In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative, subject to the boundary and nonlocal initial conditions. The Kuratowski's measure of non-compactness and its associated fixed point theorems–Darbo's fixed point theorem and Mönchh's fixed point theorem, are the foundation for the analysis in this paper. We support our results with examples of nonlinear implicit fractional differential equations involving the Caputo version of the Atangana-Baleanu derivative subject to both boundary and nonlocal initial conditions. In addition, we provide solutions to the problems we considered.
Citation: Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar. Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness[J]. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative, subject to the boundary and nonlocal initial conditions. The Kuratowski's measure of non-compactness and its associated fixed point theorems–Darbo's fixed point theorem and Mönchh's fixed point theorem, are the foundation for the analysis in this paper. We support our results with examples of nonlinear implicit fractional differential equations involving the Caputo version of the Atangana-Baleanu derivative subject to both boundary and nonlocal initial conditions. In addition, we provide solutions to the problems we considered.
[1] | K. Diethelm, The analysis of fractional differential equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[3] | V. Lakshimikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042 |
[4] | V. Lakshmikamntham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publisher, 2009. |
[5] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[6] | D. Baleanu, A. Jajarmi, S. S. Sajjadi, D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127. https://doi.org/10.1063/1.5096159 doi: 10.1063/1.5096159 |
[7] | A. Jajarmi, D. Baleanu, S. S. Sajjadi, J. H. Asad, A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach, Front. Phys., 7 (2019), 196. https://doi.org/10.3389/fphy.2019.00196 doi: 10.3389/fphy.2019.00196 |
[8] | A. Jajarmi, S. Arshad, D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 122524. https://doi.org/10.1016/j.physa.2019.122524 doi: 10.1016/j.physa.2019.122524 |
[9] | A. Jajarmi, B. Ghanbari, D. Baleanu, A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 093111. https://doi.org/10.1063/1.5112177 doi: 10.1063/1.5112177 |
[10] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[11] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[12] | A. Atangana, S. I. Araz, Step forward on nonlinear differential equations with the Atangana-Baleanu derivative: inequalities, existence, uniqueness and method, Chaos Solitons Fract., 173 (2023), 113700. https://doi.org/10.1016/j.chaos.2023.113700 doi: 10.1016/j.chaos.2023.113700 |
[13] | C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay, Chaos Solitons Fract., 157 (2022), 111916. https://doi.org/10.1016/j.chaos.2022.111916 doi: 10.1016/j.chaos.2022.111916 |
[14] | K. D. Kucche, S. T. Sutar, Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative, Chaos Solitons Fract., 143 (2021), 110556. https://doi.org/10.1016/j.chaos.2020.110556 doi: 10.1016/j.chaos.2020.110556 |
[15] | S. T. Sutar, K. D. Kucche, On nonlinear hybrid fractional differential equations with Atangana-Baleanu-Caputo derivative, Chaos Solitons Fract., 143 (2021), 110557. https://doi.org/10.1016/j.chaos.2020.110557 doi: 10.1016/j.chaos.2020.110557 |
[16] | S. T. Sutar, K. D. Kucche, Existence and data dependence results for fractional differential equations involving Atangana-Baleanu derivative, Rend. Circ. Mat. Palermo Seri. 2, 71 (2022), 647–663. https://doi.org/10.1007/s12215-021-00622-w doi: 10.1007/s12215-021-00622-w |
[17] | A. Jajarmi, S. Arshad, D. Baleuno, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 122524. https://doi.org/10.1016/j.physa.2019.122524 doi: 10.1016/j.physa.2019.122524 |
[18] | L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U doi: 10.1016/0022-247X(91)90164-U |
[19] | L. Byszewski, Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem, Int. J. Stoch. Anal., 12 (1999), 91–97. https://doi.org/10.1155/S1048953399000088 doi: 10.1155/S1048953399000088 |
[20] | L. Byszewski, H. Akca, Existence of solutions of a semilinear functional-differential evolution nonlocal problem, Nonlinear Anal., 34 (1998), 65–72. https://doi.org/10.1016/S0362-546X(97)00693-7 doi: 10.1016/S0362-546X(97)00693-7 |
[21] | A. Bednarz, L. Byszewski, Continuous dependence of mild solutions on initial nonlocal data, of the nonlocal semilinear functional-differential evolution Cauchy problems of the first and second order, Czasopismo Techniczne, 5 (2018), 141–148. https://doi.org/10.4467/2353737XCT.18.080.8562 doi: 10.4467/2353737XCT.18.080.8562 |
[22] | K. Balachandran, M. Chandrasekaran, Existence of solutions of nonlinear integrodifferential equations with nonlocal condition, Int. J. Stoch. Anal., 10 (1997), 279–288. https://doi.org/10.1155/S104895339700035X doi: 10.1155/S104895339700035X |
[23] | K. Balachandran, Existence and uniqueness of mild and strong solutions of nonlinear integro-differential equations with nonlocal condition, Differ. Equ. Dyn. Syst., 6 (1998), 159–165. |
[24] | K. Deimling, Nonlinear functional analysis, Berlin, Heidelberg: Springer, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[25] | G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Semin. Mat. Univ. Padova, 24 (1955), 84–92. |
[26] | H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985–999. https://doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3 |
[27] | J. Appell, Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator, J. Math. Anal. Appl., 83 (1981), 251–263. https://doi.org/10.1016/0022-247X(81)90261-4 doi: 10.1016/0022-247X(81)90261-4 |
[28] | M. Sarwar, S. Hussain, K. Abodayeh, S. Moonsuwan, T. Sitthiwirattham, Controllability of semilinear noninstantaneous impulsive neutral stochastic differential equations via Atangana-Baleanu Caputo fractional derivative, Alex. Eng. J., 94 (2024), 149–158. https://doi.org/10.1016/j.aej.2024.03.022 doi: 10.1016/j.aej.2024.03.022 |
[29] | E. Thilakraj, K. Kaliraj, C. Ravichandran, M. Manjula, New investigation on controllability of Sobolev-type Volterra-Fredholm functional integro-differential equation with non-local condition, Results Control Optim., 15 (2024), 100418. https://doi.org/10.1016/j.rico.2024.100418 doi: 10.1016/j.rico.2024.100418 |
[30] | K. D. Kucche, J. J. Nieto, V. Venktesh, Theory of nonlinear implicit fractional differential equations, Differ. Equ. Dyn. Syst., 28 (2020), 1–17. https://doi.org/10.1007/s12591-016-0297-7 doi: 10.1007/s12591-016-0297-7 |
[31] | K. D. Kucche, S. T. Sutar, Stability via successive approximations for nonlinear implicit fractional differential equations, Moroccan J. Pure Appl. Anal., 3 (2017), 36–54. https://doi.org/10.1515/mjpaa-2017-0004 doi: 10.1515/mjpaa-2017-0004 |
[32] | S. T. Sutar, K. D. Kucche, Global existence and uniqueness for implicit differential equation of arbitrary order, Fract. Differ. Calc., 5 (2015), 199–208. https://doi.org//10.7153/fdc-05-17 doi: 10.7153/fdc-05-17 |
[33] | S. T. Sutar, K. D. Kucche, Implicit fractional differential equations in Banach spaces via Picard and weakly Picard operator theory, Acta Math. Univ. Comenianae, 4 (2021), 403–420. |
[34] | T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. http://dx.doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20 |
[35] | C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Solitons Fract., 125 (2019), 194–200. https://doi.org/10.1016/j.chaos.2019.05.014 doi: 10.1016/j.chaos.2019.05.014 |