This work provided a detailed theoretical analysis of fractional ordinary differential equations with Caputo and the Atangana-Baleanu fractional derivative. The work started with an extension of Tychonoff's fixed point and the Perron principle to prove the global existence with extra conditions due to the properties of the fractional derivatives used. Then, a detailed analysis of the existence of maximal and minimal solutions was presented for both cases. Then, using Chaplygin's approach with extra conditions, we also established the existence and uniqueness of the solutions of these equations. The Abel and the Bernoulli equations were considered as illustrative examples and were solved using the fractional middle point method.
Citation: Abdon Atangana. Existence and uniqueness of nonlinear fractional differential equations with the Caputo and the Atangana-Baleanu derivatives: Maximal, minimal and Chaplygin approaches[J]. AIMS Mathematics, 2024, 9(10): 26307-26338. doi: 10.3934/math.20241282
[1] | Mohammed Ahmed Alomair, Ali Muhib . On the oscillation of fourth-order canonical differential equation with several delays. AIMS Mathematics, 2024, 9(8): 19997-20013. doi: 10.3934/math.2024975 |
[2] | H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy . Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features. AIMS Mathematics, 2024, 9(12): 34224-34247. doi: 10.3934/math.20241630 |
[3] | Osama Moaaz, Wedad Albalawi . Differential equations of the neutral delay type: More efficient conditions for oscillation. AIMS Mathematics, 2023, 8(6): 12729-12750. doi: 10.3934/math.2023641 |
[4] | Abdelkader Moumen, Amin Benaissa Cherif, Fatima Zohra Ladrani, Keltoum Bouhali, Mohamed Bouye . Fourth-order neutral dynamic equations oscillate on timescales with different arguments. AIMS Mathematics, 2024, 9(9): 24576-24589. doi: 10.3934/math.20241197 |
[5] | Fahd Masood, Osama Moaaz, Shyam Sundar Santra, U. Fernandez-Gamiz, Hamdy A. El-Metwally . Oscillation theorems for fourth-order quasi-linear delay differential equations. AIMS Mathematics, 2023, 8(7): 16291-16307. doi: 10.3934/math.2023834 |
[6] | Clemente Cesarano, Osama Moaaz, Belgees Qaraad, Ali Muhib . Oscillatory and asymptotic properties of higher-order quasilinear neutral differential equations. AIMS Mathematics, 2021, 6(10): 11124-11138. doi: 10.3934/math.2021646 |
[7] | Maryam AlKandari . Nonlinear differential equations with neutral term: Asymptotic behavior of solutions. AIMS Mathematics, 2024, 9(12): 33649-33661. doi: 10.3934/math.20241606 |
[8] | Maged Alkilayh . Nonlinear neutral differential equations of second-order: Oscillatory properties. AIMS Mathematics, 2025, 10(1): 1589-1601. doi: 10.3934/math.2025073 |
[9] | Bouharket Bendouma, Fatima Zohra Ladrani, Keltoum Bouhali, Ahmed Hammoudi, Loay Alkhalifa . Solution-tube and existence results for fourth-order differential equations system. AIMS Mathematics, 2024, 9(11): 32831-32848. doi: 10.3934/math.20241571 |
[10] | Ali Muhib, Hammad Alotaibi, Omar Bazighifan, Kamsing Nonlaopon . Oscillation theorems of solution of second-order neutral differential equations. AIMS Mathematics, 2021, 6(11): 12771-12779. doi: 10.3934/math.2021737 |
This work provided a detailed theoretical analysis of fractional ordinary differential equations with Caputo and the Atangana-Baleanu fractional derivative. The work started with an extension of Tychonoff's fixed point and the Perron principle to prove the global existence with extra conditions due to the properties of the fractional derivatives used. Then, a detailed analysis of the existence of maximal and minimal solutions was presented for both cases. Then, using Chaplygin's approach with extra conditions, we also established the existence and uniqueness of the solutions of these equations. The Abel and the Bernoulli equations were considered as illustrative examples and were solved using the fractional middle point method.
In this article, we study the oscillatory behavior of the fourth-order neutral nonlinear differential equation of the form
{(r(t)Φp1[w′′′(t)])′+q(t)Φp2(u(ϑ(t)))=0,r(t)>0, r′(t)≥0, t≥t0>0, | (1.1) |
where w(t):=u(t)+a(t)u(τ(t)) and the first term means the p-Laplace type operator (1<p<∞). The main results are obtained under the following conditions:
L1: Φpi[s]=|s|pi−2s, i=1,2,
L2: r∈C[t0,∞) and under the condition
∫∞t01r1/(p1−1)(s)ds=∞. | (1.2) |
L3: a,q∈C[t0,∞), q(t)>0, 0≤a(t)<a0<∞, τ,ϑ∈C[t0,∞), τ(t)≤t, limt→∞τ(t)=limt→∞ϑ(t)=∞
By a solution of (1.1) we mean a function u ∈C3[tu,∞), tu≥t0, which has the property r(t)(w′′′(t))p1−1∈C1[tu,∞), and satisfies (1.1) on [tu,∞). We assume that (1.1) possesses such a solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [tu,∞), and otherwise it is called to be nonoscillatory. (1.1) is said to be oscillatory if all its solutions are oscillatory.
We point out that delay differential equations have applications in dynamical systems, optimization, and in the mathematical modeling of engineering problems, such as electrical power systems, control systems, networks, materials, see [1]. The p-Laplace equations have some significant applications in elasticity theory and continuum mechanics.
During the past few years, there has been constant interest to study the asymptotic properties for oscillation of differential equations with p-Laplacian like operator in the canonical case and the noncanonical case, see [2,3,4,11] and the numerical solution of the neutral delay differential equations, see [5,6,7]. The oscillatory properties of differential equations are fairly well studied by authors in [16,17,18,19,20,21,22,23,24,25,26,27]. We collect some relevant facts and auxiliary results from the existing literature.
Liu et al. [4] studied the oscillation of even-order half-linear functional differential equations with damping of the form
{(r(t)Φ(y(n−1)(t)))′+a(t)Φ(y(n−1)(t))+q(t)Φ(y(g(t)))=0,Φ=|s|p−2s, t≥t0>0, |
where n is even. This time, the authors used comparison method with second order equations.
The authors in [9,10] have established sufficient conditions for the oscillation of the solutions of
{(r(t)|y(n−1)(t)|p−2y(n−1)(t))′+∑ji=1qi(t)g(y(ϑi(t)))=0,j≥1, t≥t0>0, |
where n is even and p>1 is a real number, in the case where ϑi(t)≥υ (with r∈C1((0,∞),R), qi∈C([0,∞),R), i=1,2,..,j).
We point out that Li et al. [3] using the Riccati transformation together with integral averaging technique, focuses on the oscillation of equation
{(r(t)|w′′′(t)|p−2w′′′(t))′+∑ji=1qi(t)|y(δi(t))|p−2y(δi(t))=0,1<p<∞, , t≥t0>0. |
Park et al. [8] have obtained sufficient conditions for oscillation of solutions of
{(r(t)|y(n−1)(t)|p−2y(n−1)(t))′+q(t)g(y(δ(t)))=0,1<p<∞, , t≥t0>0. |
As we already mentioned in the Introduction, our aim here is complement results in [8,9,10]. For this purpose we discussed briefly these results.
In this paper, we obtain some new oscillation criteria for (1.1). The paper is organized as follows. In the next sections, we will mention some auxiliary lemmas, also, we will use the generalized Riccati transformation technique to give some sufficient conditions for the oscillation of (1.1), and we will give some examples to illustrate the main results.
For convenience, we denote
A(t)=q(t)(1−a0)p2−1Mp1−p2(ϑ(t)), B(t)=(p1−1)εϑ2(t)ζϑ′(t)r1/(p1−1)(t), ϕ1(t)=∫∞tA(s)ds,R1(t):=(p1−1)μt22r1/(p1−1)(t),ξ(t):=q(t)(1−a0)p2−1Mp2−p11ε1(ϑ(t)t)3(p2−1),η(t):=(1−a0)p2/p1Mp2/(p1−2)2∫∞t(1r(δ)∫∞δq(s)ϑp2−1(s)sp2−1ds)1/(p1−1)dδ,ξ∗(t)=∫∞tξ(s)ds, η∗(t)=∫∞tη(s)ds, |
for some μ∈(0,1) and every M1,M2 are positive constants.
Definition 1. A sequence of functions {δn(t)}∞n=0 and {σn(t)}∞n=0 as
δ0(t)=ξ∗(t), and σ0(t)=η∗(t),δn(t)=δ0(t)+∫∞tR1(t)δp1/(p1−1)n−1(s)ds, n>1σn(t)=σ0(t)+∫∞tσp1/(p1−1)n−1(s)ds, n>1. | (2.1) |
We see by induction that δn(t)≤δn+1(t) and σn(t)≤σn+1(t) for t≥t0, n>1.
In order to discuss our main results, we need the following lemmas:
Lemma 2.1. [12] If the function w satisfies w(i)(ν)>0, i=0,1,...,n, and w(n+1)(ν)<0 eventually. Then, for every ε1∈(0,1), w(ν)/w′(ν)≥ε1ν/n eventually.
Lemma 2.2. [13] Let u(t) be a positive and n-times differentiable function on an interval [T,∞) with its nth derivative u(n)(t) non-positive on [T,∞) and not identically zero on any interval of the form [T′,∞), T′≥T and u(n−1)(t)u(n)(t)≤0, t≥tu then there exist constants θ, 0<θ<1 and ε>0 such that
u′(θt)≥εtn−2u(n−1)(t), |
for all sufficient large t.
Lemma 2.3 [14] Let u∈Cn([t0,∞),(0,∞)). Assume that u(n)(t) is of fixed sign and not identically zero on [t0,∞) and that there exists a t1≥t0 such that u(n−1)(t)u(n)(t)≤0 for all t≥t1. If limt→∞u(t)≠0, then for every μ∈(0,1) there exists tμ≥t1 such that
u(t)≥μ(n−1)!tn−1|u(n−1)(t)| for t≥tμ. |
Lemma 2.4. [15] Assume that (1.2) holds and u is an eventually positive solution of (1.1). Then, (r(t)(w′′′(t))p1−1)′<0 and there are the following two possible cases eventually:
(G1) w(k)(t)>0, k=1,2,3,(G2) w(k)(t)>0, k=1,3, and w′′(t)<0. |
Theorem 2.1. Assume that
liminft→∞1ϕ1(t)∫∞tB(s)ϕp1(p1−1)1(s)ds>p1−1pp1(p1−1)1. | (2.2) |
Then (1.1) is oscillatory.
proof. Assume that u be an eventually positive solution of (1.1). Then, there exists a t1≥t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for t≥t1. Since r′(t)>0, we have
w(t)>0, w′(t)>0, w′′′(t)>0, w(4)(t)<0 and (r(t)(w′′′(t))p1−1)′≤0, | (2.3) |
for t≥t1. From definition of w, we get
u(t)≥w(t)−a0u(τ(t))≥w(t)−a0w(τ(t))≥(1−a0)w(t), |
which with (1.1) gives
(r(t)(w′′′(t))p1−1)′≤−q(t)(1−a0)p2−1wp2−1(ϑ(t)). | (2.4) |
Define
ϖ(t):=r(t)(w′′′(t))p1−1wp1−1(ζϑ(t)). | (2.5) |
for some a constant ζ∈(0,1). By differentiating and using (2.4), we obtain
ϖ′(t)≤−q(t)(1−a0)p2−1wp2−1(ϑ(t)).wp1−1(ζϑ(t))−(p1−1)r(t)(w′′′(t))p1−1w′(ζϑ(t))ζϑ′(t)wp1(ζϑ(t)). |
From Lemma 2.2, there exist constant ε>0, we have
ϖ′(t)≤−q(t)(1−a0)p2−1wp2−p1(ϑ(t))−(p1−1)r(t)(w′′′(t))p1−1εϑ2(t)w′′′(ϑ(t))ζϑ′(t)wp1(ζϑ(t)). |
Which is
ϖ′(t)≤−q(t)(1−a0)p2−1wp2−p1(ϑ(t))−(p1−1)εr(t)ϑ2(t)ζϑ′(t)(w′′′(t))p1wp1(ζϑ(t)), |
by using (2.5) we have
ϖ′(t)≤−q(t)(1−a0)p2−1wp2−p1(ϑ(t))−(p1−1)εϑ2(t)ζϑ′(t)r1/(p1−1)(t)ϖp1/(p1−1)(t). | (2.6) |
Since w′(t)>0, there exist a t2≥t1 and a constant M>0 such that
w(t)>M. |
Then, (2.6), turns to
ϖ′(t)≤−q(t)(1−a0)p2−1Mp2−p1(ϑ(t))−(p1−1)εϑ2(t)ζϑ′(t)r1/(p1−1)(t)ϖp1/(p1−1)(t), |
that is
ϖ′(t)+A(t)+B(t)ϖp1/(p1−1)(t)≤0. |
Integrating the above inequality from t to l, we get
ϖ(l)−ϖ(t)+∫ltA(s)ds+∫ltB(s)ϖp1/(p1−1)(s)ds≤0. |
Letting l→∞ and using ϖ>0 and ϖ′<0, we have
ϖ(t)≥ϕ1(t)+∫∞tB(s)ϖp1/(p1−1)(s)ds. |
This implies
ϖ(t)ϕ1(t)≥1+1ϕ1(t)∫∞tB(s)ϕp1/(p1−1)1(s)(ϖ(s)ϕ1(s))p1/(p1−1)ds. | (2.7) |
Let λ=inft≥Tϖ(t)/ϕ1(t) then obviously λ≥1. Thus, from (2.2) and (2.7) we see that
λ≥1+(p1−1)(λp1)p1/(p1−1) |
or
λp1≥1p1+(p1−1)p1(λp1)p1/(p1−1), |
which contradicts the admissible value of λ≥1 and (p1−1)>0.
Therefore, the proof is complete.
Theorem 2.2. Assume that
liminft→∞1ξ∗(t)∫∞tR1(s)ξp1/(p1−1)∗(s)ds>(p1−1)pp1/(p1−1)1 | (2.8) |
and
liminft→∞1η∗(t)∫∞t0η2∗(s)ds>14. | (2.9) |
Then (1.1) is oscillatory.
proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,∞). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1≥t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for t≥t1. From Lemma 2.4 there is two cases (G1) and (G2).
For case (G1). Define
ω(t):=r(t)(w′′′(t))p1−1wp1−1(t). |
By differentiating ω and using (2.4), we obtain
ω′(t)≤−q(t)(1−a0)p2−1wp2−1(ϑ(t))wp1−1(t)−(p1−1)r(t)(w′′′(t))p1−1wp1(t)w′(t). | (2.10) |
From Lemma 2.1, we get
w′(t)w(t)≤3ε1t. |
Integrating again from t to ϑ(t), we find
w(ϑ(t))w(t)≥ε1ϑ3(t)t3. | (2.11) |
It follows from Lemma 2.3 that
w′(t)≥μ12t2w′′′(t), | (2.12) |
for all μ1∈(0,1) and every sufficiently large t. Since w′(t)>0, there exist a t2≥t1 and a constant M>0 such that
w(t)>M, | (2.13) |
for t≥t2. Thus, by (2.10), (2.11), (2.12) and (2.13), we get
ω′(t)+q(t)(1−a0)p2−1Mp2−p11ε1(ϑ(t)t)3(p2−1)+(p1−1)μt22r1/(p1−1)(t)ωp1/(p1−1)(t)≤0, |
that is
ω′(t)+ξ(t)+R1(t)ωp1/(p1−1)(t)≤0. | (2.14) |
Integrating (2.14) from t to l, we get
ω(l)−ω(t)+∫ltξ(s)ds+∫ltR1(s)ωp1/(p1−1)(s)ds≤0. |
Letting l→∞ and using ω>0 and ω′<0, we have
ω(t)≥ξ∗(t)+∫∞tR1(s)ωp1/(p1−1)(s)ds. | (2.15) |
This implies
ω(t)ξ∗(t)≥1+1ξ∗(t)∫∞tR1(s)ξp1/(p1−1)∗(s)(ω(s)ξ∗(s))p1/(p1−1)ds. | (2.16) |
Let λ=inft≥Tω(t)/ξ∗(t) then obviously λ≥1. Thus, from (2.8) and (2.16) we see that
λ≥1+(p1−1)(λp1)p1/(p1−1) |
or
λp1≥1p1+(p1−1)p1(λp1)p1/(p1−1), |
which contradicts the admissible value of λ≥1 and (p1−1)>0.
For case (G2). Integrating (2.4) from t to m, we obtain
r(m)(w′′′(m))p1−1−r(t)(w′′′(t))p1−1≤−∫mtq(s)(1−a0)p2−1wp2−1(ϑ(s))ds. | (2.17) |
From Lemma 2.1, we get that
w(t)≥ε1tw′(t) and hence w(ϑ(t))≥ε1ϑ(t)tw(t). | (2.18) |
For (2.17), letting m→∞and using (2.18), we see that
r(t)(w′′′(t))p1−1≥ε1(1−a0)p2−1wp2−1(t)∫∞tq(s)ϑp2−1(s)sp2−1ds. |
Integrating this inequality again from t to ∞, we get
w′′(t)≤−ε1(1−a0)p2/p1wp2/p1(t)∫∞t(1r(δ)∫∞δq(s)ϑp2−1(s)sp2−1ds)1/(p1−1)dδ, | (2.19) |
for all ε1∈(0,1). Define
y(t)=w′(t)w(t). |
By differentiating y and using (2.13) and (2.19), we find
y′(t)=w′′(t)w(t)−(w′(t)w(t))2≤−y2(t)−(1−a0)p2/p1M(p2/p1)−1∫∞t(1r(δ)∫∞δq(s)ϑp2−1(s)sp2−1ds)1/(p1−1)dδ, | (2.20) |
hence
y′(t)+η(t)+y2(t)≤0. | (2.21) |
The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.
Theorem 2.3. Let δn(t) and σn(t) be defined as in (2.1). If
limsupt→∞(μ1t36r1/(p1−1)(t))p1−1δn(t)>1 | (2.22) |
and
limsupt→∞λtσn(t)>1, | (2.23) |
for some n, then (1.1)is oscillatory.
proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,∞). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1≥t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for t≥t1. From Lemma 2.4 there is two cases.
In the case (G1), proceeding as in the proof of Theorem 2.2, we get that (2.12) holds. It follows from Lemma 2.3 that
w(t)≥μ16t3w′′′(t). | (2.24) |
From definition of ω(t) and (2.24), we have
1ω(t)=1r(t)(w(t)w′′′(t))p1−1≥1r(t)(μ16t3)p1−1. |
Thus,
ω(t)(μ1t36r1/(p1−1)(t))p1−1≤1. |
Therefore,
limsupt→∞ω(t)(μ1t36r1/(p1−1)(t))p1−1≤1, |
which contradicts (2.22).
The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.
Corollary 2.1. Let δn(t) and σn(t) be defined as in (2.1). If
∫∞t0ξ(t)exp(∫tt0R1(s)δ1/(p1−1)n(s)ds)dt=∞ | (2.25) |
and
∫∞t0η(t)exp(∫tt0σ1/(p1−1)n(s)ds)dt=∞, | (2.26) |
for some n, then (1.1) is oscillatory.
proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,∞). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1≥t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for t≥t1. From Lemma 2.4 there is two cases (G1) and (G2).
In the case (G1), proceeding as in the proof of Theorem 2, we get that (2.15) holds. It follows from (2.15) that ω(t)≥δ0(t). Moreover, by induction we can also see that ω(t)≥δn(t) for t≥t0, n>1. Since the sequence {δn(t)}∞n=0 monotone increasing and bounded above, it converges to δ(t). Thus, by using Lebesgue's monotone convergence theorem, we see that
δ(t)=limn→∞δn(t)=∫∞tR1(t)δp1/(p1−1)(s)ds+δ0(t) |
and
δ′(t)=−R1(t)δp1/(p1−1)(t)−ξ(t). | (2.27) |
Since δn(t)≤δ(t), it follows from (2.27) that
δ′(t)≤−R1(t)δ1/(p1−1)n(t)δ(t)−ξ(t). |
Hence, we get
δ(t)≤exp(−∫tTR1(s)δ1/(p1−1)n(s)ds)(δ(T)−∫tTξ(s)exp(∫sTR1(δ)δ1/(p1−1)n(δ)dδ)ds). |
This implies
∫tTξ(s)exp(∫sTR1(δ)δ1/(p1−1)n(δ)dδ)ds≤δ(T)<∞, |
which contradicts (2.25). The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.
Example 2.1. Consider the differential equation
(u(t)+12u(t2))(4)+q0t4u(t3)=0, | (2.28) |
where q0>0 is a constant. Let p1=p2=2, r(t)=1, a(t)=1/2, τ(t)=t/2, ϑ(t)=t/3 and q(t)=q0/t4. Hence, it is easy to see that
A(t)=q(t)(1−a0)(p2−1)Mp2−p1(ϑ(t))=q02t4, B(t)=(p1−1)εϑ2(t)ζϑ′(t)r1/(p1−1)(t)=εt227 |
and
ϕ1(t)=q06t3, |
also, for some ε>0, we find
liminft→∞1ϕ1(t)∫∞tB(s)ϕp1/(p1−1)1(s)ds>(p1−1)pp1/(p1−1)1.liminft→∞6εq0t3972∫∞tdss4>14q0>121.5ε. |
Hence, by Theorem 2.1, every solution of Eq (2.28) is oscillatory if q0>121.5ε.
Example 2.2. Consider a differential equation
(u(t)+a0u(τ0t))(n)+q0tnu(ϑ0t)=0, | (2.29) |
where q0>0 is a constant. Note that p=2, t0=1, r(t)=1, a(t)=a0, τ(t)=τ0t, ϑ(t)=ϑ0t and q(t)=q0/tn.
Easily, we see that condition (2.8) holds and condition (2.9) satisfied.
Hence, by Theorem 2.2, every solution of Eq (2.29) is oscillatory.
Remark 2.1. Finally, we point out that continuing this line of work, we can have oscillatory results for a fourth order equation of the type:
{(r(t)|y′′′(t)|p1−2y′′′(t))′+a(t)f(y′′′(t))+∑ji=1qi(t)|y(σi(t))|p2−2y(σi(t))=0,t≥t0, σi(t)≤t, j≥1,, 1<p2≤p1<∞. |
The paper is devoted to the study of oscillation of fourth-order differential equations with p-Laplacian like operators. New oscillation criteria are established by using a Riccati transformations, and they essentially improves the related contributions to the subject.
Further, in the future work we get some Hille and Nehari type and Philos type oscillation criteria of (1.1) under the condition ∫∞υ01r1/(p1−1)(s)ds<∞.
The authors express their debt of gratitude to the editors and the anonymous referee for accurate reading of the manuscript and beneficial comments.
The author declares that there is no competing interest.
[1] |
M. J. Korenberg, I. W. Hunter, The identification of nonlinear biological systems: Volterra kernel approaches, Ann. Biomed. Eng., 24 (1996), 250–268. https://doi.org/10.1007/BF02648117 doi: 10.1007/BF02648117
![]() |
[2] |
D. K. Campbell, Nonlinear physics: Fresh breather, Nature, 432 (2004), 455–456. https://doi.org/10.1038/432455a doi: 10.1038/432455a
![]() |
[3] |
F. Mosconi, T. Julou, N. Desprat, D. K. Sinha, J. F. Allemand, V. Croquette, Some nonlinear challenges in biology, Nonlinearity, 21 (2008), T131. https://doi.org/10.1088/0951-7715/21/8/T03 doi: 10.1088/0951-7715/21/8/T03
![]() |
[4] |
M. Newman, Power laws, Pareto distributions and Zipf's law, Contemp. Phys., 46 (2005), 323–351. https://doi.org/10.1080/00107510500052444 doi: 10.1080/00107510500052444
![]() |
[5] |
D. M. Mackay, Psychophysics of perceived intensity: A theoretical basis for Fechner's and Stevens' laws, Science, 139 (1963), 1213–1216. https://doi.org/10.1126/science.139.3560.1213.b doi: 10.1126/science.139.3560.1213.b
![]() |
[6] |
J. E. Staddon, Theory of behavioral power functions, Psychol. Rev., 85 (1978), 305–320. https://doi.org/10.1037/0033-295X.85.4.305 doi: 10.1037/0033-295X.85.4.305
![]() |
[7] |
A. Corral, A. Osso, J. E. Llebot, Scaling of tropical cyclone dissipation, Nat. Phys., 6 (2010), 693–696. https://doi.org/doi:10.1038/nphys1725 doi: 10.1038/nphys1725
![]() |
[8] |
R. D. Lorenz, Power law of dust devil diameters on mars and earth, Icarus, 203 (2009), 683–684. https://doi.org/10.1016/j.icarus.2009.06.029 doi: 10.1016/j.icarus.2009.06.029
![]() |
[9] |
W. J. Reed, B. D. Hughes, From gene families and genera to incomes and internet file sizes: Why power laws are so common in nature, Phys. Rev. E., 66 (2002), 067103. https://doi.org/10.1103/PhysRevE.66.067103 doi: 10.1103/PhysRevE.66.067103
![]() |
[10] |
Y. Gerchak, Decreasing failure rates and related issues in the social sciences, Oper. Res., 32 (1984), 537–546. https://doi.org/10.1287/opre.32.3.537 doi: 10.1287/opre.32.3.537
![]() |
[11] |
T. Pritz, Five-parameter fractional derivative model for polymeric damping materials, J. Sound Vibration, 265 (2003), 935–952. https://doi.org/10.1016/S0022-460X(02)01530-4 doi: 10.1016/S0022-460X(02)01530-4
![]() |
[12] |
M. Caputo, Linear model of dissipation whose Q is almost frequency independent–Ⅱ, Geophys. J. R. Astron. Soc., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
![]() |
[13] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
![]() |
[14] |
W. M. Whyburn, On the fundamental existence theorems for differential systems, Ann. Math., 30 (1929), 31–38. https://doi.org/10.2307/1968263 doi: 10.2307/1968263
![]() |
[15] | V. Lakshmikantham, S. Leela, Differential and integral inequalities - Theory and applications, Academic Press, 55 (1969), 3–319. |
[16] |
A. F. Filippov, The existence of solutions of generalized differential equations, Math. Notes Acad. Sci. USSR, 10 (1971), 608–611. https://doi.org/10.1007/BF01464722 doi: 10.1007/BF01464722
![]() |
[17] | E. E. Viktorovsky, On a general theorem on the existence of solutions of differential equations, connected with the consideration of integral inequalities, Mat. Sb., 31 (1952), 27–33. |
[18] | S. A. Chaplygin, A new method of approximate integration of differential equations, Moscow-Leningrad, 1950. |
[19] | O. Perron, Über den Integralbegriff, 1914. https://doi.org/10.11588/diglit.37437 |
[20] | D. V. Griffiths, I. M. Smith, Numerical methods for engineers, 2 Eds., New York: Chapman and Hall/CRC, 2006. https://doi.org/10.1201/9781420010244 |
[21] |
A. A. Tateishi, H. V. Ribeiro, E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Front. Phys., 5 (2017), 52. https://doi.org/10.3389/fphy.2017.00052 doi: 10.3389/fphy.2017.00052
![]() |
[22] |
F. Mainardi, Why the Mittag-Leffler function can be considered the queen function of the fractional calculus? Entropy, 22 (2020), 1359. https://doi.org/10.3390/e22121359 doi: 10.3390/e22121359
![]() |
[23] |
J. Sabatier, Fractional-order derivatives defined by continuous Kernels: Are they really too restrictive? Fractal Fract., 4 (2020), 40. https://doi.org/10.3390/fractalfract4030040 doi: 10.3390/fractalfract4030040
![]() |
[24] |
W. Al-Sadi, Z. Wei, I. Moroz, A. Alkhazzan, Existence and stability of solution in Banach space for an impulsive system involving Atangana-Baleanu and Caputo-Fabrizio derivatives, Fractals, 31 (2023), 2340085. https://doi.org/10.1142/S0218348X23400856 doi: 10.1142/S0218348X23400856
![]() |
1. | Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani, Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization, 2021, 0, 2155-3297, 0, 10.3934/naco.2021001 | |
2. | Fahd Masood, Osama Moaaz, Shyam Sundar Santra, U. Fernandez-Gamiz, Hamdy A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, 2023, 8, 2473-6988, 16291, 10.3934/math.2023834 | |
3. | Peng E, Tingting Xu, Linhua Deng, Yulin Shan, Miao Wan, Weihong Zhou, Solutions of a class of higher order variable coefficient homogeneous differential equations, 2025, 20, 1556-1801, 213, 10.3934/nhm.2025011 |