Research article

Solution of linear correlated fuzzy differential equations in the linear correlated fuzzy spaces

  • Received: 22 November 2023 Revised: 04 December 2023 Accepted: 07 December 2023 Published: 28 December 2023
  • MSC : 26E50, 35R13

  • Linear correlated fuzzy differential equations (LCFDEs) are a valuable approach to handling physical problems, optimizations problems, linear programming problems etc. with uncertainty. But, LCFDEs employed on spaces with symmetric basic fuzzy numbers often exhibit multiple solutions due to the extension process. This abundance of solutions poses challenges in the existing literature's solution methods for LCFDEs. These limitations have led to reduced applicability of LCFDEs in dealing with such types of problems. Therefore, in the current study, we focus on establishing existence and uniqueness results for LCFDEs. Moreover, we will discuss solutions in the canonical form of LCFDEs in the space of symmetric basic fuzzy number which is currently absent in the literature. To enhance the practicality of our work, we provide examples and plots to illustrate our findings.

    Citation: Noor Jamal, Muhammad Sarwar, Nabil Mlaiki, Ahmad Aloqaily. Solution of linear correlated fuzzy differential equations in the linear correlated fuzzy spaces[J]. AIMS Mathematics, 2024, 9(2): 2695-2721. doi: 10.3934/math.2024134

    Related Papers:

  • Linear correlated fuzzy differential equations (LCFDEs) are a valuable approach to handling physical problems, optimizations problems, linear programming problems etc. with uncertainty. But, LCFDEs employed on spaces with symmetric basic fuzzy numbers often exhibit multiple solutions due to the extension process. This abundance of solutions poses challenges in the existing literature's solution methods for LCFDEs. These limitations have led to reduced applicability of LCFDEs in dealing with such types of problems. Therefore, in the current study, we focus on establishing existence and uniqueness results for LCFDEs. Moreover, we will discuss solutions in the canonical form of LCFDEs in the space of symmetric basic fuzzy number which is currently absent in the literature. To enhance the practicality of our work, we provide examples and plots to illustrate our findings.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] A. A. Sori, A. Ebrahimnejad, H. Motameni, Elite artificial bees' colony algorithm to solve robot's fuzzy constrained routing problem, Comput. Intell., 36 (2020), 659–681. https://doi.org/10.1111/coin.12258 doi: 10.1111/coin.12258
    [3] S. H. Nasseri, A. Ebrahimnejad, O. Gholami, Fuzzy stochastic data envelopment analysis with undesirable outputs and its application to banking industry, Int. J. Fuzzy Syst., 20 (2018), 534–548. https://doi.org/10.1007/s40815-017-0367-1 doi: 10.1007/s40815-017-0367-1
    [4] Y. Xi, Y. Ding, Y. Cheng, J. Zhao, M. Zhou, S. Qin, Evaluation of the medical resource allocation: evidence from China, Healthcare, 11 (2023), 829. https://doi.org/10.3390/healthcare11060829 doi: 10.3390/healthcare11060829
    [5] X. Gou, X. Xu, F. Deng, W. Zhou, E. H. Viedma, Medical health resources allocation evaluation in public health emergencies by an improved ORESTE method with linguistic preference orderings, Fuzzy Optim. Decis. Making, 2023 (2023), 6. https://doi.org/10.1007/s10700-023-09414-6 doi: 10.1007/s10700-023-09414-6
    [6] X. Gou, Z. Xu, H. Liao, Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making, Inform. Sciences, 388–389 (2017), 225–246. https://doi.org/10.1016/j.ins.2017.01.033 doi: 10.1016/j.ins.2017.01.033
    [7] X. Gou, Z. Xu, H. Liao, F. Herrera, Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare, J. Oper. Res. Soc., 72 (2021), 2611–2630. https://doi.org/10.1080/01605682.2020.1806741 doi: 10.1080/01605682.2020.1806741
    [8] N. Jan, J. Gwak, D. Pamucar, L. Martínez, Hybrid integrateddecision-making model for operating system based on complex intuitionistic fuzzy and soft information, Inform. Sciences, 651 (2023), 119592. https://doi.org/10.1016/j.ins.2023.119592 doi: 10.1016/j.ins.2023.119592
    [9] N. Jan, J. Gwak, D. Pamucar, A robust hybrid decision making model for Human-Computer interaction in the environment of Bipolar complex picture fuzzy soft sets, Inform. Sciences, 645 (2023), 119163. https://doi.org/10.1016/j.ins.2023.119163 doi: 10.1016/j.ins.2023.119163
    [10] C. Carlsson, R. Fullér, P. Majlender, Additions of completely correlated fuzzy numbers, IEEE International Conference on Fuzzy Systems, 1 (2004), 535–539. https://doi.org/10.1109/FUZZY.2004.1375791 doi: 10.1109/FUZZY.2004.1375791
    [11] L. C. Barros, F. S. Pedro, Fuzzy differential equations with interactive derivative, Fuzzy Set. Syst., 309 (2017), 64–80. https://doi.org/10.1016/j.fss.2016.04.002 doi: 10.1016/j.fss.2016.04.002
    [12] E. Esmi, F. S. Pedro, L. C. Barros, W. Lodwick, Fréchet derivative for linearly correlated fuzzy function, Inform. Sciences, 435 (2018), 150–160. https://doi.org/10.1016/j.ins.2017.12.051 doi: 10.1016/j.ins.2017.12.051
    [13] Y. H. Shen, A novel difference and derivative for linearly correlated fuzzy number-valued functions, J. Intell. Fuzzy Syst., 42 (2022), 6027–6043. https://doi.org/10.3233/JIFS-212908 doi: 10.3233/JIFS-212908
    [14] M. L. Puri, D. A. Ralescu, Differential of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. https://doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5
    [15] B. Bede, S. G. Gal, Generalization of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
    [16] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Set. Syst., 230 (2013), 119–141. https://doi.org/10.1016/j.fss.2012.10.003 doi: 10.1016/j.fss.2012.10.003
    [17] Y. H. Shen, Calculus for linearly correlated fuzzy number-valued functions, Fuzzy Set. Syst., 429 (2022), 101–135. https://doi.org/10.1016/j.fss.2021.02.017 doi: 10.1016/j.fss.2021.02.017
    [18] Y. H. Shen, First-order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers, Fuzzy Set. Syst., 429 (2022), 136–168. https://doi.org/10.1016/j.fss.2020.11.010 doi: 10.1016/j.fss.2020.11.010
    [19] N. Jamal, M. Sarwar, S. Hussain, Existence criteria for the unique solution of first order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers, Fractals, 30 (2022), 1–13. https://doi.org/10.1142/S0218348X22402216 doi: 10.1142/S0218348X22402216
    [20] B. Bede, Mathematics of fuzzy sets and fuzzy logic, Heidelberg: Springer Berlin, 2013. https://doi.org/10.1007/978-3-642-35221-8
    [21] O. Kaleva, A note on fuzzy differential equations, Nonlinear Anal. Theor., 64 (2006), 895–900. https://doi.org/10.1016/j.na.2005.01.003 doi: 10.1016/j.na.2005.01.003
    [22] N. Jamal, M. Sarwar, M. M. Khashan, Hyers-Ulam stability and existence criteria for the solution of second-order fuzzy differential equations, J. Funct. Space., 2021 (2021), 6664619. https://doi.org/10.1155/2021/6664619 doi: 10.1155/2021/6664619
    [23] T. Abdeljawad, Q. M. Al-Mdallal, F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos Soliton. Fract., 119 (2019), 94–101. https://doi.org/10.1016/j.chaos.2018.12.015 doi: 10.1016/j.chaos.2018.12.015
    [24] M. Arfan, I. Mahariq, K. Shah, T. Abdeljawad, G. Laouini, P. O. Mohammed, Numerical computations and theoretical investigations of a dynamical system with fractional order derivative, Alex. Eng. J., 61 (2022), 1982–1994. https://doi.org/10.1016/j.aej.2021.07.014 doi: 10.1016/j.aej.2021.07.014
    [25] M. Al-Refai, T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Adv. Differ. Equ., 2017 (2017), 315. https://doi.org/10.1186/s13662-017-1356-2 doi: 10.1186/s13662-017-1356-2
    [26] N. Jan, J. Gwak, S. Hussain, A. Nasir, Mathematical investigation of communication and network securities under interval-valued complex spherical fuzzy information, Int. J. Fuzzy Syst., 2023 (2023), 1–18. https://doi.org/10.1007/s40815-023-01578-y doi: 10.1007/s40815-023-01578-y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(845) PDF downloads(100) Cited by(10)

Article outline

Figures and Tables

Figures(12)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog