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Abstract: In this paper, based on the Ulm-Chebyshev iterative procedure, we present a multi-step
Ulm-Chebyshev-like method to solve systems of nonlinear equations F(x) = 0,

yn = xn − BnF(xn),
zn = yn − BnF(yn),

xn+1 = zn − BnF(zn),
B̄n = 2Bn − BnAn+1Bn,

Bn+1 = B̄n + B̄n(2I − An+1B̄n)(I − An+1B̄n), n = 0, 1, 2, . . . ,

where An+1 is an approximation of the derivative F′(xn+1). This method does not contain inverse
operators in its expression, and does not require computing Jacobian matrices for solving Jacobian
equations. We have proved that the multi-step Ulm-Chebyshev-like method converges locally to
the solution with R-convergence rate 4 under appropriate conditions. Some applications are given,
compared with other existing methods, where the most important features of the method are shown.
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1. Introduction

Let X and Y be Banach spaces, D ∈ X be an open subset, and F: D ∈ X → Y be a nonlinear operator
with the continuous Fréchet derivative denoted by F′. We consider the problem of approximating a
solution x∗ of a nonlinear equation

F(x) = 0, (1.1)
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which applies to the inverse eigenvalue problems [1–4], the generalized inverse eigenvalue
problems [5], the inverse singular value problems [6–8], the Chandrasekhar integral equation [9], the
neutral differential-algebraic equations [10, 11], and so on. Without any doubt, Newton’s method is
the most-used iterative process to solve this problem. It is given by the algorithm:

xn+1 = xn − F′(xn)−1F(xn), n ≥ 0

for x0 given. This iterative process has quadratic R-order of convergence under some mild
conditions [12–14]. For recent progress on Newton’s method, one may refer to [15–17].

Other methods, such as higher-order methods, also include in their expression the inverse of the
operator F′. To avoid this problem, Newton-type methods:

xn+1 = xn − HnF(xn),

where Hn is an approximation of F′(xn)−1 are considered. One of these methods was proposed by
Moser in [18]. Given x0 ∈ D and B0 ∈ L(Y, X), the following sequences are defined:xn+1 = xn − BnF(xn),

Bn+1 = 2Bn − BnF′(xn)Bn, n = 0, 1, 2, . . . .
(1.2)

The first equation is similar to Newton’s method, but replaces the operator F′(xn)−1 with a linear
operator Bn. The second equation is Newton’s method applied to the equation

gn = 0

where gn: L(Y, X)→ L(X,Y) is defined by

gn(B) = B−1 − F′(xn).

So {Bn} gives us an approximation of F′(xn)−1. It can be shown that the rate of convergence for the
above scheme is (1 +

√
5)/2, provided the root of (1.1) is simple [18]. However, from a numerical

perspective, this is unsatisfactory because the scheme uses the same amount of information in each
step as Newton’s method, but its convergence speed is not faster than the secant method. For that,
in [19], Ulm proposed the following iterative method to solve nonlinear equations. Given x0 ∈ D and
B0 ∈ L(Y, X), Ulm definesxn+1 = xn − BnF(xn),

Bn+1 = 2Bn − BnF′(xn+1)Bn, n = 0, 1, 2, . . . .
(1.3)

Notice that, here F′(xn+1) appears instead of F′(xn) in (1.2). This is crucial for obtaining fast
convergence. Under the classical assumption that the derivative F′ is Lipschitz continuous around the
solution, Ulm showed that the method generates successive approximations that converge to a
solution of (1.1) asymptotically as fast as Newton’s method. For recent progress on Newton-Moser
type method [20, 21], one may refer to Moser’s method [22], Ulm’s method [23–26], and Ulm-like
method [27, 28].
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Considering the previous antecedent, in order to extend the above ideas to high-order convergent
iterative methods (cubic convergence), in [29], Ezquerro and Hernández considered Chebyshev’s
method and proposed the following iterative method to solve nonlinear equations. Given x0 ∈ D and
B0 ∈ L(Y, X), Ulm-Chebyshev defines

yn = xn − BnF(xn),
xn+1 = yn − BnF(yn),
Bn+1 = Bn + Bn(2I − F′(xn+1)Bn)(I − F′(xn+1)Bn), n = 0, 1, 2, . . . ,

(1.4)

which does not use any inverse operator in its application. Ezquerro and Hernández showed that the
method generates successive approximations that converge to a solution of (1.1), and has cubical
convergence. Recently, some authors have employed Ulm-Chebyshev’s method to solve inverse
eigenvalue problems and inverse singular value problems [1,2,5,7]. There, they found that computing
exactly the derivative F′(xn) (n = 0, 1, 2, . . .) at each iteration is costly, especially in the case when the
system is large.

In order to reduce the cost of accurately calculating the derivative F′(xn) (n = 0, 1, 2, . . .) in each
iteration, motivated by the Ulm and Ulm-Chebyshev methods, we propose a multi-step
Ulm-Chebyshev-like method for solving the nonlinear operator equation

F(x) = 0.

Given x0 ∈ D and B0 ∈ L(Y, X), the multi-step Ulm-Chebyshev-like method is defined by

yn = xn − BnF(xn),
zn = yn − BnF(yn),

xn+1 = zn − BnF(zn),
B̄n = 2Bn − BnAn+1Bn,

Bn+1 = B̄n + B̄n(2I − An+1B̄n)(I − An+1B̄n), n = 0, 1, 2, . . . ,

(1.5)

where An+1 is an approximation of the derivative F′(xn+1). This method exhibits several attractive
features. First, it is inverse free: we do not need to solve a linear equation at each iteration. Second,
it is derivative free: we do not need to computer the Fréchet derivative at each iteration. Third, in
addition to solving the nonlinear Eq (1.1), the method produces successive approximations {Bn} to the
value of F′(x∗)−1, having x∗ as a solution of (1.1). This property is very helpful, especially when one
investigates the sensitivity of the solution to small perturbations. Fourth, the method converges to the
solution with R-convergence rate 4.

Further more, in Section 2, we analyze the local convergence of the new iterative method. Under
certain assumptions, the radius of the convergence ball for the multi-step Ulm-Chebyshev-like method
is estimated, and the R-convergence rate 4 of the multi-step Ulm-Chebyshev-like method is proved.
Section 3 is devoted to showing some of the most important features of the new iterative method by
means of five examples. Compared with other existing methods, the proposed method has higher
convergence order and/or requires less operations.
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2. Convergence analysis

Let B(x, r) stand for the open ball in X with center x and radius r > 0. Let x∗ ∈ D be a solution
of the nonlinear Eq (1.1) such that F′(x∗) is invertible and that F′ satisfies the Lipschitz condition on
B(x∗, r) with the Lipschitz constant L:

∥F′(x) − F′(y)∥ ≤ L∥x − y∥ for x, y ∈ B(x∗, r). (2.1)

Let {xn} be generated by the multi-step Ulm-Chebyshev-like method. Let An be an approximation of
the derivative F′(xn) such that

∥An − F′(xn)∥ ≤ ηn∥F(xn)∥, n = 0, 1, 2, . . . , (2.2)

where {ηn} is a nonnegative-valued sequence satisfying supn≥0 ηn ≤ ηwhere η is a nonnegative constant.
Let

0 < rL < min
{
1, r,

1
( L

2η + L + η∥F′(x∗)∥)∥F′(x∗)−1∥

}
, (2.3)

µ =
∥F′(x∗)−1∥

1 − ( L
2η + L + η∥F′(x∗)∥)∥F′(x∗)−1∥rL

,

γ1 = η
(L
2
+ ∥F′(x∗)∥

)
, γ2 = 1 + 2µγ1, γ3 = γ2 + Lµ,

γ4 = γ2 + 2µL + 2µLγ3, γ5 = γ4 + 2µL + 2µLγ3, γ6 = 1 + 4µγ1 + 4µL,

0 < α ≤ min
{
1,

1
γ3γ4 + Lµγ2

3,
1

γ5+Lµ ,
1
γ6

6

}
, 0 < β ≤ min{rL, α}, 0 < ξ ≤ β. (2.4)

The following lemma is crucial for the proof of the main theorem.

Lemma 2.1. ([27]) If xn ∈ B(x, rL), then the following assertions hold:

∥An − F′(xn)∥ ≤ η
(L
2
+ ∥F′(x∗)∥

)
∥xn − x∗∥

and An is invertible and ∥A−1
n ∥ ≤ µ.

Note that in the multi-step Ulm-Chebyshev-like method, sequence {Bn} is generated by the
algorithm except for B0. Below, we prove that if B0 approximates A−1

0 , then the sequence {xn}

generated by the multi-step Ulm-Chebyshev-like method converges locally to x∗ with R-convergence
rate 4. For this end, let B0 satisfy that

∥I − B0A0∥ ≤ ξ, (2.5)

where ξ is defined in (2.4).

Theorem 2.1. Suppose that the Jacobian matrix F′(x∗) is invertible and that F′ satisfies the Lipschitz
condition (2.1) on B(x∗, rL). Then there exist positive numbers β and ξ such that for any x0 ∈ B(x∗, β)
and B0 satisfying (2.5), the sequence {xn} generated by the multi-step Ulm-Chebyshev-like method with
initial point x0 converges to x∗. Moreover, the following estimates hold for each n = 0, 1, . . . .

∥xn − x∗∥ ≤ α
(β
α

)4n

(2.6)
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and
∥I − BnAn∥ ≤ α

(β
α

)4n

, (2.7)

where α and β are defined in (2.4).

Proof. We proceed by mathematical induction. Clearly, (2.6) is trivial for n = 0 by the assumption.
By (2.4) and (2.5), we obtain

α ≤ 1 and ∥I − B0A0∥ ≤ ξ ≤ β.

That is, (2.7) holds for n = 0. Now we assume that (2.6) and (2.7) hold for n = m. Then one has

∥xm − x∗∥ ≤ α
(β
α

)4m

(2.8)

and
∥I − BmAm∥ ≤ α

(β
α

)4m

. (2.9)

By (2.4), we get

∥xm − x∗∥ ≤ α
(β
α

)4m

< β < rL.

It follows from (2.4), (2.8), and Lemma 2.1 that

∥Am − F′(xm)∥ ≤ η
(L
2
+ ∥F′(x∗)∥

)
∥xm − x∗∥

≤ η
(L
2
+ ∥F′(x∗)∥

)
α
(β
α

)4m

:= γ1α
(β
α

)4m

(2.10)

and
∥A−1

m ∥ ≤ µ.

Then

∥Bm∥ ≤ ∥BmAm∥∥A−1
m ∥

≤ (1 + ∥I − BmAm∥)∥A−1
m ∥

≤ µ
[
1 + α

(β
α

)4m]
≤ 2µ (2.11)

and

∥I − BmF′(xm)∥ ≤ ∥I − BmAm∥ + ∥Bm∥∥Am − F′(xm)∥

≤ α
(β
α

)4m

+ 2µγ1α
(β
α

)4m

≤ (1 + 2µγ1)α
(β
α

)4m

:= γ2α
(β
α

)4m

. (2.12)
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By (1.5), we have

ym − x∗ = xm − x∗ − Bm(F(xm) − F(x∗))

= xm − x∗ −
∫ 1

0
BmF′(xθm)(xm − x∗)dθ

=

∫ 1

0
[I − BmF′(xm) + Bm(F′(xm) − F′(xθm))](xm − x∗)dθ,

where
xθm = x∗ + θ(xm − x∗)

for 0 ≤ θ ≤ 1. Since
∥xm − x∗∥ ≤ rL

and

∥xθm − x∗∥ = θ∥xm − x∗∥ ≤ ∥xm − x∗∥ ≤ rL,

it follows from (2.4), (2.8), (2.11), (2.12), and the Lipschitz condition that

∥ym − x∗∥ ≤
∫ 1

0
(∥I − BmF′(xm)∥ + L(1 − θ)∥Bm∥∥xm − x∗∥)∥xm − x∗∥dθ

= ∥I − BmF′(xm)∥∥xm − x∗∥ +
L
2
∥Bm∥∥xm − x∗∥2

≤ γ2α
(β
α

)4m

α
(β
α

)4m

+ Lµ
(
α
(β
α

)4m)2
=
(
γ2 + Lµ

)
α2
(β
α

)2×4m

:= γ3α
2
(β
α

)2×4m

, (2.13)

which together with (2.4), (2.8), and α ≤ 1 gives

∥xm − ym∥ ≤ ∥xm − x∗∥ + ∥ym − x∗∥

≤ α
(β
α

)4m

+ γ3α
2
(β
α

)2×4m

≤ (1 + γ3)α
(β
α

)4m

. (2.14)

It follows from (2.11), (2.12), and the Lipschitz condition that

∥I − BmF′(ym)∥ ≤ ∥I − BmF′(xm)∥ + ∥Bm∥∥F′(xm) − F′(ym)∥

≤ γ2α
(β
α

)4m

+ 2µL(1 + γ3)α
(β
α

)4m

≤
(
γ2 + 2µL + 2µLγ3

)
α
(β
α

)4m

:= γ4α
(β
α

)4m

. (2.15)
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Similar to (2.13)–(2.15) and by (2.4) and α ≤ 1, we have

∥zm − x∗∥ ≤ ∥I − BmF′(ym)∥∥ym − x∗∥ +
L
2
∥Bm∥∥ym − x∗∥2

≤ γ4α
(β
α

)4m

γ3α
2
(β
α

)2×4m

+
L
2
× 2µγ2

3α
4
(β
α

)4×4m

≤
(
γ3γ4 + Lµγ2

3

)
α3
(β
α

)3×4m

≤ α2
(β
α

)3×4m

, (2.16)

∥ym − zm∥ ≤ ∥ym − x∗∥ + ∥zm − x∗∥

≤ γ3α
2
(β
α

)2×4m

+ α2
(β
α

)3×4m

≤ (1 + γ3)α2
(β
α

)2×4m

(2.17)

and

∥I − BmF′(zm)∥ ≤ ∥I − BmF′(ym)∥ + ∥Bm∥∥F′(ym) − F′(zm)∥

≤ γ4α
(β
α

)4m

+ 2µL(1 + γ3)α2
(β
α

)2×4m

≤
(
γ4 + 2µL + 2µLγ3

)
α
(β
α

)4m

:= γ5α
(β
α

)4m

. (2.18)

By (2.4), (2.16), (2.18), and α ≤ 1, we get

∥xm+1 − x∗∥ ≤ ∥I − BmF′(zm)∥∥zm − x∗∥ +
L
2
∥Bm∥∥zm − x∗∥2

≤ γ5α
(β
α

)4m

α2
(β
α

)3×4m

+
L
2
× 2µα4

(β
α

)6×4m

≤
(
γ5 + Lµ

)
α2
(β
α

)4m+1

≤ α
(β
α

)4m+1

. (2.19)

Consequently, (2.6) holds for n = m + 1, and by (2.4), (2.8), and (2.19), we get

∥xm+1 − xm∥ ≤ ∥xm+1 − x∗∥ + ∥xm − x∗∥

≤ α
(β
α

)4m+1

+ α
(β
α

)4m

≤ 2α
(β
α

)4m

. (2.20)

By (2.4), we obtain

∥xm+1 − x∗∥ ≤ α
(β
α

)4m+1

< β < rL,
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and it follows from (2.4), (2.8), and Lemma 2.1 that

∥Am+1 − F′(xm+1)∥ ≤ γ1α
(β
α

)4m+1

. (2.21)

Together with (2.1), (2.4), (2.10), and (2.20), we have

∥Am+1 − Am∥ ≤ ∥Am+1 − F′(xm+1)∥ + ∥F′(xm+1) − F′(xm)∥ + ∥Am − F′(xm)∥

≤ γ1α
(β
α

)3m+1

+ 2Lα
(β
α

)4m

+ γ1α
(β
α

)4m

≤
(
2γ1 + 2L

)
α
(β
α

)4m

, (2.22)

which follows from (2.9) and (2.11), and we get

∥I − BmAm+1∥ ≤ ∥I − BmAm∥ + ∥Bm∥∥Am+1 − Am∥

≤ α
(β
α

)4m

+ 2µ
(
2γ1 + 2L

)
α
(β
α

)4m

≤
(
1 + 4µγ1 + 4µL

)
α
(β
α

)4m

:= γ6α
(β
α

)4m

. (2.23)

From the fourth equation in (1.5), we obtain

I − B̄mAm+1 = (I − BmAm+1)2,

which together with (2.23) gives

∥I − B̄mAm+1∥ ≤ ∥I − BmAm+1∥
2

≤ γ2
6α

2
(β
α

)2×4m

. (2.24)

Notice that
Bm+1 = B̄m + B̄m(2I − Am+1)B̄m)(I − Am+1B̄m),

and we have

I − Bm+1Am+1 = I − (B̄m + B̄m(2I − Am+1)B̄m)(I − Am+1B̄m))Am+1

= (I − B̄mAm+1)3.

It follows from (2.4), (2.24), and α ≤ 1 that

∥I − Bm+1Am+1∥ ≤ ∥I − B̄mAm+1∥
2 ≤ γ6

6α
6
(β
α

)6×4m

≤ γ6
6α

2
(β
α

)4m+1

≤ α
(β
α

)4m+1

. (2.25)

This confirms that (2.7) holds for n = m + 1 and the proof is complete. □

Remark 2.1. Under the conditions as in Theorem 2.2, the sequence xk converges to the limit x∗ with
R-convergence rate 4.
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3. Numerical experiments

In this section, we report the numerical performance of the multi-step Ulm-Chebyshev-like method
for solving the nonlinear operator Eq (1.1). We compare the multi-step Ulm-Chebyshev-like method
(Algorithm MSUCL) with the Newton-type method (Algorithm NT) in [16], the Chebyshev-like
method (Algorithm CL) in [30], the Ulm-like method (Algorithm UL) in [27], and the
Ulm-Chebyshev method (Algorithm UC) in [29]. All tests were carried out in MALAB 7.10 running
on a PC Intel Pentium IV with a 3.0 GHz CPU.

Example 3.1. ([30]) We consider the following system of 3 nonlinear equations:
cos(x2) − sin(x1) = 0,

xx1
3 −

1
x2
= 0,

exp(x1) − x2
3 = 0.

The Jacobian is given by

J(x) =


− cos(x1) − sin(x2) 0
xx1

3 ln(x3) 1
x2

2
xx1

3
x1
x3

exp(x1) 0 −2x3


and

x∗ = (0.90956949452004, 0.66122683227485, 1.5758341439070)T

correct to 14 decimal places in this case. We choose the starting vector

x0 = (1, 0.5, 1.5)T

for n = 0, 1, . . . , ηn =
1
10 . For all algorithms, the stopping tolerance for the iterations is 10−12.

From Table 1, we observe that the Algorithm MSMCL converges to the solution with R-convergence
rate 4, the Algorithm UL converges quadratically, and the Algorithm NT, the Algorithm UL, and the
Algorithm UC converge cubically in the root sense.

Table 1. Values of ∥xk − x∗∥ for Example 3.1.

It. Algorithm NT Algorithm UL Algorithm CL Algorithm UC Algorithm MSUCL
0 2.00e − 1 2.00e − 1 2.00e − 1 2.00e − 1 2.00e − 1
1 4.26e − 3 5.29e − 2 7.54e − 3 2.22e − 3 1.18e − 4
2 9.56e − 10 9.28e − 5 2.14e − 10 1.26e − 10 8.99e − 16
3 3.25e − 29 5.29e − 10 5.27e − 30 4.56e − 30
4 5.26e − 21

Example 3.2. ([27]) We next consider the two-point boundary value problem{ x′′ + x2 = 0,
x(0) = x(1) = 0.

(3.1)

AIMS Mathematics Volume 9, Issue 10, 28623–28642.
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We divide the interval [0, 1] into m + 1 subintervals and we get

h = 1/m + 1.

Let d0, d1, . . . , dm+1 be the points of subdivision with

0 < d0 < d1 < . . . < dm+1 = 1.

An approximation for the second derivative may be chosen as{ x
′′

i =
xi−1−2xi+xi+1

h2 ,

x0 = x1 = 0,
xi = x(di) for i = 1, 2, . . . ,m. (3.2)

Let the operator ϕ: Rm → Rm be defined by

ϕ(x) =
(
x2

1, x
2
2, . . . , x

2
m
)T for x =

(
x1, x2, . . . , xm

)T
∈ Rm.

To get an approximation to the solution of (3.1), we need to solve the following nonlinear equation:

F(x) := Mx + h2ϕ(x) = 0, x ∈ Rm,

where

M =



−2 1
1 −2 1
. . .
. . .
. . .

1 −2 1
1 −2


m×m

.

Obviously, x∗ = 0 is a solution of (3.2) and

F′(x) = M + 2h2diag(x1, x2, . . . , xm).

Hence
F′(x∗) = M.

Furthermore, it is easy to verify that

∥F′(x) − F′(y)∥ ≤ 2h2∥x − y∥ for x, y ∈ Rm,

where ∥ · ∥ denotes the F-norm. For different choices of m and x0, the convergence performance of the
algorithm is illustrated in the following tables. Here we consider the following three problem sizes:

(a) m = 10 and x0 = σ(1, 1, . . . , 1)T ;

(b) m = 100 and x0 = σ(1, 1, . . . , 1)T ;

(c) m = 1000 and x0 = σ(1, 1, . . . , 1)T , where σ = 0.2 or 0.02.

For all algorithms, the stopping tolerance for the iterations is 10−12.

AIMS Mathematics Volume 9, Issue 10, 28623–28642.
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Tables 2–4 show that the new method has higher convergence order and from Table 5, we see that
the CPU time by the Algorithm MSUCL is less than the other existing methods.

Table 2. Values of ∥xk − x∗∥ for different ηn in case (a) for Example 3.2.
σ It. Algorithm UL Algorithm MSUCL Algorithm UC Algorithm CL Algorithm NT

ηn := 1
20 ηn := 1

10 ηn := 1
20 ηn := 1

10
0.2 0 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1

1 1.26e − 2 1.26e − 2 5.42e − 4 4.44e − 4 4.43e − 4 4.26e − 4 4.26e − 4
2 2.96e − 5 3.1e − 5 5.46e − 16 5.45e − 16 6.15e − 12 7.11e − 12 3.98e − 12
3 2.67e − 10 2.68e − 10 2.33e − 35 3.99e − 35 4.32e − 35
4 3.00e − 20 3.21e − 20

0.02 0 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1
1 1.21e − 4 1.21e − 4 5.13e − 9 5.14e − 9 5.68e − 7 5.69e − 7 5.67e − 7
2 2.58e − 9 2.62e − 9 3.42e − 42 3.41e − 42 3.47e − 22 3.48e − 22 3.45e − 22
3 1.96e − 18 2.24e − 18

Table 3. Values of ∥xk − x∗∥ for different ηn in case (b) for Example 3.2.
σ It. Algorithm UL Algorithm MSUCL Algorithm UC Algorithm CL Algorithm NT

ηn := 1
20 ηn := 1

10 ηn := 1
20 ηn := 1

10
0.2 0 2.00e + 0 2.00e + 0 2.00e + 0 2.00e + 0 2.00e + 0 2.00e + 0 2.00e + 0

1 3.82e − 2 3.82e − 2 9.63e − 3 9.59e − 3 1.68e − 3 1.68e − 3 1.68e − 3
2 8.87e − 5 8.92e − 5 1.77e − 13 2.11e − 13 3.67e − 11 3.66e − 11 3.68e − 11
3 7.74e − 10 7.81e − 10 6.57e − 35 6.58e − 35 6.59e − 35
4 8.38e − 20 7.32e − 20

0.02 0 2.00e − 1 2.00e − 1 2.00e − 1 2.00e − 1 2.00e − 1 2.00e − 1 2.00e − 1
1 4.23e − 4 3.68e − 4 5.36e − 8 5.37e − 8 5.09e − 6 5.08e − 6 5.10e − 6
2 8.32e − 9 7.74e − 9 4.34e − 29 4.33e − 29 9.99e − 19 9.98e − 19 9.99e − 19
3 4.45e − 18 5.75e − 18

Table 4. Values of ∥xk − x∗∥ for different ηn in case (c) for Example 3.2.
σ It. Algorithm UL Algorithm MSUCL Algorithm UC Algorithm CL Algorithm NT

ηn := 1
20 ηn := 1

10 ηn := 1
20 ηn := 1

10
0.2 0 6.32e + 0 6.32e + 0 6.32e + 0 6.32e + 0 6.32e + 0 6.32e + 0 6.32e + 0

1 1.21e − 1 1.20e − 1 9.87e − 3 9.88e − 3 5.13e − 3 5.12e − 3 5.14e − 3
2 2.96e − 4 2.79e − 4 1.13e − 13 1.25e − 13 5.55e − 11 5.57e − 11 5.53e − 11
3 2.98e − 10 2.45e − 10 1.03e − 34 1.05e − 34 1.01e − 34
4 2.17e − 20 2.13e − 20

0.02 0 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1 6.32e − 1
1 1.21e − 4 1.21e − 4 4.71e − 9 4.72e − 9 4.72e − 7 4.71e − 7 4.73e − 7
2 2.28e − 9 2.43e − 9 4.44e − 33 4.45e − 33 4.18e − 20 4.19e − 20 4.17e − 20
3 1.79e − 17 1.81e − 17
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Table 5. Averaged CPU time in seconds of all algorithms for the ten tests for Example 3.2.
n 50 100 250 500 750 1000
Algorithm UL 0.55 2.03 7.12 17.01 40.86 118.68
Algorithm UC 0.48 1.81 6.12 16.68 32.93 112.31
Algorithm NT 0.42 1.79 6.02 15.38 30.03 101.11
Algorithm CL 0.41 1.76 5.96 14.76 29.19 98.56
Algorithm MSUCL 0.26 1.01 3.99 11.23 20.44 72.21

Remark 3.1. Various indices can be employed to compare the efficiency of iterative methods. One of
the most prevalent efficiency indices is introduced as follows [31, 32]:

CR2 =
OC

CPU + IT + FE + JE
,

where OC, IT, FE, JE, and CPU are the order of convergence, number of iterations, number of total
function evaluations, total number of Jacobian evaluations, and CPU time, respectively.

We can see from Table 6 that Algorithm MSUCL is better than the other methods for solving all
test problems in criteria CR2, indicating its superior performance.

Table 6. Values of CR2 for all algorithms to solve all test problems.
Method Example 3.1 Case (a) in Example 3.2 Case (b) in Example 3.2 Case (c) in Example 3.2
Algorithm UL 0.0221 0.0176 0.0112 0.0098
Algorithm UC 0.0482 0.0158 0.0249 0.0199
Algorithm NT 0.0398 0.0268 0.0221 0.0243
Algorithm CL 0.0491 0.0289 0.0211 0.0252
Algorithm MSUCL 0.0567 0.0342 0.0298 0.0337

3.1. Chandrasekhar H-equation

The Chandrasekhar integral equation [9] which arises from radiative transfer theory is a nonlinear
integral equation which gives a full nonlinear system of equations if discretized. The Chandrasekhar
integral equation is given by

F(P, c) = 0, P : [0, 1]→ R,

with parameter c and the operator F as

F(P, c)(u) = P(u) −
(
1 −

c
2

∫ 1

0

uP(v)
u + v

dv
)−1
. (3.3)

If we discretize the integral Eq (3.3) using the midpoint integration rule with n grid points:∫ 1

0
f (t)dt =

1
n

n∑
j=1

f (t j), t j = ( j − 0.5) ∗ h, h =
1
n
, 1 ≤ j ≤ n,

we obtain the resulting system of nonlinear equations:

Fi(P, c) = ui −
(
1 −

c
2n

n∑
j=1

tiui

ti + t j

)−1
, 1 ≤ i ≤ n. (3.4)
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When starting with a (1, 1, · · · , 1)T vector, the system (3.4) has a solution for all c ∈ (0, 1). The c were
equally spaced with ∆c = 0.01 in the interval c ∈ (0, 1) and we choose n = 100. We note that in this
case the Jacobian is a full matrix for n = 0, 1, . . . , ηn =

1
10 . For all algorithms, the stopping tolerance

for the iterations is 10−12.
Let IterTotal denote the total number of iterations for all c considered and Iter be its mean iteration

number. From Table 7, we find that the new method has the least total and mean number of iterations,
which has the lowest computational cost and therefore is the most efficient of the other existing methods
in terms of CPU time.

Table 7. Key results for the Chandrasekhar H-equation.

Statistical data Algorithm NT Algorithm UL Algorithm CL Algorithm UC Algorithm MSUCL
IterTotal 346 472 339 326 245
Iter 3.47 4.72 3.39 3.25 2.44
CPU times(s) 5248 5894 4603 4421 3199

3.2. Inverse eigenvalue problem

We consider the following inverse eigenvalue problem (IEP): given n + 1 real symmetric n × n
matrices {Ai}

n
i=0 and n real numbers

λ∗1 ≥ λ
∗
2 ≥ . . . ≥ λ

∗
n,

find a vector

c∗ = (c1, c2, . . . , cn)T ∈ Rn

such that

λi(A(c∗)) = λ∗i , i = 1, . . . , n,

where

A(c) := A0 +

n∑
i=1

ciAi

and {λ j(A(c))}nj=1 are the eigenvalues of A(c) with

λ1(A(c)) ≥ λ2(A(c)) ≥ . . . ≥ λn(A(c)).

The above IEP can be represented mathematically through a set of non-linear equations:

f(c) := (λ1(A(c)) − λ∗1, λ2(A(c)) − λ∗2, . . . , λn(A(c)) − λ∗n)T = 0. (3.5)

To further illustrate the effectiveness of the new algorithm, we present a practical engineering
application in vibrations [2, 33, 34]. We consider the vibration of a taut string with n beads. Figure 1
shows such a model for the case n = 4.
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m1

m2

m3

m4

y1

y2

y3

y4

L
T T

Figure 1. A string with n = 4 beads.

Here, we assume that the n beads are placed along the string, where the ends of the string are
clamped. The mass of the jth bead is denoted by m j. The horizontal lengths between masses m j and
m j+1 (and between each beads at each end and the clamped support) are set to be a constant L. The
horizontal tension is set to be a constant T . Then the equation of motion is governed by

m jy′′j (t) = T
y j+1 − y j

L
− T

y j − y j−1

L
, j = 1, . . . , n, (3.6)

where
y0 = yn+1 = 0.

That is, the ends of the string are fixed. The matrix form of (3.6) is given by:

y′′(t) = −CJy(t), (3.7)

where
y(t) = (y1(t), y2(t), . . . , yn(t))T , C = diag(c1, c2, . . . , cn)

with
c j =

T
m jL
,

and J is the discrete Laplacian matrix

J =



2 −1
−1 2 −1

. . .
. . .
. . .

−1 2 −1
−1 2


∈ Sn.

The general solution of (3.7) is given in terms of the eigenvalue problem

CJy = λy,

where λ is the square of the natural frequency of the vibration system and the nonzero vector y accounts
for the interplay between the masses. The inverse problem for the beaded string is to compute the
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masses {m j}
n
j=1 so that the resulting system has a prescribed set of natural frequencies. It is easy to

check that the eigenvalues of J are given by:

λ j(J) = 4
(
sin

jπ
n + 1

)2
, j = 1, 2, . . . , n.

Thus J is symmetric and positive definite and CJ is similar to LTCL, where L is the Cholesky factor of

J = LLT .

Then the inverse problem is converted into the form of the IEP where

A0 = 0 and A j = LT E jL

with
E j = diag(e j)

for j = 1, 2, . . . , n. The beaded string data in Example 3.3 comes from the website:
http://www.caam.rice.edu/ beads.

Example 3.3. ([2]) This is an inverse problem for the beaded string with n = 6 beads, where

(m1,m2,m3,m4,m5,m6) = (0.017804, 0.030783, 0.017804, 0.017804, 0.030783, 0.017804)(kg),
(n + 1)L = 1.12395 (meter),

T = 166.0370 (Newton),
λ∗ = (9113.978, 30746.32, 83621.69, 133310.0, 148694.4, 193537.0)T ,

c∗ = (58081.57, 33592.71, 58081.57, 58081.57, 33592.71, 58081.57)T .

We report our numerical results for starting point

c0 = (58081, 33592, 58081, 58081, 33592, 58081)T .

We solve Example 3.3 using all algorithms, and the stopping tolerance is set to be

∥ck − c∗∥ ≤ 10−12,

for n = 0, 1, . . . , ηn =
1

10 . The numerical results are listed in Tables 8 and 9. We observe from Table 8
that the proposed method has higher convergence order and/or requires less operations than the other
existing methods. Table 9 displays the computed masses for the beaded string. As expected, the desired
masses are recovered: http://www.caam.rice.edu/ beads.

Table 8. Values of ∥ck − c∗∥ for Example 3.3.

It. Algorithm NT Algorithm UL Algorithm CL Algorithm UC Algorithm MSUCL
0 9.53e − 1 9.53e − 1 9.53e − 1 9.53e − 1 9.53e − 1
1 3.45e − 3 3.41e − 2 3.26e − 3 4.25e − 3 2.11e − 4
2 4.25e − 8 5.24e − 3 2.14e − 8 8.24e − 8 3.66e − 17
3 2.26e − 22 4.29e − 5 4.36e − 23 9.99e − 23
4 4.11e − 9
5 9.87e − 17

AIMS Mathematics Volume 9, Issue 10, 28623–28642.

http://www.caam.rice.edu/~beads
http://www.caam.rice.edu/~beads


28638

Table 9. Recovered masses for Example 3.3.

m1 m2 m3 m4 m5 m6

true 0.017804 0.030783 0.017804 0.017804 0.030783 0.017804
recovered 0.017804 0.030783 0.017804 0.017804 0.030783 0.017804

Example 3.4. ([1]) This is an inverse problem with n = 10. Define

A0 = O, A1 =
1

m1
e1eT

1 , Ak =
( 1
√

m1
e1 −

1
√

mk
ek
)( 1
√

m1
e1 −

1
√

mk
ek
)T
, k = 2, 3, . . . , 6,

where

m1 = 2, m2 = m3 = m4 = m5 = m6 = 0.2.

Now

λ∗ = (−310.2490,−249.2218,−28.08413, 113.3087, 218.7351, 487.9554)T .

Then

c∗ = (−83.47955,−53.82911, 89.13261, 40.82639,−47.78696, 21.50871)T .

We report our numerical results for different starting points:

• (a) c0 = (−77.95824,−62.08697, 96.54128, 40.10535,−44.33137, 20.79310)T ,
• (b) c0 = (−76.86213,−63.46336, 95.28928, 41.39452,−42.24157, 17.37889)T ,
• (c) c0 = (−78.58345,−65.97678, 97.83621, 43.47844,−49.26789, 23.67335)T ,
• (d) c0 = (−85.47863,−67.28566, 80.28746, 35.38552,−45.45096, 23.47528)T .

Here we take

B0 = J(c0)−1.

For all algorithms, the stopping tolerance is set to be

∥ck − c∗∥ ≤ 10−12.

Table 10 displays the error of ∥ck − c∗∥ for the above four initial points c0, where “It.” represents
the number of outer iterations, and “*” denotes that the corresponding algorithm fails to converge,
respectively.

We see from Table 10 that for these choices of the initial points, Algorithm UL, Algorithm UC, and
Algorithm MSUCL converge but Algorithm NT and Algorithm CL do not, and Algorithm MSUCL
needs less iterations than Algorithm UL and Algorithm UC.
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Table 10. Values of ∥ck − c∗∥ and It., for Example 3.4.

ini. k Algorithm NT Algorithm CL Algorithm UL Algorithm UC Algorithm MSUCL
ηn =

1
10 ηn =

1
10

(a) 0 1.29e + 1 1.29e + 1 1.29e + 1 1.29e + 1 1.29e + 1
1 1.86e + 0 1.86e + 0 5.23e + 0 4.56e + 0 6.52e − 2
2 1.86e + 0 1.85e + 0 2.33e − 2 6.32e − 2 5.29e − 7
3 1.86e + 0 1.86e + 0 3.21e − 3 9.85e − 5 8.88e − 25
4 1.86e + 0 1.86e + 0 8.12e − 5 5.55e − 11
5 1.86e + 0 1.86e + 0 1.98e − 8 6.29e − 23
6 1.86e + 0 1.86e + 0 6.59e − 11
7 1.86e + 0 1.86e + 0 4.22e − 18
It. ∗ ∗ 7 5 3

(b) 0 1.49e + 1 1.49e + 1 1.49e + 1 1.49e + 1 1.49e + 1
1 1.86e + 0 1.86e + 0 4.26e + 0 7.45e + 0 1.25e − 2
2 1.86e + 0 1.85e + 0 9.84e − 2 8.29e − 2 9.99e − 7
3 1.85e + 0 1.86e + 0 4.25e − 3 5.98e − 5 3.27e − 25
4 1.86e + 0 1.86e + 0 9.86e − 5 6.15e − 11
5 1.86e + 0 1.86e + 0 3.26e − 8 9.19e − 23
6 1.85e + 0 1.86e + 0 1.29e − 11
7 1.86e + 0 1.85e + 0 5.43e − 18
It. ∗ ∗ 7 5 3

(c) 0 1.62e + 1 1.62e + 1 1.62e + 1 1.62e + 1 1.62e + 1
1 1.86e + 0 1.86e + 0 5.23e + 0 2.11e + 0 1.98e − 2
2 1.86e + 0 1.85e + 0 2.33e − 2 5.37e − 2 2.48e − 7
3 1.85e + 0 1.86e + 0 3.21e − 3 1.11e − 5 4.16e − 25
4 1.86e + 0 1.85e + 0 8.12e − 5 2.51e − 11
5 1.86e + 0 1.86e + 0 1.98e − 8 3.26e − 23
6 1.86e + 0 1.86e + 0 6.59e − 11
7 1.86e + 0 1.86e + 0 4.22e − 18
It. ∗ ∗ 7 5 3

(d) 0 1.74e + 1 1.74e + 1 1.74e + 1 1.74e + 1 1.74e + 1
1 1.86e + 0 1.86e + 0 4.25e + 0 3.22e + 0 3.21e − 2
2 1.86e + 0 1.85e + 0 5.12e − 2 4.59e − 2 5.29e − 7
3 1.86e + 0 1.85e + 0 1.23e − 3 4.88e − 5 9.99e − 25
4 1.86e + 0 1.86e + 0 5.56e − 5 9.87e − 13
5 1.85e + 0 1.86e + 0 8.45e − 8
6 1.86e + 0 1.86e + 0 3.29e − 13
7 1.86e + 0 1.86e + 0
It. ∗ ∗ 6 4 3

4. Conclusions

In this paper, we have proposed a multi-step Ulm-Chebyshev-like method for solving nonlinear
operator equations, which does not contain inverse operators in its expression, and does not require
computing Jacobian matrices for solving Jacobian equations. We prove that the multi-step
Ulm-Chebyshev-like method converges locally to the solution with R-convergence rate 4 under
appropriate conditions. As an application, it is demonstrated how this result can be used to analyze
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the Chandrasekhar integral equation and to solve the inverse eigenvalue problems. The proposed
method has higher convergence order and/or requires less operations than the other existing methods,
indicating its superior performance. The study of the stability analysis of our new method is also one
for our future work.
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