+ 0 (W D@L D)) fo | h(z)dz]. (3.23)

Combine (3.21) and (3.23) via triangular inequality, and we obtain the double inequality
Pk =+ 1) (“D29) @ + Ttk = B+ 1) (DL 9) @)
- (W@ - ' + P A)A - ')

1
<@A-¢tF [W*“(&M + 0 (jp* @)L @) f h(z)dz]
0
1
+(E-a) [W“@n + 00y D@, D@ fo h(z)dz] : (3.24)
Which leads to the following result:

AIMS Mathematics Volume 9, Issue 10, 28813-28827.
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Theorem 3.2. Let I be an interval of R, a,A € I(a < A) and a,8 > 0, such thatk — 1 < a,B < k,
(k € N). Lety : I — R be a function such that y € AC**!. Assume that [y**V| is a generalized modified
h-convex function and 6 a continuous bifunction, then

Pk =+ 1) (“D29) @ + Ttk - B+ 1) (DL 9) @)
- (¥P@E - ) + y Ay - &)

1 ‘
<(A-9F [W*”(&» + 0 (Jp* @)L @) f h(z)dz
0 ]

L
+(E-a) [W“”(fn +0 (@l ly*P@))) fo h(z)dz (3.25)

holds.
As a consequences, we have

Corollary 3.3. Ifin (3.25), we set a = 3, then

[Tk = @+ DD (&) +€ DY () - (0(@)E = )™ + ¥ P (BB - £))
1
<@-g [W*”(fn +0(ly* @A), D)) fo h(z)dz]

1
+E-a)f [It//“‘*”(f)l +0(ly* V(@) D @)) f h(z)dz] (3.26)
0
holds.
Corollary 3.4. By taking 0(z,r) = z—r, h(t) = t*, s € [0, 1] in (3.26), we obtain

Mk = o+ DI(Dg9) ©) + (“Div) O] - (WP @E - 0 +y DAY A - )]
(€ - + A=) WD - af @]+ A - o)

S
<

< — e . (3.27)
In particular for s = 1, we have
PG =+ DI(CD, ) @) + (CDi_y) @ - (WP(@)(E = @)~ +uP(A)A - )]
_ Nk—a + (A — k—a (k+1) _Nk—ay,p (k+1) _ ek—ay, (k+1)
(0™ Q-9 ¢ - @t D@l s @ -t @) oo

2 2
Example 3.2. Let y, h, 0 as in the Example 3.1. We verify easily that y**V(&) = 2(& — a) is generalized

modified h-convex on [a, A]. From Corollary 3.3 and Lemma 2.1, we obtain

2(§_a)k—a+2
k—a+Dk-a+2)

Ihs :=T(k —a+ 1)°DS y(&) = (3.29)

and

1 1
rhs := (£ —a)" | 2(€ — a) + (0 + 2(¢ — a)) f h(z)dz] =2 (& — a)for! (1 + f h(z)dz) .
0 0
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For the right derivative CDZﬁ W(€), we have

ok ~ Coa B 2(A_é:)k—<x+2
ths = DTk =0+ DD = o= ity (3.30)
and .
rhs ::2(A—§)"‘(’“(1+f h(z)dz). (3.31)
0

Now suppose that ¢ : [a, A] — (0, 00) is a generalized modified i#-convex function and symmetric

about < - A, then for all ¢ € [a, A] the inequality
;b(a;A) < w(g)(l +h(%)¢9(1,1)) (3.32)
is valid. Here 6 is assumed to be nonnegatively homogeneous. Indeed, set
et A

Hence
a+A r z

= —+ =
2 2 2
Since ¢ is generalized modified s-convex, symmetric about %, and the bifunction € is assumed to be
nonnegatively homogeneous, it results in
r oz
—_ + —
o(5+3)

a+ A
oF)
df(z)+h(

IA

) 00 (r), ¥ (2))

N = DN =

W) +h ( ) Oy (£), Y(£))

() (1 + h(%) o1, l)).

Theorem 3.3. Let I be an interval of R, a,A € [ (a < A)and o, > 1, k-1 < a,8 < k,k € N.
Let y : I — R be a real valued function such that y € AC*. If y® is a positive, generalized modified
h-convex and symmetric about % and furthermore the bifunction 0 is nonnegatively homogeneous,
then the following inequality holds

o a+A e a+A y 1
2 2 )| _Te=p+ D(DTW)@  Tk-a+D(Dy) @)
k—B+1 @ k-a+l [ (A — )b i (& — ay—att

N;!

1
<y + 9@ + [0 R), ¥ P(@) + 0P (@), y P ()| f h(z)dz. (3.33)

0

AIMS Mathematics Volume 9, Issue 10, 28813-28827.
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If, furthermore , 0 is additive, then

e a+ A e a+ A »
> 2 )| T-B+D (D ') (@ Tk—a+1)(CD2 ) (A)
k—B+1 | k-a+l [ (A — )1 ¥ (A — a)ta+]

< My () + y©(a)) (3.34)

holds. Here
No=1+ h(l) 0(1,1), My =1+ 6(1, l)fl h(z)dz.

Proof. Forall ¢ € [a,Al,k— 1 < @ <k, we have £ = £=5a + £2A and

E-a) " <(A-a)" (3.35)
and y® satisfies

y 0@ <y P(a) + h(f )ew“‘)(A) ) (3.36)
Multiplying (3.35) and (3.36) and proceeding as above, we obtain
Ik -a+1)(Dv) @

1
< [eb(")(a)w(w(k)m), v (@) f h(2)dz| x (A = a) ", (3.37)

0

Also, we have for € € [a,A]l, k-1 < B <k,
(A=&F <(A-a)? (3.38)

and

p &) <y™A) +h (i 6) 0y (@), g (A)). (3.39)
Multiplying (3.39) and (3.38) and integrating over [a, A], we get
1
T(k—pB+1) (D 'y) (@) < [;l/(")(A) +0(yP(@). ) f h(z)dz] (A — )P, (3.40)
0

Adding (3.37) and (3.40), we obtain
Ttk -+ 1)(CD'w) (@) Tk—a+ 1)(CD3 ) (A)

(A - a)k—ﬂ+1 + (A - a)k“”l (3.41)
1
<pO(A) + P @+ [P A,y @) + 0y @),y ()] f h(z)dz. (342)
0
Set Nyg=1+ h(l) 6(1, 1), thus (3.32) is written as
+ A
™ ( 5 ) < Noy(@), ¢ela,Al (3.43)

AIMS Mathematics Volume 9, Issue 10, 28813-28827.
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Multiplying by (¢ — a)*~ on both sides of (3.43) and integrating the result over [a, A), it results that

$(k)(a+A) .
B 2 (k- o+ 1)(CD57'y) (a)
No S av1 S (A — ayk-a+! '

Multiplying (3.43) by (A — &)*#, and integrating over [a, A], we obtain

e a+A S
: 2 T(k—pB+1) (D 'y) (A)
N, < - .
k—pB+1 (A — @)+

(3.44)

(3.45)

Adding (3.44) and (3.45), we obtain the first inequality. By combining the resulting inequality
with (3.41), we obtain (3.33). Using the fact that 6 is additive and nonnegatively homogeneous (3.34)

results. That proves the claim.

Corollary 3.5. By taking @ = B in (3.33), then

Zw(k) (a - A) C na-1 C ne-1
- 2 ) _ Tk-a+D (CD3'y(A) +€ D y(a))
© k-—a+l T (A — g)k-a+]
< ) +y“@
1
+ (0P @), y® @) + 0 (@), P (A)] fo h(z)dz
holds.
If, 0 is additive, then
~ a+A
2N91 lﬂ(k)( > ) _ Tk —a+ l)(CDg:ll,b(A) 4+C DZfllﬂ(a))
k—a+1 = (A — @)kt

IA

My WP (A) + yP(a)).

Corollary 3.6. By setting h(t) = t°,s € [0, 1] in (3.47), it results that

2y ()
2 +6(1, 1)k —a+1)
_Tk—a+D |(CD5*'y) (@) + (CDar'y) ()]
- (A — a)k—a+l

_ Y@+ pha)
- s+1

(s+1+6(1,1)).

In particular, if h(t) = t, then

O

(3.46)

(3.47)
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20(5%)
Q2 +6(1, 1))k —a+1)
<11k—«y+1)KCDX&¢)W)+(CDg4¢yAﬂ
- (A _ a)k—a/+1

_ 9@ + 9@
B 2

Theorem 3.4. Let € ACa,A), k € Nyk—1 < a < k. Assume that y® is positive, generalized

(2 +6(1,1)).

modified h-convex on [a, A] and symmetric to . Assume that 0 is nonnegatively homogeneous.

Then
® a+ A
(5

I+ h(%)H(l, 1)

(D5 v) @+ (CD2p) ()] < R WP (@) + RSP @ORB)  (3.48)

holds. Where R*" is the Riemann-Liouville integral operator of order k — a.

Proof. Since y® is generalized modified h-convex and 6 is nonnegatively homogeneous, then we have
for u € [0, 1]

e (a + A) e (,uA + (1 —wa +pua+ (1 —,u)A)

2 2

<P @A + (1 - a) + h(%) 0 (WP (ua + (1 = WA), y®P A + (1 - p)a))

:(w“b%uA—k(l—;Da)1-+h(%)90,14. (3.49)
Multiplying (3.49) by @ 1y®(uA + (1 — p)a) and integrating over [0, 1], with respect to y, we
obtain
1 k) ((arA
y® (%) f f WA + (1 - waydu = #klnk - a)(“Dg YD),
0 (A-a)
and
1
L+h (%) o1, 1)] f H WO (A + (1 = padp
0
1+h(bHe,1) 2 o
= W [1 (x — &) (Y ) (x)dx
_ 1 Tk-0) pia wy
“1+M2WHJ4(A_th%+W (D).
Hence
w(k) (%) C k— k)\2
(DS D) < REWOP (D). (3.50)

1+ h($)6(1,1)

AIMS Mathematics Volume 9, Issue 10, 28813-28827.
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And similarly
A
y® (“ - ) < yOua + (1 - pwh)

1+h(1)9(1 1)] (3.51)

by multiplying (3.51) by p*=*"'y®(ua + (1 — u)A), integration yields to

w(k) (a+A)

Wr(k @) (D} _y)(a)

e (a +A

1
> ) fo © O ua + (1 - pA)du =

and

1
1+h(%) 0(1,1)] f £ W) (ua + (1 - A)du

0

1+h ( : ) o(l, 1)] (Z(k o )QR’Z ‘WY (), (3.52)
it results that

w (DS (@) < RS WP (a) (3.53)

L+hbyea, - 8 oA ' '
By adding (3.50) and (3.53), we get (3.48). That proves the claim. O

Corollary 3.7. Under the same assumptions as Theorem 3.4, if h(t) = t*, s € [0, 1], then
+ A
28 &) a
)
25+0(1,1)
If O(u,v) = —6(v, u), then

l/’(k)(a +A

|(“D5v) (@ + (“Div) )] < RS @Y (@) + RE WO ().

5 )(CDZw(a) +€ D5 w(B) < RZTWYP @) + R (3.54)

is valid.
4. Conclusions

In this work, we have established some estimates including once the derivatives of Caputo and
another time the integrals of Riemann-Liouville and the derivatives of Caputo for a function whose
derivative order kth (k € N) is generalized modified 4-convex and symmetrical in the middle. Estimates
of consequences for special classes of convex functions and s-convex functions in [0, 1] were obtained.
The estimates we have just made are compared to those presented in the results [8].

Future research could focus on extending these results to variable order or other types of convex
functions or exploring inequalities for functions that do not necessarily have symmetry. Furthermore,
the application of derived inequalities to concrete problems in applied mathematics, physics, or
engineering could still validate the practical significance of our theoretical contributions. Taking
these limitations into account could lead to a more complete understanding and wider applicability
of fractional inequalities.
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