Research article

A multi-step Ulm-Chebyshev-like method for solving nonlinear operator equations

  • Received: 01 August 2024 Revised: 21 September 2024 Accepted: 26 September 2024 Published: 09 October 2024
  • MSC : 47H30, 65H10, 65J15

  • In this paper, based on the Ulm-Chebyshev iterative procedure, we present a multi-step Ulm-Chebyshev-like method to solve systems of nonlinear equations $ F(x) = 0 $,

    $ \begin{equation*} \left\{\begin{array}{l} \quad {\bf{y}}_{n} = {\bf{x}}_{n}-B_{n}F( {\bf{x}}_{n}),\\ \quad {\bf z}_{n} = {\bf{y}}_{n}-B_{n}F( {\bf{y}}_{n}),\\ {\bf{x}}_{n+1} = {\bf z}_{n}-B_{n}F( {\bf z}_{n}),\\ \quad \bar{B}_{n} = 2B_{n}-B_{n}A_{n+1}B_{n},\\ B_{n+1} = \bar{B}_{n}+\bar{B}_{n}(2I-A_{n+1}\bar{B}_{n})(I-A_{n+1}\bar{B}_{n}),\quad n = 0,1,2,\ldots, \end{array}\right. \end{equation*} $

    where $ A_{n+1} $ is an approximation of the derivative $ F'({\bf{x}}_{n+1}) $. This method does not contain inverse operators in its expression, and does not require computing Jacobian matrices for solving Jacobian equations. We have proved that the multi-step Ulm-Chebyshev-like method converges locally to the solution with $ R $-convergence rate 4 under appropriate conditions. Some applications are given, compared with other existing methods, where the most important features of the method are shown.

    Citation: Wei Ma, Ming Zhao, Jiaxin Li. A multi-step Ulm-Chebyshev-like method for solving nonlinear operator equations[J]. AIMS Mathematics, 2024, 9(10): 28623-28642. doi: 10.3934/math.20241389

    Related Papers:

  • In this paper, based on the Ulm-Chebyshev iterative procedure, we present a multi-step Ulm-Chebyshev-like method to solve systems of nonlinear equations $ F(x) = 0 $,

    $ \begin{equation*} \left\{\begin{array}{l} \quad {\bf{y}}_{n} = {\bf{x}}_{n}-B_{n}F( {\bf{x}}_{n}),\\ \quad {\bf z}_{n} = {\bf{y}}_{n}-B_{n}F( {\bf{y}}_{n}),\\ {\bf{x}}_{n+1} = {\bf z}_{n}-B_{n}F( {\bf z}_{n}),\\ \quad \bar{B}_{n} = 2B_{n}-B_{n}A_{n+1}B_{n},\\ B_{n+1} = \bar{B}_{n}+\bar{B}_{n}(2I-A_{n+1}\bar{B}_{n})(I-A_{n+1}\bar{B}_{n}),\quad n = 0,1,2,\ldots, \end{array}\right. \end{equation*} $

    where $ A_{n+1} $ is an approximation of the derivative $ F'({\bf{x}}_{n+1}) $. This method does not contain inverse operators in its expression, and does not require computing Jacobian matrices for solving Jacobian equations. We have proved that the multi-step Ulm-Chebyshev-like method converges locally to the solution with $ R $-convergence rate 4 under appropriate conditions. Some applications are given, compared with other existing methods, where the most important features of the method are shown.



    加载中


    [1] W. Ma, Two-step Ulm-Chebyshev-like Cayley transform method for inverse eigenvalue problems, Int. J. Comput. Math., 99 (2022), 391–406. https://doi.org/10.1080/00207160.2021.1913728 doi: 10.1080/00207160.2021.1913728
    [2] W. Ma, Z. Li, Y. Zhang, A two-step Ulm-Chebyshev-like Cayley transform method for inverse eigenvalue problems with multiple eigenvalues, AIMS Math., 8 (2024), 22986–23011. https://doi.org/10.3934/math.20241117 doi: 10.3934/math.20241117
    [3] C. T. Wen, X. S. Chen, H. W. Sun, A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems, Linear Algebra Appl., 585 (2020), 241–262. https://doi.org/10.1016/j.laa.2019.10.004 doi: 10.1016/j.laa.2019.10.004
    [4] Y. Wang, W. P. Shen, An extended two-step method for inverse eigenvalue problems with multiple eigenvalues, Numer. Math. Theory Methods Appl., 16 (2023), 968–992. https://doi.org/10.4208/nmtma.OA-2023-0002 doi: 10.4208/nmtma.OA-2023-0002
    [5] Y. S. Luo, W. P. Shen, An Ulm-like algorithm for generalized inverse eigenvalue problems, Numer. Algorithms, 2024. https://doi.org/10.1007/s11075-024-01845-5
    [6] W. Ma, Z. J. Bai, A regularized directional derivative-based Newton method for inverse singular value problems, Inverse Probl., 28 (2012), 125001. https://doi.org/10.1088/0266-5611/28/12/125001 doi: 10.1088/0266-5611/28/12/125001
    [7] W. Ma, Two-step Ulm-Chebyshev-like method for inverse singular value problems, Numer. Linear Algebra Appl., 29 (2022), e2440. https://doi.org/10.1002/nla.2440 doi: 10.1002/nla.2440
    [8] W. Ma, X. S. Chen, Two-step inexact Newton-type method for inverse singular value problems, Numer. Algorithms, 84 (2020), 847–870. https://doi.org/10.1007/s11075-019-00783-x doi: 10.1007/s11075-019-00783-x
    [9] C. T. Kelley, Solution of the Chandrasekhar $H$-equation by Newton's method, J. Math. Phys., 21 (1980), 1625–1628. https://doi.org/10.1063/1.524647 doi: 10.1063/1.524647
    [10] X. Yan, X. Qian, H. Zhang, S. Song, Numerical approximation to nonlinear delay-differential Calgebraic equations with proportional delay using block boundary value methods, J. Comput. Appl. Math., 404 (2022), 113867. https://doi.org/10.1016/j.cam.2021.113867 doi: 10.1016/j.cam.2021.113867
    [11] S. Long, Y. Zhang, S. Zhong, New results on the stability and stabilization for singular neutral systems with time delay, Appl. Math. Comput., 473 (2024), 128643. https://doi.org/10.1016/j.amc.2024.128643 doi: 10.1016/j.amc.2024.128643
    [12] B. Morini, Convergence behaviour of inexact Newton methods, Math. Comp., 68 (1999), 1605–1613. https://doi.org/10.1090/S0025-5718-99-01135-7 doi: 10.1090/S0025-5718-99-01135-7
    [13] J. A. Ezquerro, M. A. Hernández, Generalized differentiability conditions for Newton's method, IMA J. Numer. Anal., 22 (2002), 187–205. https://doi.org/10.1093/imanum/22.2.187 doi: 10.1093/imanum/22.2.187
    [14] C. Chun, Iterative methods improving Newton's method by the decomposition method, Comput. Math. Appl., 50 (2005), 1559–1568. https://doi.org/10.1016/j.camwa.2005.08.022 doi: 10.1016/j.camwa.2005.08.022
    [15] M. Frontini, E. Sormani, Some variants of Newton's method with third-order convergence, Appl. Math. Comput., 140 (2003), 419–426. https://doi.org/10.1016/S0096-3003(02)00238-2 doi: 10.1016/S0096-3003(02)00238-2
    [16] H. H. H. Homeier, On Newton-type methods with cubic convergence, J. Comput. Appl. Math., 176 (2005), 425–432. https://doi.org/10.1016/j.cam.2004.07.027 doi: 10.1016/j.cam.2004.07.027
    [17] M. T. Darvishi, A. Barati, A third-order Newton-type method to solve systems of nonlinear equations, Appl. Math. Comput., 187 (2007), 630–635. https://doi.org/10.1016/j.amc.2006.08.080 doi: 10.1016/j.amc.2006.08.080
    [18] J. Moser, Stable and random motions in dynamical systems with special emphasis on celestial mechanics, In: H. W. Lectures, Annals of mathematics studies, Princeton University Press, 1973.
    [19] S. Ulm, On iterative methods with successive approximation of the inverse operator, Izv. Akad. Nauk Est. SSR., 16 (1967), 403–411.
    [20] O. H. Hald, On a Newton-Moser type method, Numer. Math., 23 (1975), 411–426. https://doi.org/10.1007/BF01437039 doi: 10.1007/BF01437039
    [21] H. Petzeltova, Remark on a Newton-Moser type method, Comment. Math. Univ. Carolin., 21 (1980), 719–725.
    [22] J. M. Gutirrez, M. A. Hernández, N. Romero, A note on a modification of Moser's method, J. Complexity, 24 (2008), 185–197. https://doi.org/10.1016/j.jco.2007.04.003 doi: 10.1016/j.jco.2007.04.003
    [23] A. Galperin, Z. Waksman, Ulm's method under regular smoothness, Numer. Funct. Anal. Optim., 19 (1998), 285–307.
    [24] J. A. Ezquerro, M. A. Hernández, The Ulm method under mild differentiability conditions, Numer. Math., 109 (2008), 193–207. https://doi.org/10.1007/s00211-008-0144-z doi: 10.1007/s00211-008-0144-z
    [25] I. K. Argyros, On Ulm's method using divided differences of order one, Numer. Algorithms, 52 (2009), 295–320. https://doi.org/10.1007/s11075-009-9274-3 doi: 10.1007/s11075-009-9274-3
    [26] I. K. Argyros, On Ulm's method for Fréchet differentiable operators, J. Appl. Math. Comput., 31 (2009), 97–111. https://doi.org/10.1007/s12190-008-0194-5 doi: 10.1007/s12190-008-0194-5
    [27] W. P. Shen, T. T. Wei, L. H. Peng, An Ulm-like method for solving nonlinear operator equations, J. Nonlinear Convex Anal., 16 (2015), 1439–1447.
    [28] W. P. Shen, T. T. Wei, S. Guu, Convergence of the Ulm-like method under the Hölder condition, J. Nonlinear Convex Anal., 17 (2016), 701–710.
    [29] J. A. Ezquerro, M. A. Hernández, An Ulm-type method with $R$-order of convergence three, Nonlinear Anal., 13 (2012), 14–26. https://doi.org/10.1016/j.nonrwa.2011.07.039 doi: 10.1016/j.nonrwa.2011.07.039
    [30] D. K. R. Babajee, M. Z. Dauhooa, M. T. Darvishi, A. Karami, A. Barati, Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations, J. Comput. Appl. Math., 233 (2010), 2002–2012. https://doi.org/10.1016/j.cam.2009.09.035 doi: 10.1016/j.cam.2009.09.035
    [31] R. H. Al-Obaidi, M. T. Darvishi, A comparative study on qualification criteria of nonlinear solvers with introducing some new ones, J. Math., 2022 (2022), 4327913. https://doi.org/10.1155/2022/4327913 doi: 10.1155/2022/4327913
    [32] R. Erfanifar, M. Hajarian, A new multi-step method for solving nonlinear systems with high efficiency indices, Numer. Algorithms, 97 (2024), 959–984. https://doi.org/10.1007/s11075-023-01735-2 doi: 10.1007/s11075-023-01735-2
    [33] M. T. Chu, Inverse eigenvalue problems, SIAM Rev., 40 (1998), 3984. https://doi.org/10.1137/S0036144596303984 doi: 10.1137/S0036144596303984
    [34] M. T. Chu, G. H. Golub, Structured inverse eigenvalue problems, Acta Numer., 11 (2002), 1–71. https://doi.org/10.1017/S0962492902000016 doi: 10.1017/S0962492902000016
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(96) PDF downloads(15) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog