Research article

Distributed Newton method for time-varying convex optimization with backward Euler prediction

  • Received: 27 July 2024 Revised: 28 August 2024 Accepted: 04 September 2024 Published: 20 September 2024
  • MSC : 49M15, 90C25

  • We investigated the challenge of unconstrained distributed optimization with a time-varying objective function, employing a prediction-correction approach. Our method introduced a backward Euler prediction step that used the differential information from consecutive moments to forecast the trajectory's future direction. This predicted value was then refined through an iterative correction process. Our analysis and experimental results demonstrated that this approach effectively addresses the optimization problem without requiring the computation of the Hessian matrix's inverse.

    Citation: Zhuo Sun, Huaiming Zhu, Haotian Xu. Distributed Newton method for time-varying convex optimization with backward Euler prediction[J]. AIMS Mathematics, 2024, 9(10): 27272-27292. doi: 10.3934/math.20241325

    Related Papers:

  • We investigated the challenge of unconstrained distributed optimization with a time-varying objective function, employing a prediction-correction approach. Our method introduced a backward Euler prediction step that used the differential information from consecutive moments to forecast the trajectory's future direction. This predicted value was then refined through an iterative correction process. Our analysis and experimental results demonstrated that this approach effectively addresses the optimization problem without requiring the computation of the Hessian matrix's inverse.



    加载中


    [1] J. S. Pan, A. Q. Tian, V. Snášel, L. Kong, S. C. Chu, Maximum power point tracking and parameter estimation for multiple-photovoltaic arrays based on enhanced pigeon-inspired optimization with taguchi method, Energy, 251 (2022), 123863. https://doi.org/10.1016/j.energy.2022.123863 doi: 10.1016/j.energy.2022.123863
    [2] A. Q. Tian, X. Y. Wang, H. Xu, J. S. Pan, V. Snášel, H. X. Lv, Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement, Energy, 294 (2024), 130927. https://doi.org/10.1016/j.energy.2024.130927 doi: 10.1016/j.energy.2024.130927
    [3] A. Simonetto, E. Dall'Anese, S. Paternain, G. Leus, G. B. Giannakis, Time-varying convex optimization: Time-structured algorithms and applications, Proc. IEEE, 108 (2020), 2032–2048. http://dx.doi.org/10.1109/JPROC.2020.3003156 doi: 10.1109/JPROC.2020.3003156
    [4] Q. Li, Y. Liao, K. Wu, L. Zhang, J. Lin, M. Chen, J. M. Guerrero, et al., Parallel and distributed optimization method with constraint decomposition for energy management of microgrids, Proc. IEEE, 12 (2021), 4627–4640. http://dx.doi.org/10.1109/TSG.2021.3097047 doi: 10.1109/TSG.2021.3097047
    [5] S. Hosseini, A. Chapman, M. Mesbahi, Online distributed convex optimization on dynamic networks, IEEE Trans. Autom. Control, 61 (2016), 3545–3550. http://dx.doi.org/10.1109/TAC.2016.2525928 doi: 10.1109/TAC.2016.2525928
    [6] A. Simonetto, A. Koppel, A. Mokhtari, G. Leus, A. Ribeiro, Decentralized prediction-correction methods for networked time-varying convex optimization, IEEE Trans. Autom. Control, 62 (2017), 5724–5738. http://dx.doi.org/10.1109/TAC.2017.2694611 doi: 10.1109/TAC.2017.2694611
    [7] A. Simonetto, Dual prediction-correction methods for linearly constrained time-varying convex programs, IEEE Trans. Autom. Control, 64 (2018), 3355–3361. http://dx.doi.org/10.1109/TAC.2018.2877682 doi: 10.1109/TAC.2018.2877682
    [8] A. Q. Tian, F. F. Liu, H. X. Lv, Snow geese algorithm: A novel migration-inspired meta-heuristic algorithm for constrained engineering optimization problems, Appl. Math. Model., 126 (2024), 327–347. https://doi.org/10.1016/j.apm.2023.10.045 doi: 10.1016/j.apm.2023.10.045
    [9] X. Li, L. Xie, N. Li, A survey on distributed online optimization and game, arXiv Prep., 2022. https://doi.org/10.48550/arXiv.2205.00473
    [10] A. Simonetto, E. Dall'Anese, Prediction-correction algorithms for time-varying constrained optimization, IEEE Trans. Signal Process., 65 (2017), 5481–5494. http://dx.doi.org/10.1109/TSP.2017.2728498 doi: 10.1109/TSP.2017.2728498
    [11] S. Qu, Y. Zhou, Y. Ji, Z. Dai, Z. Wang, Robust maximum expert consensus modeling with dynamic feedback mechanism under uncertain environments, J. Ind. Manag. Optim., 12 (2024), 4627–4640. http://dx.doi.org/10.3934/jimo.2024093 doi: 10.3934/jimo.2024093
    [12] S. Bittanti, F. A. Cuzzola, A mixed gh2/h approach for stabilization and accurate trajectory tracking of unicycle-like vehicles, Int. J. Control, 74 (2001), 880–888. https://doi.org/10.1080/00207170110037164 doi: 10.1080/00207170110037164
    [13] Y. Tang, Time-varying optimization and its application to power system operation, California Instit. Tech., (2019). http://dx.doi.org/10.7907/6N9W-3J20
    [14] A. Y. Popkov, Gradient methods for nonstationary unconstrained optimization problems, Autom. Remote Control, 66 (2005), 883–891. https://doi.org/10.1007/s10513-005-0132-z doi: 10.1007/s10513-005-0132-z
    [15] A. L. Dontchev, M. I. Krastanov, R. T. Rockafellar, V. M. Veliov, An euler-newton continuation method for tracking solution trajectories of parametric variational inequalities, SIAM J. Control Optim., 51 (2013), 1823–1840. https://doi.org/10.1137/120876915 doi: 10.1137/120876915
    [16] M. Fazlyab, S. Paternain, V. M. Preciado, A. Ribeiro, Prediction-correction interior-point method for time-varying convex optimization, IEEE Trans. Autom. Control, 63 (2017), 1973–1986. http://dx.doi.org/10.1109/TAC.2017.2760256 doi: 10.1109/TAC.2017.2760256
    [17] A. Mokhtari, Q. Ling, A. Ribeiro, Network newton-part i: Algorithm and convergence, 2015, arXiv Prep., (2015). https://doi.org/10.48550/arXiv.1504.06017
    [18] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, A. Ribeiro, A class of prediction-correction methods for time-varying convex optimization, IEEE Trans. Signal Process., 64 (2016), 4576–4591. http://dx.doi.org/10.1109/TSP.2016.2568161 doi: 10.1109/TSP.2016.2568161
    [19] P. Pedregal, Introduction to optimization, Springer, 2004. http://dx.doi.org/10.1007/b97412
    [20] V. M. Zavala, M. Anitescu, Real-time nonlinear optimization as a generalized equation, SIAM J. Control Optim., 48 (2010), 5444–5467. https://doi.org/10.1137/090762634 doi: 10.1137/090762634
    [21] A. Mokhtari, Q. Ling, A. Ribeiro, Network newton distributed optimization methods, IEEE Trans. Signal Process., 65 (2017), 146–161. https://doi.org/10.1109/TSP.2016.2617829 doi: 10.1109/TSP.2016.2617829
    [22] Q. Alfio, S. Riccardo, S. Fausto, Numerical mathematics, Springer Sci. Busin. Media, 37 (2010). https://doi.org/10.1007/978-1-4612-4442-4 doi: 10.1007/978-1-4612-4442-4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(411) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog